
Achieving bit-compatibility in a sparse direct
symmetric solver

Jennifer Scott
STFC Rutherford Appleton Laboratory

in collaboration with Jonathan Hogg

PMAA 2012 London, 28th June 2012



Bit-compatible solver Jennifer Scott

Outline of talk

I Introduction and motivation

I Multifrontal method

I Brief overview
I Implementation within HSL MA97, with emphasis on

robustness, efficiency and bit compatibility

I Numerical results and comparisons

I Concluding remarks



Bit-compatible solver Jennifer Scott

Sparse linear system

Solve
Ax = b

with A large, sparse, symmetric and possibly indefinite
(may be singular).

For example, saddle-point systems arise in a number of important
applications (

H BT

B 0

)(
x
y

)
=

(
b
c

)



Bit-compatible solver Jennifer Scott

Direct method

I Compute explicit factorization

SAS = (PL)D(PL)T

I where L (unit) is lower triangular,

I D block diagonal with 1× 1 and 2× 2 blocks.

I S is a diagonal scaling matrix chosen to improve performance.

I P is a permutation matrix chosen to limit fill in L and for
numerical stability.



Bit-compatible solver Jennifer Scott

Why develop a new direct solver?

I HSL specialises in sparse matrix computations.

I Largest collection of sparse direct solvers anywhere.

I Older multifrontal codes MA27 (Duff and Reid ’83) and MA57

(Duff ) are well-known and remain widely used ... account for
more than half of HSL downloads, frequently for use within
optimization packages (saddle-point systems).

I Also out-of-core multifrontal code HSL MA77 designed for very

large problems.

But not parallel (except through use of multithreaded BLAS).



Bit-compatible solver Jennifer Scott

Design aims

I Multifrontal code for multicore architectures.

I Efficient, robust, flexible, user-friendly code that is fully
tested, supported and maintained.

I Provide basis for future research (replace MA57).

Package: HSL MA97.

Language: Fortran 95 and OpenMP.



Bit-compatible solver Jennifer Scott

Multifrontal approach
Represent the sparse problem as a tree of dense subproblems

15

6

3

1 2

4 5

14

9

7 8

13

12

10 11



Bit-compatible solver Jennifer Scott

Multifrontal approach
Represent the sparse problem as a tree of dense subproblems

15

6

3

1 2

4 5

14

9

7 8

13

12

10 11



Bit-compatible solver Jennifer Scott

Notes on multifrontal

I Tree depends on ordering (eg nested dissection).

I Each (non-root) node has single parent and each non-leaf
node has ≥ 1 child.

I Leaf nodes: small, lots of them, each involves little work.

I Near root: large nodes, account for most of the computational
work.



Bit-compatible solver Jennifer Scott

Why choose multifrontal?

I Naturally adapts to parallel implementation by processing
multiple independent subtrees simultaneously.
Tree-level parallelism.



Bit-compatible solver Jennifer Scott

Tree-level parallelism
15

6

3

1 2

4 5

14

9

7 8

13

12

10 11

Subtree 1

Subtree 2



Bit-compatible solver Jennifer Scott

Why choose multifrontal?

I Parallelism can be exploited within each dense subproblem.
Node-level parallelism.

Parallel multifrontal codes for symmetric systems include:

MUMPS (MPI code, Amestoy, L’Excellent et al),

WSMP (IBM, Gupta),

TAUCS (Toledo et al).



Bit-compatible solver Jennifer Scott

Subtree factorization

Basic work unit for parallel multifrontal is factorization of subtree.

Serial case: single subtree factorization.

Parallel case: a number of subtrees are factorized simultaneously.

Subtree factorization computes

I the entries of L and D associated with the nodes within the
subtree, and

I the contribution associated with root of subtree to next
(higher) level in tree.



Bit-compatible solver Jennifer Scott

Work at a node

At each node, dense m ×m frontal matrix(
F1 FT

2

F2 E

)
.

Rows/columns of F1 are fully summed (do not appear higher up
tree and so are elimination candidates).

1. Factorization: F1 = L1DL
T
1

2. Solve: L2 = F2L
−1
1 . (L1, L2) are computed columns of L.

3. Update: E ← E − L2(L2D)T (BLAS 3).

E is generated element that is passed up tree.



Bit-compatible solver Jennifer Scott

Achieving good performance

Key to good performance is efficiency of dense factorization.

Can’t use LAPACK since doesn’t perform partial factorization.

Can’t use LAPACK for F1 = L1DL
T
1 because, for stability, entries

in F2 must be considered.

Instead, developed recursive factorization procedure that

I incorporates threshold partial pivoting,

I exploits symmetry, and

I is cache agnostic.



Bit-compatible solver Jennifer Scott

Recursive factorization of frontal matrix

Perform partial factorization at node.

I Pivoting — can’t factorize blue part
and solve with green part.

I Must proceed column-by-column.

I Batch columns together



Bit-compatible solver Jennifer Scott

Recursive factorization of frontal matrix

Perform partial factorization at node.

I Pivoting — can’t factorize blue part
and solve with green part.

I Must proceed column-by-column.

I Batch columns together



Bit-compatible solver Jennifer Scott

Recursive factorization of frontal matrix

1. Recurse on blue area

2. BLAS 3 outer product of shaded area

3. Recurse again as required



Bit-compatible solver Jennifer Scott

Recursive factorization of frontal matrix

1. Recurse on blue area

2. BLAS 3 outer product of shaded area

3. Recurse again as required



Bit-compatible solver Jennifer Scott

Recursive factorization

Recursion continues until number of columns is small or recursion
depth exceeds some maximum.

At lowest level, use dense factorization kernel. Exploit BLAS 3.

Note: numerical stability very important so use threshold partial
pivoting (want to compute inertia and minimise number of steps of
refinement and hence number of solves).

If columns fail pivot test — get delayed (if delayed to higher up
tree, increases flop count and fill in L).



Bit-compatible solver Jennifer Scott

Tree-level parallelism

Tree-level parallelism is exposed recursively. At each node i :

I If amount of work associated with subtree rooted at i is small
(< 105 flops), subtree factorization code used.

I Otherwise, task created for each child node (and subtree
rooted at child).

If only small amount of work in consecutive children, merge
into single task (necessary to avoid slow down).

Once all child node tasks have run (in parallel), subtree
factorization code performs assembly and factorization
operations at i .



Bit-compatible solver Jennifer Scott

Bit compatibility

What? The computed factorization and solutions are bit-for-bit
identical regardless of the number of threads used.

That is, results are reproducible with successive runs using
identical input data yielding identical output data (assuming they
are performed using identical hardware and operating system
environments).



Bit-compatible solver Jennifer Scott

Is non-bit compatibility a problem?

I Non-reproducibility well understood within scientific
computing community, so may not be seen as a problem by
this group.

I But code’s end users may have no idea how code been
executed so may be unable to judge whether (eg) rounding
errors have been propogated unfavourably.

I Of course, non-reproducible results could be seen as a positive
feature since requires user to consider whether the program’s
results are what is expected.

I But can be very worrying for user to see different runs
returning different results.



Bit-compatible solver Jennifer Scott

Why do we want bit compatibility?

Many potential reasons:

I Aids users in debugging their program.

I Later part of user’s program may be unstable so sensitive to
output from solver.

I Increases confidence if results are repeatable.

I Can be requirement in some application areas
(eg financial computations).

I Requested by some HSL users (may be inexperienced or
limited background in numerical mathematics and scientific
computing).

Note: nice article on this by Kai Diethelm in Computing in Science
and Engineering, January 2012



Bit-compatible solver Jennifer Scott

Achieving bit compatibility

Two issues:

I How do we achieve bit compatibility when executing our
solver in parallel?

I What does it cost us in terms of performance?



Bit-compatible solver Jennifer Scott

Achieving bit compatibility

Must consider both levels of parallelism.

Tree-level parallelism:
Requires assembly order of child nodes to be fixed.

That is, at each node i , once all the child node tasks have been
run, the contributions from the child nodes must be added into the
frontal matrix in the same order, independently of number of
threads.



Bit-compatible solver Jennifer Scott

Achieving bit compatibility

Node-level parallelism:

I Blocking must be independent of the number of threads
(cannot optimize block size).

I Data-parallel approach is used so that each individual sum is
effectively calculated in serial.



Bit-compatible solver Jennifer Scott

Node-level parallelism

To achieve bit compatibility

I Termination of recursion must be fixed.

I Can’t dynamically adjust.

I Base on size of node and depth in tree.



Bit-compatible solver Jennifer Scott

Cost of bit compatibility

Imposing bit compatibility does mean a loss of efficiency.

Our experiments suggest resulting overhead within our solver is
around 20-30 per cent.

We feel this is acceptable.

Note: HSL has a wide user base and our aim is always to achieve
reliability and robustness and this sometimes is at the cost of some
loss of efficiency.



Bit-compatible solver Jennifer Scott

Comment on bit compatibility

HSL MA97 uses BLAS routines and our tests found bit-compatibility
dependent on BLAS library used.

I Bit-compatibility not achieved with the GotoBLAS (which is
normally our prefered choice for BLAS).

I For the Intel MKL, bit-compatibility achieved provided
BLAS 3 used.

I No problems were encountered using ACML or ATLAS BLAS
libraries.



Bit-compatible solver Jennifer Scott

Numerical problems

Problems from University of Florida Sparse Matrix Collection.

Test Set 1: 40 small indefinite matrices (including some KKT
systems).

Test Set 2: 40 positive-definite matrices.

Test Set 3: 20 general indefinite matrices (non-KKT systems).

Test Set 4: 20 (mostly larger) KKT indefinite matrices.

For full details and complete results, see STFC Technical Report
RAL-TR-2011-24.



Bit-compatible solver Jennifer Scott

Test environment

Processor 2 × Intel Xeon E5620
Physical Cores 8
Memory 24 GB
Compiler Intel Fortran 12.0.0

ifort -g -fast -openmp
BLAS MKL 10.3.0



Bit-compatible solver Jennifer Scott

Speedup on 8 cores

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

S
p

ee
d

u
p

Problem index



Bit-compatible solver Jennifer Scott

MA57 vs HSL MA97 factorize performance (8 cores)

0.1

1

10

0 20 40 60 80 100 120

T
im

e(
M

A
57

)/
T

im
e(

M
A

97
)

Problem index



Bit-compatible solver Jennifer Scott

Other tests

Comparisons to test competitiveness of HSL MA97

(not fully comprehensive study).

PARDISO (Intel MKL 10.3) (Schenk).

I Lacks some features included in Version 4.0.0 (and later)
available for fee from Uni. Basel (eg bit-compatibility).

I By default, uses iterative refinement.

WSMP v11.5.20 (Gupta, IBM).

I Bit-compatible only if same number of threads used.

We allow up to 5 steps of iterative refinement.



Bit-compatible solver Jennifer Scott

Comparison with WSMP and PARDISO
Note: points above the line indicate better performance by HSL MA97.

0.1

1

10

40 50 60 70 80 90 100 110 120

T
im

e/
T

im
e(

M
A

97
)

Problem index

PARDISO
WSMP



Bit-compatible solver Jennifer Scott

Comparison of scaled backward errors

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 20 40 60 80 100 120

bw
d

er
r

Problem index

HSL MA97
PARDISO

These are without external iterative refinement but
include iterative refinement within PARSISO.



Bit-compatible solver Jennifer Scott

Comparison with WSMP and PARDISO

After iterative refinement, the number of problems that failed to
achieve an accurate solution were:

Solver Failed

HSL MA97 0
PARDISO 20
WSMP 2



Bit-compatible solver Jennifer Scott

Concluding remarks

I Efficient solution of sparse symmetric linear systems is
long-standing challenge.

I Multicore machines: new challenges, need to redesign solvers.

I HSL MA97: new general-purpose parallel multifrontal sparse
direct solver for symmetric (indefinite) systems.

I Important features include:
I bit-compatibility
I use of sophisticated dense factorization kernels

I Resulting code is robust and efficient when applied to tough
indefinite systems.



Bit-compatible solver Jennifer Scott

HSL MA97 is available as part of the HSL mathematical software
library (free to academics).

Please go to www.hsl.rl.ac.uk

Thank you!


