
Challenges in Parallel Sparse Direct Linear
Solvers

Jonathan Hogg

STFC Rutherford Appleton Laboratory

Perspectives on Parallel Numerical Linear Algebra
18th July 2012

1 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Sparse Direct Solvers

Solve
Ax = b

where A is Sparse.

Direct Methods Factorize A = LU, solve Ly = b,Ux = y .
Black-box, robust, compute-bound.
Memory-hungry⇒ slow for large matrices?.

Iterative Methods CG, GMRES, BiCGStab, etc.
Matrix-free. Fast? Efficient? memory-bound.
Non-robust, performance depends on preconditioner.

2 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Sparse Direct Solvers

Solve
Ax = b

where A is Sparse.

New view: Spectrum

Unpreconditioned
Iterative

Pure
Direct

“Hybrid”

ILU(0) HSSAINV

More robust

Less Memory

2 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Sparse Direct Solvers

Solve
Ax = b

where A is Sparse.

New view: Spectrum

Unpreconditioned
Iterative

Pure
Direct

“Hybrid”

ILU(0) HSSAINV

More robust

Less Memory

“HPC”? “MATLAB”?

2 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Horses for Courses

Unpreconditioned
Iterative

Pure
Direct

Hybrid

More robust

Less Memory

Black-boxImpractical Trial and Error

Hit and Miss
“Small”

Numerically Difficult

Large

Numerically Easy

+ ParallelChallenge:

3 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Horses for Courses

Unpreconditioned
Iterative

Pure
Direct

Hybrid

More robust

Less Memory

Black-boxImpractical Trial and Error

Hit and Miss
“Small”

Numerically Difficult

Large

Numerically Easy

+ ParallelChallenge:

3 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Horses for Courses

Unpreconditioned
Iterative

Pure
Direct

Hybrid

More robust

Less Memory

Black-boxImpractical Trial and Error

Hit and Miss
“Small”

Numerically Difficult

Large

Numerically Easy

+ ParallelChallenge:

3 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Horses for Courses

Unpreconditioned
Iterative

Pure
Direct

Hybrid

More robust

Less Memory

Black-boxImpractical Trial and Error

Hit and Miss
“Small”

Numerically Difficult

Large

Numerically Easy

+ ParallelChallenge:

3 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Challenge #1: “Small” + Parallel

We need to achieve strong scaling.

Example
Non-linear optimization solver, unknown problem origin
⇒ Preconditioning difficult (at best)!

Direct solver: solves 100 systems (n = 35000) to reach solution in
5 seconds. 95% of time in linear solver.
⇒ 0.05s per serial factorization
Maybe 2 million flops with 250,000 non-zeroes (8 flops/non-zero)

2015 desktop: 16 CPU cores + 1024 GPU cores?
⇒ Fewer than 250 non-zeroes per core!

4 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Challenge #1: “Small” + Parallel

We need to achieve strong scaling.

8 flops/non-zero ⇒ Communication is King!
Work by Laura Grigori, Jim Demmel and others:
Communication avoiding algorithms

A small world:
Avoid fine-grained communication — latency hurts.

4 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Challenge #1: “Small” + Parallel

We need to achieve strong scaling.

8 flops/non-zero ⇒ Communication is King!
Work by Laura Grigori, Jim Demmel and others:
Communication avoiding algorithms

A small world:
Avoid fine-grained communication — latency hurts.

Assume flops are (almost) free: what can we do?

I Generic compression [bandwidth]

I Low-rank approximation (HSS preconditioning) [bandwidth]

I Speculative assumptions on numerical stability [latency]

4 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Generic Compression

J.D. Hogg and J.A. Scott
A note on the solve phase of a multicore solver
RAL-TR-2010-007

Idea:
Compress data blocks before storing factors, decompress into cache
before use. Otherwise 1 flops/non-zero in solve phase.

LZO Compression Library Higher compression than GZIP, much
faster.

Outcome:
Performance matched that of original algorithm:
Wait for more flops/unit bandwidth.

5 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Generic Compression

J.D. Hogg and J.A. Scott
A note on the solve phase of a multicore solver
RAL-TR-2010-007

Idea:
Compress data blocks before storing factors, decompress into cache
before use. Otherwise 1 flops/non-zero in solve phase.

LZO Compression Library Higher compression than GZIP, much
faster.

Outcome:
Performance matched that of original algorithm:
Wait for more flops/unit bandwidth.

5 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Low-rank approximation

Multiple works by J. Xia, S. Chandrasekaran, M. Gu, X.S. Li et al.

Idea:
Communicate low rank approximations not large dense matrices

Rank-revealing QR:

U

V T

= A
Flops are

cheap!

Outcome:
Good preconditioner for some classes of matrix.
More work needed!

6 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Low-rank approximation

Multiple works by J. Xia, S. Chandrasekaran, M. Gu, X.S. Li et al.

Idea:
Communicate low rank approximations not large dense matrices

Rank-revealing QR:

U

V T

= A
Flops are

cheap!

Outcome:
Good preconditioner for some classes of matrix.
More work needed!

6 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Speculative assumptions on numerical stability

PARDISO: O. Schenk et al.
Static pivoting, weighted matchings: I.S. Duff and others.

Idea:
Assume no pivoting is needed; don’t do pivoting.

More Advanced Idea:
Put large entries on subdiagonal; only do local pivoting.

Outcome:
Works for majority of matrices.
But: Not for some difficult matrices — what direct solvers are for!

7 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Speculative assumptions on numerical stability

PARDISO: O. Schenk et al.
Static pivoting, weighted matchings: I.S. Duff and others.

Idea:
Assume no pivoting is needed; don’t do pivoting.

More Advanced Idea:
Put large entries on subdiagonal; only do local pivoting.

Outcome:
Works for majority of matrices.
But: Not for some difficult matrices — what direct solvers are for!

7 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Speculative assumptions on numerical stability

PARDISO: O. Schenk et al.
Static pivoting, weighted matchings: I.S. Duff and others.

Idea:
Assume no pivoting is needed; don’t do pivoting.

More Advanced Idea:
Put large entries on subdiagonal; only do local pivoting.

Outcome:
Works for majority of matrices.
But: Not for some difficult matrices — what direct solvers are for!

7 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Challenge #2: Numerically difficult + Parallel
Need to do pivoting for stability — in parallel.

Sparse Direct Primer:
Organises into tree of dense linear algebra + sparse scatters

15

6

3

1 2

4 5

14

9

7 8

13

12

10 11

Factorize blue.
Apply inverse
to green.
Form red outer
product.

8 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Challenge #2: Numerically difficult + Parallel
Need to do pivoting for stability — in parallel.

Sparse Direct Primer:
Organises into tree of dense linear algebra + sparse scatters

15

6

3

1 2

4 5

14

9

7 8

13

12

10 11

Factorize blue.
Apply inverse
to green.
Form red outer
product.

8 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Challenge #2: Numerically difficult + Parallel
Need to do pivoting for stability — in parallel.

Sparse Direct Primer:
Organises into tree of dense linear algebra + sparse scatters

15

6

3

1 2

4 5

14

9

7 8

13

12

10 11

Restrict pivoting
to blue.
Control green
growth.

8 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Challenge #2: Numerically difficult + Parallel
Need to do pivoting for stability — in parallel.

Observations:

I Want to start factorization of diagonal block before rest of
column is ready.

I Even for difficult matrices, delayed pivots generally restricted
to few subtrees.

I Assume pivoting will work; backtrack if it doesn’t.

I Achieve the best of both worlds?

8 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Challenge #2: Numerically difficult + Parallel
Need to do pivoting for stability — in parallel.

Otherwise:

I Currently test 1× 1 and 2× 2 pivots

I Use larger block pivots?

I Sparse analog to tournament pivoting?

8 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Challenge #3: Bit-compatibility?

Bit-compatibility: Getting the same answer twice.

1 + (ε/2 + ε/2) 6= (1 + ε/2) + ε/2

9 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Challenge #3: Bit-compatibility?

Bit-compatibility: Getting the same answer twice.

1 + (ε/2 + ε/2) 6= (1 + ε/2) + ε/2

Why would we not do this?

I If we don’t, answers are still equally valid

I Less efficient: restrict parallelism, optimization

I More difficult to achieve

I Must be achieved by all libraries used

9 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Challenge #3: Bit-compatibility?

Bit-compatibility: Getting the same answer twice.

1 + (ε/2 + ε/2) 6= (1 + ε/2) + ε/2

But it’s very attractive

I Hard to debug without it: make it an option?

I Confuses non-expert users no end

I Methods built on top may behave unexpectedly:

e.g. Different local maxima found for non-linear optimization
Different iteration counts

9 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Achieving bit-compatibility

Option #1: Add up in the same order
J.D. Hogg and J.A. Scott, HSL MA97
Enforce ordering on additions:

((1 + 2) + 3) + 4 or (1 + 2) + (3 + 4).

Option #2: Add up in high precision
Use quad or double-double precision to store intermediate results
Ideally requires sufficient cache to hold intermediate results.

10 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Task-based

Sparse task-based implementation exist: HSL MA86, HSL MA87,
PaStiX.

Problems:

I Block alignments — need dynamic reblocking for best
efficiency.

I Building on top of LAPACK/PLASMA — dynamic reblocking
on same data desirable.

I Building on top of LAPACK/PLASMA — can we use the
same task scheduler?

I Dynamic task sizing — splitting/merging across levels.

I Bit-compatibility?

11 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Supernodal method

12 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Supernodal method

13 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Supernodal method

14 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Supernodal method

15 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Supernodal method

16 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Tasking

I Each task may have its own way of blocking.

I Run in parallel — different optimal block sizes.

I Want to compose libraries.

17 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Summary

“Direct” Methods Still required:

I Black-box solution

I Small problems

I Numerically difficult problems

Challenges:

1. Small + Parallel (strong scaling)

2. Accurate + Parallel (communication avoiding pivoting)

3. Bit-compatiblity (software/user education)

4. Interface to rest of software stack (up and down)

18 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

But iterative methods
aren’t perfect either...

19 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Iterative methods challenges

If Matrix-vector product is main cost:

I Already Memory-bound

I Look for ways to use spare cycles ⇒ More expensive
preconditioning?

I 2 or 4 M-v product not much more expensive than 1 M-v.
Can you exploit this?

Existing Efforts:

I Mark Hoemmen (Berkeley),
Communication Avoiding Krylov Methods

I Computes [v ,Av ,A2v , ...,Asv ] simultaneously

I Uses QR for orthogonalize

I Need to use Chebyshev basis for stability

20 / 21



Challenges in Parallel Sparse Direct Linear Solvers Jonathan Hogg

Iterative methods challenges

If Matrix-vector product is main cost:

I Already Memory-bound

I Look for ways to use spare cycles ⇒ More expensive
preconditioning?

I 2 or 4 M-v product not much more expensive than 1 M-v.
Can you exploit this?

Existing Efforts:

I Mark Hoemmen (Berkeley),
Communication Avoiding Krylov Methods

I Computes [v ,Av ,A2v , ...,Asv ] simultaneously

I Uses QR for orthogonalize

I Need to use Chebyshev basis for stability

20 / 21



Thank you!

21 / 21


	0.0: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	anm2: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	3.4: 
	3.5: 
	3.6: 
	3.7: 
	3.8: 
	anm3: 
	4.0: 
	4.1: 
	4.2: 
	4.3: 
	4.4: 
	4.5: 
	4.6: 
	4.7: 
	4.8: 
	4.9: 
	4.10: 
	anm4: 


