
A study of pivoting strategies for tough
sparse indefinite systems

JD Hogg, JA Scott

July 2012

 Technical Report
RAL-TR-2012-009

vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text

©2012 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358- 6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

A study of pivoting strategies for tough sparse indefinite systems

Jonathan Hogg and Jennifer Scott1

ABSTRACT

The performance of a sparse direct solver is dependent upon the pivot sequence that is chosen during

the analyse phase. In the case of symmetric indefinite systems, it may be necessary to modify this sequence

during the factorization to ensure numerical stability. Delaying pivots can have serious consequences in

terms of time as well as the memory and flops required for the factorization and subsequent solves. This

study focuses on hard-to-solve sparse symmetric indefinite problems for which standard threshold partial

pivoting leads to a large number delayed pivots. We perform a detailed review of pivoting strategies

that are aimed at reducing delayed pivots without compromising numerical stability. Extensive numerical

experiments are performed on a set of tough problems arising from practical applications.

Keywords: sparse matrices, sparse linear systems, indefinite symmetric systems, direct solvers, threshold

partial pivoting, static pivoting, matching, scaling.

AMS(MOS) subject classifications: 65F05, 65F50

1 Computational Science and Engineering Department, Rutherford Appleton Laboratory, Harwell Oxford,

Oxfordshire, OX11 0QX, UK.

Correspondence to: jennifer.scott@stfc.ac.uk

This work was supported by EPSRC grant EP/I013067/1.

July 20, 2012

1 Introduction

The accurate and efficient solution of sparse symmetric indefinite linear systems has long been an important

area of interest since such systems arise in a wide range of practical applications, including incompressible

flow problems, electromagnetic scattering, eigenvalue problems and augmented systems within linear and

nonlinear optimization problems. A key difference between a sparse direct solver for the solution of

symmetric positive-definite systems and one for symmetric indefinite systems is that the latter needs

to incorporate pivoting to maintain numerical stability. Not only does this contribute significantly to the

complexity of the development of the solver, pivoting adds overheads when the solver is run. Firstly, in the

search for a suitable pivot at each stage of the factorization. Secondly, in the handling of pivot candidates

that are found to be unsuitable, leading to additional flops (in both the factorize and solve phases) and fill-

in of the factors beyond that predicted by the analyse phase. We have recently developed new task-based

sparse direct solvers for the efficient solution of positive-definite and indefinite linear systems on multicore

machines [21, 24, 28]. In the indefinite case, the need for pivoting means there is less scope for achieving

parallelism. In particular, the tasks are based on block columns whereas in the positive-definite case, the

tasks are block-based and thus finer grained. Our goal is to develop an efficient communication-avoiding

pivoting strategy that, while fast, is as stable as standard threshold partial pivoting. The intention is

that this would allow us to work with block tasks, switching to block column tasks only when careful

monitoring of growth suggests stability is a concern. The success of this approach will be dependent

on being able to precompute pivot sequences that can be used with little or no modification during the

factorization, without compromising numerical stability and the accuracy of the computed solution, and

retaining sparsity in the factors. Thus our interest lies in techniques that ensure stability but lead to few,

if any, delayed pivots (that is, pivots that during the factorization can only be used stably later than their

position in the supplied pivot sequence), possibly at the cost of a (modest) increase in the factor size and

flop count.

A direct solution of the sparse symmetric indefinite linear system

Ax = b

involves factorizing A into the form

A = LDLT ,

where D is a diagonal matrix with 1 × 1 and 2 × 2 pivot blocks and L is a sparse unit lower triangular

matrix. In practice, a more general factorization of the form

SAS−1 = PLD(PL)T (1.1)

is computed, where S is a diagonal scaling matrix and P is a permutation matrix (or, more generally, a

product of permutation matrices) that holds the pivot order. In some implementations, (1.1) is further

generalised to

SAS = P (LDLT + E)PT , (1.2)

where E is a diagonal matrix with small entries. It is the choice of S, P and E that determines the

sparsity of L as well as the accuracy and stability of the numerical factorization. The aim of this study is

to examine different choices for S, P and E and, using a range of hard-to-solve symmetric indefinite linear

systems, illustrate how well they work in practice.

Before the factorization commences, a pivot sequence (elimination order) is computed using one of the

many algorithms available for this (for example, a variant of nested dissection [18] or minimum degree

[1, 33, 46]). This sequence is used by the analyse phase to set up the (provisional) data structures for

the factorization. If at a given stage of the factorization there are p pivot candidates but only p1 < p

pivots are selected as being suitable, the remaining p − p1 candidates are called delayed. The effect of

this is that at a later stage in the factorization, the number of candidate pivots will be greater than

predicted for the supplied pivot sequence; the data structures set up during the analyse phase will have

1

to be modified to accommodate this, more operations will be performed in the computation of the factors

and L will be less sparse than if the pivot sequence was used without modification. These problems that

result from delayed pivots are well-known and over the last two decades, a number of techniques have

been proposed to limit delays and papers exploring this issue written. We review and summarise these

approaches and, using a collection of hard-to-solve symmetric indefinite problems arising from practical

applications, we report on how well they work in practice. The paper is organised as follows. In Section 2,

we briefly look at the importance of prescaling the matrix A before the factorization begins. In Section 3,

we consider threshold partial pivoting and discuss variants that are designed to weaken the standard test

criteria to reduce delayed pivots without, it is hoped, substantially effecting stability. We then consider, in

Section 4, strategies to choose 2×2 pivot blocks during the analyse phase of the solver. Extensive numerical

experiments are reported on in Section 5. Finally, we summarise our findings and recommendations in

Section 6.

We observe that it is not our intention to attempt to exhaustively describe and review the pivoting

strategies that are used in each of the modern state-of-the-art sparse indefinite solvers, although where

appropriate, we indicate in which solver(s) a strategy is used. Our key contribution is a systematic review

of the techniques that have been proposed to improve the performance of indefinite solvers and, using a set

of tough problems that these methods are aimed at, we examine and compare their effectiveness. Experts

in the development of sparse direct solvers undoubtedly understand the issues well but we have been unable

to find any comprehensive results that bring together and compare different strategies. Furthermore, our

contact with users has led us to believe that they are unaware of the potential consequences of selecting a

particular strategy and do not appreciate that some approaches may sacrifice robustness for speed.

2 Scaling the linear system

The aim of scaling is to choose a diagonal matrix S such that the matrix Â = SAS−1 is numerically easier

to factorize than A. This will often mean more accurate results obtained faster than if no scaling is used

and, in extreme cases, by reducing the number of delayed pivots, enables a factorization to be computed

where previously memory (or time) limitations made it impossible. How to find a good scaling S is still an

open question, but a number of scalings have been proposed and are widely used. The use of scalings (and

combinations of scalings) with the well-known symmetric indefinite solver MA57 [16] have been reported

on by Hogg and Scott [22]. Based on that work, we restrict our attention here to the maximum matching

algorithm of MC64 [10] and the equilibration algorithm offered by MC77 [38].

2.1 MC64

MC64 finds a maximum matching of an unsymmetric matrix such that the largest entries are moved on

to the diagonal [10]; this leads to an unsymmetric scaling such that the scaled matrix has all ones on

the diagonal and the remaining entries are of modulus less than or equal to one. The approach can be

symmetrized by the method of Duff and Pralet [11], which essentially amounts to initially ignoring the

symmetry of the matrix and then averaging the relevant row and column scalings from the unsymmetric

permutation.

In recent years, MC64 has been widely used in conjunction with both direct and iterative methods.

For example, it is used in the sparse LU factorization solver SuperLU [31, 32], where it is particularly

advantageous to put large entries on the diagonal because the pivoting strategy implemented in SuperLU

does not allow delayed pivots. The symmetrized version was developed following the success of MC64 on

unsymmetric systems; it is used by default within the factorize phase of MA57 and is available within the

factorize phases of HSL MA97 [26] and MUMPS [34].

2

2.2 MC77

Equilibration is a particular form of scaling in which the rows and columns of the matrix are modified

so that they have approximately the same norm. The package MC77 uses an iterative procedure [38] to

attempt to make all row and column norms of the matrix unity for a user-specified geometric norm ‖ · ‖p.

The infinity norm is the default within MC77. It produces a matrix whose rows and columns have maximum

entry of exactly one and has good convergence properties. The one norm produces a matrix whose row

and column sums are exactly one (a doubly stochastic matrix) and is, in some sense, optimal. Recently,

Ruiz and Uçar [39] considered combining the use of the infinity and one-norms. Specifically, they propose

performing one step of ∞−norm scaling followed by a few steps of 1−norm scaling.

Equilibration scaling is available within factorize phases of HSL MA77 [35, 36], HSL MA97 and MUMPS.

Within HSL MA77, it is implemented out-of-core, avoiding the need to hold the system matrix in main

memory.

3 Pivoting strategies

3.1 Threshold partial pivoting

In the case of symmetric linear systems, 1 × 1 and 2 × 2 pivoting must be performed if symmetry is

to be kept while stability is retained. Stability of the factorization of symmetric indefinite systems was

considered in detail in the paper by Ashcraft, Grimes and Lewis [4]. They showed that bounding the size

of the entries of L, together with a backward stable scheme for solving 2×2 linear systems, suffices to show

backward stability for the entire solution process. They found that the widely used strategy of Bunch and

Kaufmann [6] does not have this property whereas the threshold pivoting technique first used by Duff and

Reid [13] in their original multifrontal solver does.

Duff and Reid choose the pivots one-by-one, with the aim of limiting the size of the entries Li,j in L:

|li,j | < u−1, (3.1)

where the threshold u is a user-set value in the range 0 ≤u≤ 1.0. In the case where u is zero, this is

interpreted as requiring that the entries be finite. Suppose q is the number of rows and columns of D

found so far (that is, the number of 1 × 1 pivots plus twice the number of 2 × 2 pivots). Let ai,j , with

i > q and j > q, denote an entry of the matrix after it has been updated by all the permutations and pivot

operations so far. For a 1× 1 pivot in column j = q + 1, the requirement for inequality (3.1) corresponds

to the threshold test

|aq+1,q+1| > u max
q+1<i≤n

|ai,q+1|. (3.2)

The original test used by Duff and Reid [13] for 2×2 pivots proved unnecessarily severe. Instead, following

the work of Duff et al. [17], an appropriate test for a 2× 2 pivot is∣∣∣∣∣
(
aq+1,q+1 aq+1,q+2

aq+1,q+2 aq+2,q+2

)−1∣∣∣∣∣
(

maxq+2<i≤n |ai,q+1|
maxq+2<i≤n |ai,q+2|

)
<

(
u−1

u−1

)
, (3.3)

where the absolute value notation for a matrix refers to the matrix of corresponding absolute values. In the

case where u is zero, this is interpreted as requiring that the pivot be nonsingular. While this test is not

used universally by modern sparse direct solvers, it has been incorporated into all recent sparse indefinite

solvers within the HSL mathematical software library [29] (including MA57, HSL MA77, HSL MA86 [24] and

HSL MA97) and is thus the one that is used in this study.

3.2 Choice of pivot threshold parameter

The choice of the pivot threshold parameter u not only influences the number of candidate pivots that

are rejected and hence delayed, but also the stability of the factorization. A large u means a tight bound

3

on the size of the entries of L at the possible cost of a large number of delays whereas a smaller value

potentially reduces the number of delays but, because the pivot test is less strict, the factorization may

be less accurate and it may be necessary to perform refinement during the solve phase to recovery the

required accuracy. Frequently-used choices are u = 0.1 or 0.01. These are held, on the basis of extensive

numerical experience, to generally provide a good compromise between stability and sparsity. However,

in some application areas it is common to use a much smaller threshold, despite the attendant risk of

numerical instability. For example, the well-known optimization package Ipopt [47] optionally uses one of

the HSL indefinite solvers MA27 [14] and MA57. For both solvers, the default setting for u within Ipopt is

u = 10−8. If, at some stage of the computation, this is found to give an unstable factorization (detected

via an unexpected inertia or large backward error following solution), the factorization is recomputed with

a larger of value of u, and this process repeated as necessary until either a stable factorization is achieved

or the maximum allowable value for u is reached (which, by default, in Ipopt is 0.0001).

3.3 Relaxed threshold pivoting

The idea behind relaxed threshold pivoting is to relax the threshold parameter during the factorization

when no pivot satisfying the threshold tests for the input u is available. In this way, the pivot threshold

used during the computation may be smaller than at the start of the factorization, reducing the number

of delays but hopefully without seriously compromising stability. Relaxed pivoting strategies have been

explored by Duff and Pralet [12] (see also [37]). The factorization commences with the user-supplied

threshold u. If at some stage no 1× 1 or 2× 2 candidate pivot satisfies the test (3.2) or (3.3), pivots are

accepted using a weaker threshold, provided this is at least a user-defined minimum umin. The hope is

that this will lead to a more stable factorization that requires less refinement than that which results from

using a smaller u throughout the computation.

3.4 Restricted pivoting

Threshold partial pivoting requires all the entries below the diagonal in the candidate pivot column(s) to

be searched when checking the threshold tests (3.2) and (3.3). This is expensive, particularly in a parallel

implementation. One way of avoiding this is to limit the search to the p candidate rows, so that (3.2) is

replaced by

|aq+1,q+1| > u max
q+1<i≤p

|ai,q+1|,

and (3.3) is modified in the same way. The hope is that, for a well-scaled matrix, restricting the search will

save time without leading to the acceptance of pivots that would otherwise have been rejected. Because of

the greater potential for numerical instability, refinement is more likely to be needed to recover accuracy.

Note that time is saved not only in the search for pivots but also because entries in the candidate pivot

columns that lie in rows p+1 to n do not need to be updated after each pivot has been chosen. This allows

block update operations (using high level BLAS kernels) to be employed, thereby improving efficiency.

3.5 Static pivoting

A static pivoting strategy refers to one that allows the factorization to respect the elimination ordering

passed to it from the analyse phase. The factorization does not necessarily follow the analysis exactly

and some slight variations are allowed. For example, in a multifrontal algorithm it is sufficient that the

factorization decisions are compatible with the assembly tree (numerical pivoting can be performed within

a front). The key point is that pivots are not delayed so that the analysis predicts exactly the memory

and operations needed to performed the factorization and thus the data structures can remain static. A

static approach for LU factorization was proposed by Li and Demmel [31] for the SuperLU solver. During

Gaussian elimination small perturbations are added to the diagonal to prevent pivots from becoming too

small and failing the threshold test. The computed factorization is thus not of A but of a perturbed matrix

A+ E, where E is a diagonal matrix.

4

For symmetric indefinite systems, Schenk and Gärtner [42] combine static pivoting with Bunch-

Kaufman and restricted pivoting strategies. Their strategy is implemented within the solver PARDISO [41].

A similar approach is available as an option within WSMP [19]. In this case, the coefficient matrix is

perturbed whenever numerically acceptable 1 × 1 and 2 × 2 pivots cannot be found within a diagonal

supernode block (checks on potential pivots are only made within the supernode block). This strategy

has been shown to perform well in many applications. An important downside is that the solve phase can

require an increased number of refinement steps to achieve the requested accuracy. Furthermore, in some

tough cases, it is not possible to recovery accuracy using iterative refinement (see, for example, the results

reported in [26]) and it may be necessary to try a more expensive procedure, such as Flexible GMRES

(FGMRES) [2, 40] (but, again, convergence is not guaranteed). A further disadvantage is that, since a

perturbed system is solved, the computed inertia of the original matrix A may not be reliable and in

some applications accurate knowledge of the inertia is required (for example, to ensure local convexity in

a non-linear interior point method).

Duff and Pralet [12] propose combining threshold partial pivoting with static to try and minimise both

the number of perturbations that are added and the amount of refinement required. Their strategy (or

variants of it) is available as an option within a number of solvers, including MA57, HSL MA77, HSL MA86,

and MUMPS. The static pivoting strategy used in this study follows that of Duff and Pralet. If no 1× 1 or

2× 2 candidate pivot satisfies the test (3.2) or (3.3) even after relaxing the value of u, the 1× 1 pivot that

is nearest to satisfying the test is accepted. If its absolute value is less than another user-set threshold

static, it is given the value that has the same sign but absolute value static (see [37]).

4 Block pivot strategies

Standard algorithms for computing a pivot sequence, including minimum degree and nested dissection,

compute a sequence of 1×1 pivots. For many indefinite problems, it is necessary to use 2×2 pivots during

the factorization and so the supplied pivot sequence will be modified. To try and minimise modifications,

it is therefore natural to try and construct a tentative pivot sequence that contains 2 × 2 pivots. In this

section, we discuss a number of approaches that have been proposed for this.

4.1 Reusing a pivot sequence

If a sequence of linear systems

Akxk = bk

is to be solved in which the matrix Ak varies from the previous matrix Ak−1 by a relatively small amount

(in terms of both the sparsity pattern and the values of the entries), an obvious possibility is to pass the

pivot sequence actually used by the factorization phase for Ak−1 to the analyse phase for Ak. This is a

strategy that could be used, for example, within a non-linear optimization package, such as Ipopt.

We have performed experiments in which we set Ak = Ak−1 = A. The results are reported on in

Section 5.9.

4.2 Constraint pivot orderings

Many tough indefinite problems are of the form

A =

(
H BT

B C

)
, (4.4)

with H symmetric positive definite, B rectangular, and C symmetric positive semi-definite. Matrices

of the form (4.4) are often called saddle-point matrices or, in the special case C = 0, KKT matrices, in

reference to the Karush-Kuhn-Tucker first-order necessary optimality conditions for the solution of general

nonlinear programming problems. KKT matrices arise in equality and inequality constrained nonlinear

5

programming, sparse optimal control, and mixed finite-element discretizations of partial differential

equations. We refer to a matrix of the form (4.4) with H = C = 0 as an OXO matrix.

The problem of find a permutation P such that PAPT can be factorized stably without the need for

numerical pivoting and without modifying the entries in A, while still limiting the number of entries in L,

has been examined for special classes of KKT matrices by a number of authors. Of practical interest is the

class of F matrices, where each column of B has exactly two entries which sum to zero and C = 0. These

arise in, for example, Stokes flow problems. Tůma [45] and De Niet and Wubs [8] have presented methods

for these problems and report positive results. For more general saddle-point problems, Bridson [5] has

proposed a constrained ordering as follows. The nodes of the adjacency graph G of the matrix A are

split into two disjoint sets: those that correspond to the diagonal entries of H are known as H-nodes

and the remaining nodes as C-nodes. The ordering constraint proposed by Bridson is extremely simple:

a C-node can only be ordered after all its H-node neighbours in G have been ordered. Bridson shows

that, provided H is definite and B is of full row rank, with this ordering the LDLT factorization exists.

Moreover, the pivots associated with the H-nodes are guaranteed to be positive and those associated with

C-nodes are guaranteed to be negative. By rescaling, L ← L|D|1/2 and D ← sign(D) = diag(±1), the

diagonal matrix is fully determined in advance by the structure of the problem, independent of numerical

values. Bridson refers to this as the signed Cholesky factorization of A. It allows him to modify a Cholesky

factorization code to perform the factorization of the indefinite matrix A with no threshold pivoting.

A stability analysis is lacking but Bridson reports that numerical experiments indicate the constrained

ordering is generally sufficient to avoid numerical pivoting; this was supported by additional experiments

given by Scott [44]. The hope is that, if an initial ordering is chosen to reduce fill in L, the constrained

ordering will be sufficiently close that the additional fill will be modest.

We note that WSMP offers a limited form of constrained ordering. This allows the user to specify that

the last n1 < n columns are to be pivoted on last. This is recommended in the WSMP documentation for

problems that have a few zero (or near-zero) entries on the diagonal. For such matrices, the factorization

is performed without pivoting. By ordering the n−n1 rows and columns with zero diagonal entries to the

end, the user ensures (unless there is numerical cancellation) that these diagonal entries are nonzero by

the time they are pivoted on.

4.3 MA47 orderings

MA47 [15] is a sparse symmetric solver that is specifically designed for solving indefinite systems and, in

particular, for matrices that have some zeros on the diagonal. A key feature is that the analyse phase may

choose tentative block pivots. A variant of the Markowitz criterion recommended in [17] is used to extend

the strategy of minimum degree to block pivots. As with other minimum degree algorithms, the pivots

are chosen during the analyse using the sparsity structure of A alone (without the assumption that the

diagonal is implicitly present that is made by standard fill-reducing ordering algorithms).

MA47 distinguishes between block pivots with different sparsity patterns. Specifically, pivots may be

(i) of the form (
0 A1

AT
1 0

)
,

with A1 square, which is called an oxo pivot;

(ii) of the form (
A2 A1

AT
1 0

)
or

(
0 A1

AT
1 A2

)
,

with A1 square, which is called an tile pivot; or

(iii) of any other form, which is called full.

6

Tile and oxo pivots are termed structured pivots and their structure is taken into account within the analyse

and factorize phases. As far as we are aware, MA47 is the only sparse symmetric solver that exploits the

structure of block pivots. However, the analyse phase of MA47 can be used to compute a tentative pivot

sequence containing 2 × 2 structured pivots that may be passed to other solvers; we report on this in

Section 5.5.

4.4 Matching elimination orderings

In the unsymmetric case, the matching algorithm moves large entries on to the diagonal of the matrix.

In the symmetric case, we need to preserve symmetry but a symmetric permutation leaves the diagonal

unchanged. Thus the aim is to permute a large off-diagonal entry ai,j close to the diagonal so that the

2× 2 block (
ai,i ai,j
ai,j aj,j

)
is potentially a good 2 × 2 candidate pivot. Duff and Gilbert [9] noticed that the cycle structure of

the permutation PM associated with the unsymmetric matching M can be exploited to obtain such a

permutation Ps. This has been explored further by Duff and Pralet [11] and, amongst others, Schenk

et al. [20, 42, 43], and symmetric maximum matchings are (optionally) used within the sparse solvers

HSL MA97, MUMPS, PARDISO and WSMP.

A maximum weighted matching M is first computed. Assume initially that A is not found to be

structurally singular. Any diagonal entries that are in the matching are immediately considered as potential

1× 1 pivots and are held in a set M1. A set M2 of potential 2× 2 pivots is then built by expressing the

computed permutation PM in terms of its component cycles. Because of the scaling, all the entries in the

cycles of PM are 1 in absolute value so a structural criterion is used to select the potential 2 × 2 pivots.

A cycle of length 1 corresponds to an entry aii in the matching. A cycle of length 2 corresponds to two

nodes i and j, where aij and aji are both in the matching. k potential 2× 2 pivots can be extracted from

even cycles of length 2k or from odd cycles of length 2k + 1. The idea is to select k entries aij and their

symmetric counterpart and to discard the other matched entries. In practice, most of the cycles in the

matching permutation are of length 1 or 2 [11]. Where there are longer cycles, Duff and Pralet discuss

possible ways of extracting 2 × 2 pivots, based on the sparsity patterns of the rows of A (in particular,

they seek to pair up rows that have as similar a structure as possible). Since long cycles do not occur

often, we adopt the more straightforward approach of taking the first two entries as the first 2× 2 pivot,

the next two as the next 2 × 2 pivot, and so on, until if the cycle is a cycle of odd length, a single entry

remains, which is added to the set M1.

To combine the resulting permutation with a fill-reducing ordering (such as nested dissection or

minimum degree), the graph of PsAP
T
s is compressed and the ordering applied to the compressed graph.

In the compression step, the union of the sparsity structure of the two rows and columns corresponding to a

potential 2×2 pivot is built and used as the structure of a single row and column in the compressed matrix.

Having applied a fill-reducing ordering to the compressed graph, the resulting permutation is expanded to a

permutation Pf for the original matrix. The final permutation is the product P = PfPs. The rows/columns

corresponding to a potential 2×2 pivot are reordered consecutively and, in our implementation, a negative

flag is used to indicate a 2×2 pivot. This is because some solvers and, in particular, HSL MA77, are able to

take advantage of 2×2 pivots during the analyse phase and our experience is that this can offer a (usually

small) time advantage over omitting the flags (see also [17]).

In the case where the maximum matching algorithm detects that A is structurally singular, the

unmatched rows and corresponding columns are removed and the matching algorithm reapplied to the

nonsingular part. The unmatched rows/columns are held as potential 1 × 1 pivots; their unsuitability

as pivots will be picked up during the factorization phase of the solver. Further details of the matching

algorithm in the rank deficient case are given in [27].

A by-product of computing a matching-based ordering is a scaling for A and when employing a

matching-based ordering we always combine it with using this scaling. To employ a matching algorithm

7

within the analyse phase it is necessary for the analyse phase to have available the numerical values of the

entries of A (and thus the analyse phase no longer depends solely on the structure of A). This means that,

if the user wants to factorize more than one matrix with the same sparsity pattern but different numerical

values, it may be necessary to recompute the ordering and the scaling. This can add a significant overhead

when compared with an analyse phase that uses the sparsity structure only. However, if scaling factors

need to be computed prior to the factorization of each matrix, then the additional cost associated with

the matching-based ordering will generally be modest compared with the total solution time.

5 Numerical experiments

5.1 Test environment

As already indicated, the HSL mathematical software library contains a number of sparse solvers that are

designed for symmetric indefinite systems. In this study, we have chosen to use the code HSL MA77 [35, 36]

(Version 5.8.0 is used). HSL MA77 implements a multifrontal algorithm and includes the possibility of

holding the matrix data, the computed factors, and some of the intermediate work arrays in files held

on disk, thus allowing the solution of much larger problems than would otherwise be possible. HSL MA77

offers the user a number of options. Importantly for this study, these include the use of relaxed pivoting

and threshold pivoting. Furthermore, the user is required to supply the elimination ordering, allowing us

to experiment with constraint and matching-based elimination orderings. An option also exists to supply

a scaling.

All our experiments are performed using double precision reals on a Dell Precision T5400 with two

Intel E5420 quad core processors running at 2.5 GHz. The ifort compiler (Version 12.0) with option -O3

and MKL BLAS (Version 10.2) are used. The right-hand side b is chosen so that the solution is xi = 1 for

all i. We measure accuracy of the computed solution using the scaled residual:

‖Ax− b‖
‖A‖‖x‖+ ‖b‖

with the infinity norm ‖x‖∞ = maxi |xi| and its induced matrix norm ‖A‖∞ = maxi

∑
j |ai,j |. The

computed solution is only accepted if the scaled residual is less than 10−14 and the forward error is less

than 1010; where necessary, iterative refinement or refinement using FGMRES is performed.

The test problems used in this study are taken from in the University of Florida Sparse Matrix

Collection [7] and are listed in Tables 5.1 and 5.2. For each problem, we give its order n and number

of entries nz(A) and, for the singular problems, the structural rank srank. In addition, we report the

number of entries nzL in L (in each table, the problems are listed in increasing order of nzL) and the

number of floating-point operations (flops) required to compute L that are returned by the analyse phase

of HSL MA77. These are computed using the default settings for HSL MA77; the elimination ordering is

computed using the nested dissection ordering package METIS [30]. The statistics from the analyse

phase are the predicted nzL and predicted flop count and the statistics that would be returned by the

factorization phase if the supplied ordering could be used without modification.

The test problems were chosen from amongst the many available within the Collection because when

the factorize phase is run (again, with default settings and, in particular, the default threshold parameter

u = 0.01) there are a large number of delayed pivots. The statistics returned by the factorize phase of

HSL MA77 are reported in Table 5.3. Here ndelay is the number of eliminations that were delayed. If

a candidate pivot is delayed more than once, it will be counted the number of times it is delayed. We

see that, for many of our chosen examples, the actual number of entries in L is more than an order of

magnitude greater than was predicted by the analyse phase and the difference between the predicted and

actual number of flops can be significantly greater. A notable example is GHS indef/bloweybl. For this

problem, the actual flop count is five orders of magnitude greater than predicted. However, in some cases,

although the number of delays is relatively high, they do not lead to a large increase in nzL or the flop

8

Table 5.1: Test problems. n denotes the order of A, nz(A) is the number of entries in A, nzL is the

predicted number of entries in L and nflop is the predicted number of flops required to compute L.

Identifier n nz(A) nzL nflop

TSOPF/TSOPF FS b162 c1 10798 608540 1.3930 × 106 2.0509 × 108

TSOPF/TSOPF FS b39 c7 28216 730080 1.5755 × 106 1.0796 × 108

Schenk IBMNA/c-64 51035 717841 1.6525 × 106 1.2588 × 108

GHS indef/ncvxqp1 12111 73963 1.6839 × 106 7.2793 × 108

QY/case39 40216 1042160 2.2885 × 106 1.5130 × 108

GHS indef/boyd2 466316 1500397 2.5854 × 106 1.5582 × 107

GHS indef/stokes128 49666 558594 2.9813 × 106 3.6881 × 108

GHS indef/cvxqp3 17500 122462 3.1398 × 106 1.7670 × 109

TSOPF/TSOPF FS b162 c3 30798 1801300 4.2194 × 106 6.3970 × 108

TSOPF/TSOPF FS b39 c19 76216 1977600 4.4010 × 106 2.8666 × 108

GHS indef/cont-201 80595 438795 4.7815 × 106 8.6513 × 108

TSOPF/TSOPF FS b162 c4 40798 2398220 5.5772 × 106 8.3825 × 108

GHS indef/bratu3d 27792 173796 6.2769 × 106 4.4174 × 109

TSOPF/TSOPF FS b39 c30 120216 3121160 7.0473 × 106 4.7541 × 108

GHS indef/darcy003 389874 2101242 8.1587 × 106 5.5664 × 108

Schenk IBMNA/c-62 41731 559343 8.4634 × 106 8.0165 × 109

TSOPF/TSOPF FS b300 29214 4400122 1.0603 × 107 4.3977 × 109

TSOPF/TSOPF FS b300 c1 29214 4400122 1.0603 × 107 4.3977 × 109

GHS indef/cont-300 180895 988195 1.1744 × 107 2.9559 × 109

GHS indef/ncvxqp5 62500 424966 1.2052 × 107 9.7223 × 109

GHS indef/turon m 189924 1690876 1.3723 × 107 4.2270 × 109

GHS indef/d pretok 182730 1641672 1.4581 × 107 5.0572 × 109

GHS indef/ncvxqp3 75000 499964 1.9007 × 107 2.0692 × 1010

TSOPF/TSOPF FS b300 c2 56814 8767466 2.1433 × 107 8.9629 × 109

GHS indef/ncvxqp7 87500 574962 2.4731 × 107 3.0939 × 1010

TSOPF/TSOPF FS b300 c3 84414 13135930 3.3105 × 107 1.4253 × 1010

Table 5.2: Structurally singular test problems. n denotes the order of A, srank is the structural rank

of A, nz(A) is the number of entries in A, nzL is the predicted number of entries in L and nflop is the

predicted number of flops required to compute L. † indicates OXO matrix.

Identifier n srank nz(A) nzL nflop

GHS indef/dtoc† 24993 19994 69972 2.1314 × 105 2.0247 × 106

GHS indef/bloweybl 30003 30002 120000 2.6137 × 105 2.5881 × 106

Marini/eurqsa 7246 7245 46142 2.9351 × 105 2.6890 × 107

GHS indef/aug2d† 29008 19208 76832 5.4805 × 105 2.1346 × 107

GHS indef/aug3d† 24300 11664 69984 1.2007 × 106 2.3221 × 108

Pajek/Reuters911 13332 10685 296076 4.2982 × 106 6.3985 × 109

Newman/cond-mat-2003 31163 29174 240058 6.3105 × 106 8.0092 × 109

Newman/cond-mat-2005 40421 37968 351386 1.2563 × 107 2.4313 × 1010

9

Table 5.3: The number of delayed pivots (ndelay), actual number of entries and flops for L with the

ratio against predicted values, and number of steps (nitr) of iterative refinement. Default settings (pivot

threshold u = 0.01), METIS ordering and no scaling.

Identifier ndelay nzL nflop nitr

Actual Ratio Actual Ratio

TSOPF/TSOPF FS b162 c1 8437 2.25×106 1.62 6.80×108 3.32 0

TSOPF/TSOPF FS b39 c7 14563 2.53×106 1.61 4.72×108 4.38 0

Schenk IBMNA/c-64 22832 4.23×106 2.56 3.04×109 24.12 0

GHS indef/ncvxqp1 124164 1.18×107 7.01 2.67×1010 36.62 0

QY/case39 19012 3.41×106 1.49 5.71×108 3.78 0

GHS indef/boyd2 27079 7.89×107 30.53 2.98×1011 19112 0

GHS indef/stokes128 39083 4.92×106 1.65 9.54×108 2.59 0

GHS indef/cvxqp3 312790 3.57×107 11.38 1.65×1011 93.55 0

TSOPF/TSOPF FS b162 c3 29472 8.02×106 1.90 4.32×109 6.76 0

TSOPF/TSOPF FS b39 c19 40727 8.25×106 1.87 3.98×109 13.90 0

GHS indef/cont-201 70024 8.57×106 1.79 2.60×109 3.00 1

TSOPF/TSOPF FS b162 c4 36807 1.19×107 2.13 8.87×109 10.58 0

GHS indef/bratu3d 59105 1.18×107 1.89 1.23×1010 2.77 1

TSOPF/TSOPF FS b39 c30 64326 1.49×107 2.11 1.28×1010 27.00 0

GHS indef/darcy003 43702 8.92×106 1.09 5.99×108 1.08 1

Schenk IBMNA/c-62 131085 3.40×107 4.01 9.92×1010 12.37 0

TSOPF/TSOPF FS b300 21544 1.29×107 1.22 6.57×109 1.49 0

TSOPF/TSOPF FS b300 c1 46582 1.68×107 1.58 1.30×1010 2.95 0

GHS indef/cont-300 148992 2.15×107 1.83 9.84×109 3.33 1

GHS indef/ncvxqp5 544258 1.14×108 9.50 9.00×1011 92.58 1

GHS indef/turon m 18929 1.44×107 1.05 4.33×109 1.02 0

GHS indef/d pretok 23904 1.54×107 1.06 5.22×109 1.03 0

GHS indef/ncvxqp3 1661198 3.79×108 19.96 5.97×1012 288.3 1

TSOPF/TSOPF FS b300 c2 97464 3.61×107 1.68 3.41×1010 3.80 0

GHS indef/ncvxqp7 3784535 8.29×108 33.51 2.05×1013 663.9 1

TSOPF/TSOPF FS b300 c3 200549 6.25×107 1.89 8.35×1010 5.86 0

GHS indef/dtoc 47628 1.13×107 53.20 3.29×1010 16229 0

GHS indef/bloweybl 72303 5.11×107 195.4 3.38×1011 130408 1

Marini/eurqsa 14678 2.19×106 7.46 1.75×109 65.16 0

GHS indef/aug2d 64859 6.47×106 11.81 4.72×109 221.3 0

GHS indef/aug3d 291547 3.83×107 31.92 1.34×1011 578.9 0

Pajek/Reuters911 46221 2.32×107 5.39 8.87×1010 13.86 0

Newman/cond-mat-2003 81018 1.26×107 2.00 2.34×1010 2.93 1

Newman/cond-mat-2005 135871 2.37×107 1.89 5.98×1010 2.46 0

count (see, for instance, GHS indef/darcy003 where the increase is less than 10%). Note that, with the

exception of the Newman problems, the singular examples are saddle-point systems (4.4) with C = 0 or

C diagonal. For all our test problems, when HSL MA77 is run with default settings, at most one step of

iterative refinement is required to achieve the required accuracy.

5.2 Effect of scaling

The results in this section illustrate how scaling helps in the solution of tough indefinite problems. The

number of delayed pivots with no scaling, MC64 scaling and MC77 scaling (using the Ruiz and Uçar [39]

approach of one step of∞−norm scaling followed by a three steps of 1−norm scaling) are given in Table 5.4,

with a comparison of numbers of entries in the factors and floating point operations in Table 5.5. As

we would expect, the effects of scaling are highly problem-dependent. For some problems (including

Marini/eurqsa, GHS indef/boyd2 and Schenk IBMNA/c-62), scaling with MC64 reduces the number of

delays to (close to) zero. For these problems, MC77 also reduces the number of delays but less dramatically.

For some problems, MC77 is competitive but, in general, MC64 gives better results than MC77. This is

10

consistent with the experiences reported in [22]. However, for a significant proportion of the test set,

despite scaling with MC64, there are still a large number of delays. Indeed, in some cases, MC64 gives

no worthwhile reduction in the number of delays (for example, the OXO matrices and GHS indef/cont-x

matrices). Based on these results, all the experiments in the remainder of this paper use MC64 scaling.

Table 5.4: The number of delayed pivots (ndelay) and number of steps (nitr) of iterative refinement with

no scaling and with MC64 and MC77 scaling (pivot threshold u = 0.01).

Identifier ndelay nitr

None MC64 MC77 None MC64 MC77

TSOPF/TSOPF FS b162 c1 8437 5087 7072 0 1 1

TSOPF/TSOPF FS b39 c7 14563 11238 12366 0 1 1

Schenk IBMNA/c-64 22832 752 1948 0 1 1

GHS indef/ncvxqp1 124164 10359 31703 0 1 0

QY/case39 19012 14806 16631 0 1 1

GHS indef/boyd2 27079 0 6276 0 1 1

GHS indef/stokes128 39083 9274 9274 0 0 2

GHS indef/cvxqp3 312790 26152 34336 0 1 1

TSOPF/TSOPF FS b162 c3 29472 17497 24233 0 1 1

TSOPF/TSOPF FS b39 c19 40727 29668 32005 0 1 1

GHS indef/cont-201 70024 70021 69975 1 1 1

TSOPF/TSOPF FS b162 c4 36807 21778 30705 0 1 1

GHS indef/bratu3d 59105 58888 59391 1 1 1

TSOPF/TSOPF FS b39 c30 64326 47578 53073 0 1 0

GHS indef/darcy003 43702 43702 43702 1 1 1

Schenk IBMNA/c-62 131085 604 70018 0 1 0

TSOPF/TSOPF FS b300 21544 20596 20519 0 1 1

TSOPF/TSOPF FS b300 c1 46582 24511 42112 0 1 1

GHS indef/cont-300 148992 148976 148856 1 1 1

GHS indef/ncvxqp5 544258 11869 13252 1 1 1

GHS indef/turon m 18929 18931 18929 0 0 0

GHS indef/d pretok 23904 21399 21030 0 0 0

GHS indef/ncvxqp3 1661198 65603 88408 1 1 1

TSOPF/TSOPF FS b300 c2 97464 52593 89385 0 1 1

GHS indef/ncvxqp7 3784535 272409 369372 1 1 1

TSOPF/TSOPF FS b300 c3 200549 116630 186277 1 1 1

GHS indef/dtoc 47628 44520 44520 0 0 0

GHS indef/bloweybl 72303 3117 4499 1 1 0

Marini/eurqsa 14678 306 7821 0 0 0

GHS indef/aug2d 64859 64563 64978 0 0 0

GHS indef/aug3d 291547 295845 268683 0 0 0

Pajek/Reuters911 46221 45745 45713 0 0 0

Newman/cond-mat-2003 81018 75956 76880 1 0 0

Newman/cond-mat-2005 135871 128402 131590 1 0 0

5.3 Relaxing the pivot test

In Table 5.6 we report results for using a small threshold parameter u = 10−8 and for relaxed threshold

pivoting, with umin = 10−8 (the computation starts with u = 0.01 and relaxes the threshold during the

computation, provided it remains at least umin). In our tests, using a small value of u is only moderately

successful in reducing the number of delays and for some problems, iterative refinement fails to achieve the

requested accuracy. Using relaxed threshold pivoting also has a limited effect on the number of delays and

gives similar results to using u = 10−8. FGMRES is used when iterative refinement does not converge.

FGMRES was proposed in [2, 3] as an alternative to iterative refinement; it was shown that, for some

problems, it is able to compute backward stable solutions when iterative refinement fails to converge. We

use the restarted FGMRES algorithm described in [23]. This is essentially as given in [2] but it additionally

11

Table 5.5: Comparison of the MC64 and MC77 scalings. The numbers are ratios of the number of entries in

L and number of floating point operations to those predicted by the analyse phase.

Identifier nzL nflop

None MC64 MC77 None MC64 MC77

TSOPF/TSOPF FS b162 c1 1.62 1.31 1.48 3.32 1.82 2.59

TSOPF/TSOPF FS b39 c7 1.61 1.40 1.42 4.38 2.56 2.58

Schenk IBMNA/c-64 2.56 1.02 1.05 24.12 1.05 1.12

GHS indef/ncvxqp1 7.01 1.35 2.01 36.62 1.68 4.06

QY/case39 1.49 1.36 1.39 3.78 2.63 2.76

GHS indef/boyd2 30.53 1.00 4.83 19112 1.00 1344

GHS indef/stokes128 1.65 1.10 1.10 2.59 1.09 1.09

GHS indef/cvxqp3 11.38 1.56 1.69 93.55 2.16 2.64

TSOPF/TSOPF FS b162 c3 1.90 1.44 1.62 6.76 2.78 3.99

TSOPF/TSOPF FS b39 c19 1.87 1.49 1.40 13.90 5.38 3.07

GHS indef/cont-201 1.79 1.79 1.79 3.00 3.00 3.00

TSOPF/TSOPF FS b162 c4 2.13 1.49 1.78 10.58 3.37 6.01

GHS indef/bratu3d 1.89 1.88 1.90 2.77 2.75 2.81

TSOPF/TSOPF FS b39 c30 2.11 1.61 1.43 27.00 9.81 3.80

GHS indef/darcy003 1.09 1.09 1.09 1.08 1.08 1.08

Schenk IBMNA/c-62 4.01 1.01 2.25 12.37 1.02 3.60

TSOPF/TSOPF FS b300 1.22 1.20 1.20 1.49 1.45 1.44

TSOPF/TSOPF FS b300 c1 1.58 1.29 1.46 2.95 1.75 2.37

GHS indef/cont-300 1.83 1.83 1.83 3.33 3.33 3.32

GHS indef/ncvxqp5 9.50 1.11 1.12 92.58 1.17 1.19

GHS indef/turon m 1.05 1.05 1.05 1.02 1.02 1.02

GHS indef/d pretok 1.06 1.05 1.05 1.03 1.03 1.03

GHS indef/ncvxqp3 19.96 1.32 1.40 288.3 1.61 1.84

TSOPF/TSOPF FS b300 c2 1.68 1.35 1.56 3.80 2.03 2.94

GHS indef/ncvxqp7 33.51 1.59 1.80 663.9 2.26 3.09

TSOPF/TSOPF FS b300 c3 1.89 1.38 1.61 5.86 2.26 3.54

GHS indef/dtoc 53.20 45.24 45.24 16229 12476 12476

GHS indef/bloweybl 195.4 1.14 1.19 130408 1.24 1.34

Marini/eurqsa 7.46 1.06 3.21 65.16 1.17 14.20

GHS indef/aug2d 11.81 11.62 12.30 221.3 222.1 258.0

GHS indef/aug3d 31.92 32.59 27.61 578.9 592.4 449.5

Pajek/Reuters911 5.39 5.37 5.37 13.86 13.74 13.74

Newman/cond-mat-2003 2.00 1.95 1.96 2.93 2.79 2.82

Newman/cond-mat-2005 1.89 1.85 1.87 2.46 2.35 2.39

12

Table 5.6: The number of delayed pivots (ndelay) and number of refinement solves (nitr) with pivot

threshold u = 0.01 (the default), u = 10−8 and relaxed pivoting with umin = 10−8. ∗ indicates FGMRES

was required to achieve convergence to the required accuracy.

Identifier ndelay nitr umin

u = 0.01 u = 10−8 umin = 10−8 u = 0.01 u = 10−8 umin = 10−8 used

TSOPF/TSOPF FS b162 c1 5087 3961 3986 1 2 2 1.11 × 10−8

TSOPF/TSOPF FS b39 c7 11238 8527 8552 1 2 2 2.72 × 10−8

Schenk IBMNA/c-64 752 734 734 1 1 1 1.01 × 10−8

GHS indef/ncvxqp1 10359 9267 9313 1 1 1 1.93 × 10−8

QY/case39 14806 11011 11024 1 2 2 1.10 × 10−8

GHS indef/boyd2 0 0 0 1 1 1 1.00 × 10−2

GHS indef/stokes128 9274 9274 9274 0 0 0 1.00 × 10−2

GHS indef/cvxqp3 26152 26126 26145 1 1 1 3.12 × 10−3

TSOPF/TSOPF FS b162 c3 17497 12089 12114 1 2 3 1.01 × 10−8

TSOPF/TSOPF FS b39 c19 29668 22610 22647 1 2 2 1.10 × 10−8

GHS indef/cont-201 70021 66002 66002 1 24∗ 12∗ 1.01 × 10−8

TSOPF/TSOPF FS b162 c4 21778 15926 15917 1 2 3 1.01 × 10−8

GHS indef/bratu3d 58888 41829 41869 1 44∗ 36∗ 1.00 × 10−8

TSOPF/TSOPF FS b39 c30 47578 37293 37277 1 3 3 1.05 × 10−8

GHS indef/darcy003 43702 43702 43702 1 1 1 1.00 × 10−2

Schenk IBMNA/c-62 604 583 583 1 1 1 2.92 × 10−5

TSOPF/TSOPF FS b300 20599 19033 19040 1 5 7 1.02 × 10−8

TSOPF/TSOPF FS b300 c1 24511 18928 19317 1 4 3 1.00 × 10−8

GHS indef/cont-300 148976 141091 141091 1 12∗ 12∗ 1.00 × 10−8

GHS indef/ncvxqp5 11869 10636 10636 1 1 1 2.83 × 10−5

GHS indef/turon m 18931 18928 18928 0 0 0 1.43 × 10−3

GHS indef/d pretok 21399 18012 18012 0 0 0 4.32 × 10−5

GHS indef/ncvxqp3 65603 64876 64853 1 2 1 3.74 × 10−5

TSOPF/TSOPF FS b300 c2 52593 41836 41853 1 5 5 1.00 × 10−8

GHS indef/ncvxqp7 272409 270790 270812 1 2 1 8.02 × 10−7

TSOPF/TSOPF FS b300 c3 116630 99361 99361 1 5 5 1.01 × 10−8

GHS indef/dtoc 44520 12391 20792 0 1 0 2.00 × 10−4

GHS indef/bloweybl 3117 3117 3117 1 1 1 1.00 × 10−2

Marini/eurqsa 306 267 250 0 2 1 1.09 × 10−8

GHS indef/aug2d 64563 64563 64563 0 0 0 1.00 × 10−2

GHS indef/aug3d 295845 295845 295845 0 0 0 1.00 × 10−2

Pajek/Reuters911 45745 45745 45745 0 0 0 1.00 × 10−2

Newman/cond-mat-2003 75956 75836 75742 0 1 0 1.00 × 10−6

Newman/cond-mat-2005 128402 129744 129696 0 1 3 4.50 × 10−8

uses an adaptive restart parameter that was found in numerical experiments to be more efficient than using

a fixed restart parameter (that is, in general, it reduced the number of iterations required). Our choice

of initial restart parameter of 4 is based on the results given in [23]. Note that the results are sensitive

to this choice: using a larger value can lead to a larger total number of solves because we only test the

termination conditions when the algorithm is restarted.

In Table 5.7 we report ratios of the number of entries in L and the number of flops required to compute

the factorization for u = 0.01 and u = 10−8 against the predicted values.

In our tests on static pivoting, the parameter static (see Section 3.5) is set to ‖Â‖
√
ε, where ε is the

machine precision and Â is the scaled matrix. There are no delayed pivots so the number of entries in

the computed factor and the flop counts are as given in columns 3 and 5 of Table 5.3. In Table 5.8, we

report the number of solves performed using iterative refinement and FGMRES to recover the required

accuracy (with a limit of 100 solves); the number of diagonal entries that were perturbed is also given. We

see that, if the required accruacy is achieved after a small number of steps of iterative refinement, then

using iterative refinement is more efficient than FGMRES. But FGMRES is more robust and, if a large

number of steps of iterative refinement is needed, FGMRES can require fewer solves. However, for two

13

Table 5.7: Ratios of the number of entries in L and the number of flops for u = 0.01 and u = 10−8 and

for umin = 10−8 against the predicted values.

Identifier nzL nflop

u = 0.01 u = 10−8 umin = 10−8 u = 0.01 u = 10−8 umin = 10−8

TSOPF/TSOPF FS b162 c1 1.31 1.20 1.20 1.82 1.45 1.46

TSOPF/TSOPF FS b39 c7 1.40 1.24 1.24 2.56 1.64 1.64

Schenk IBMNA/c-64 1.02 1.02 1.02 1.05 1.05 1.05

GHS indef/ncvxqp1 1.35 1.32 1.32 1.68 1.61 1.61

QY/case39 1.36 1.21 1.21 2.63 1.56 1.55

GHS indef/boyd2 1.00 1.00 1.00 1.00 1.00 1.00

GHS indef/stokes128 1.10 1.10 1.10 1.09 1.09 1.09

GHS indef/cvxqp3 1.56 1.56 1.56 2.16 2.16 2.16

TSOPF/TSOPF FS b162 c3 1.44 1.23 1.23 2.78 1.52 1.52

TSOPF/TSOPF FS b39 c19 1.49 1.22 1.22 5.38 1.56 1.56

GHS indef/cont-201 1.79 1.72 1.72 3.00 2.75 2.75

TSOPF/TSOPF FS b162 c4 1.49 1.25 1.24 3.37 1.60 1.60

GHS indef/bratu3d 1.88 1.53 1.53 2.75 1.81 1.81

TSOPF/TSOPF FS b39 c30 1.61 1.22 1.22 9.81 1.56 1.56

GHS indef/darcy003 1.09 1.09 1.09 1.08 1.08 1.08

Schenk IBMNA/c-62 1.01 1.01 1.01 1.02 1.02 1.02

TSOPF/TSOPF FS b300 1.20 1.19 1.19 1.45 1.41 1.41

TSOPF/TSOPF FS b300 c1 1.29 1.19 1.19 1.75 1.41 1.41

GHS indef/cont-300 1.83 1.77 1.77 3.33 3.11 3.11

GHS indef/ncvxqp5 1.11 1.11 1.11 1.17 1.16 1.16

GHS indef/turon m 1.05 1.05 1.05 1.02 1.02 1.02

GHS indef/d pretok 1.05 1.04 1.04 1.03 1.02 1.02

GHS indef/ncvxqp3 1.32 1.32 1.32 1.61 1.60 1.60

TSOPF/TSOPF FS b300 c2 1.35 1.21 1.21 2.03 1.50 1.50

GHS indef/ncvxqp7 1.59 1.58 1.58 2.26 2.25 2.25

TSOPF/TSOPF FS b300 c3 1.38 1.19 1.19 2.26 1.43 1.43

GHS indef/dtoc 45.24 1.79 3.60 12475 4.44 49.82

GHS indef/bloweybl 1.14 1.14 1.14 1.24 1.24 1.24

Marini/eurqsa 1.06 1.05 1.05 1.17 1.15 1.14

GHS indef/aug2d 11.62 11.62 11.62 222.1 222.1 222.1

GHS indef/aug3d 32.59 32.59 32.59 592.4 592.4 592.4

Pajek/Reuters911 5.37 5.37 5.37 13.74 13.74 13.74

Newman/cond-mat-2003 1.95 1.95 1.95 2.79 2.80 2.79

Newman/cond-mat-2005 1.85 1.86 1.85 2.35 2.37 2.36

14

Table 5.8: The number of refinement solves performed using iterative refinement (IR) and FGMRES

following static pivoting. nptb is the number of perturbed diagonal entries. - indicates required accuracy

not achieved.

Identifier nptb nitr

IR FGMRES

TSOPF/TSOPF FS b162 c1 2034 4 4

TSOPF/TSOPF FS b39 c7 5846 6 4

Schenk IBMNA/c-64 734 4 4

GHS indef/ncvxqp1 1310 2 4

QY/case39 7163 11 8

GHS indef/boyd2 0 2 4

GHS indef/stokes128 4988 - -

GHS indef/cvxqp3 2833 8 8

TSOPF/TSOPF FS b162 c3 6254 5 4

TSOPF/TSOPF FS b39 c19 14491 6 8

GHS indef/cont-201 8569 - 24

TSOPF/TSOPF FS b162 c4 8569 4 4

GHS indef/bratu3d 8569 4 4

TSOPF/TSOPF FS b39 c30 23895 11 8

GHS indef/darcy003 19865 18 12

Schenk IBMNA/c-62 294 3 4

TSOPF/TSOPF FS b300 5627 8 8

TSOPF/TSOPF FS b300 c1 5642 10 8

GHS indef/cont-300 38946 - 52

GHS indef/ncvxqp5 2720 - 40

GHS indef/turon m 9026 - 76

GHS indef/d pretok 8645 - 60

GHS indef/ncvxqp3 7966 - -

TSOPF/TSOPF FS b300 c2 11648 9 8

GHS indef/ncvxqp7 13741 64 20

TSOPF/TSOPF FS b300 c3 16089 - 40

GHS indef/dtoc 5273 0 0

GHS indef/bloweybl 3117 1 4

Marini/eurqsa 95 - 12

GHS indef/aug2d 12436 2 4

GHS indef/aug3d 14980 2 4

Pajek/Reuters911 4869 18 32

Newman/cond-mat-2003 3307 3 4

Newman/cond-mat-2005 4555 - 28

15

of our test problems (GHS indef/stokes128 and GHS indef/ncvxqp3), we were not able to recovery the

required accuracy after using static pivoting.

Using a small pivot threshold or using static pivoting can result in many more calls to the solve phase

as refinement is needed to recover accuracy. Traditionally, the factorize phase of a sparse direct solver has

generally required the greatest portion of the total execution time. It typically involves the majority of

the floating-point operations (often as many as 98% of the flops are performed by the factorize phase),

and is computation bound; the other phases are memory bound. Over the past decade or so, the increase

in computational capacity (flops per second) has vastly outstripped the increase in memory bandwidth

(bytes per second). The result of this for sparse direct solvers has been an increase in the proportion

of the computation time taken by the solve phase (see [25] for further discussion and computational

results). Thus, although static pivoting can eliminate delays, there is a potentially costly penalty to pay

of subsequently requiring many solves and, since the solve does not parallelise well, this can become a

bottleneck.

5.4 Constrained ordering

Bridson proposes two approaches to computing a constrained ordering. The first modifies the minimum

degree algorithm (or one of its variants) to incorporate the constraint within it. An alternative approach

is to post process a given fill-reducing ordering to satisfy the constraint. If a C-node is the next node

in the supplied ordering it is only included in the modified ordering once all its H-node neighbours have

been ordered (that is, a C-node is postponed until after all its H-node neighbours). The advantages of

the post processing approach are that it can be applied to any fill-reducing ordering and it is very cheap

and straightforward to implement. Bridson reports that neither approach consistently outperforms the

other and so in our experiments we apply post processing to the nested dissection ordering computed by

METIS.

We remark that if, in the constrained ordering, an H-node is followed by one of its C-node neighbours,

the two may be flagged as a 2 × 2 candidate pivot. In particular, if C = 0, the candidate pivot will be

a tile pivot (see [17]). Note also that when an H-node is ordered there may be more than one C-node

neighbour waiting to be ordered. As in [44], we include these C-nodes in nested dissection order.

Table 5.9 presents results for the constrained ordering with u = 0.0 (no pivoting). Only a subset of

our test problems are included since this approach is limited to KKT systems with H definite. With

u = 0.0 there are no delays and the actual number of entries in L and actual number of flops are equal

to the predicted values. Comparing the ratios with those in Table 5.7, we see that the penalty for no

delays is denser factors and higher flop counts than for the corresponding unconstrained ordering. For

some problems, including Schenk IBMNA/c-64, the ratios for the constrained ordering are much greater

than for the METIS ordering.

Table 5.9: Results for the constrained ordering with pivot threshold u = 0.01. The ratios of the number of

entries in L and flop counts to those predicted for the METIS ordering is given together with the number

of refinement solves.

Identifier nzL nflop nitr

Schenk IBMNA/c-64 72.74 6519 1

GHS indef/cvxqp3 3.51 9.91 22

GHS indef/cont-201 1.74 2.75 1

GHS indef/darcy003 3.08 11.78 0

Schenk IBMNA/c-62 4.81 14.66 1

GHS indef/cont-300 1.79 2.89 1

GHS indef/turon m 3.89 11.26 0

GHS indef/d pretok 3.93 11.23 0

16

5.5 MA47 ordering

Results for the ordering computed using the analyse phase of MA47 are given in Table 5.10 (MC64 scaling

is used and threshdold u = 0.01). We see that there are no delays for the OXO matrices and for many of

the remaining test problems there are fewer delays than with the METIS ordering using the same settings

(see column 2 of Table 5.3). However, for large problems, minimum degree-based orderings are generally

not as effective as those based on nested dissection and so the number of entries in L and the flop counts

are, for some cases, significantly larger for the MA47 ordering. We experimented with using u = 10−8. This

led to some reduction in the number of delays but for a number of the test problems FGMRES refinement

was needed to recover accuracy.

Table 5.10: Results for the MA47 ordering with pivot threshold u = 0.01. The number of delays, the ratios

of the predicted and actual number of entries in L and flop counts to the predicted values using METIS

ordering, and the number of refinement solves are given. NS indicates not solved within a time limit of an

hour.

Identifier ndelay nzL nflop nitr

Predicted Actual Predicted Actual

TSOPF/TSOPF FS b162 c1 225 9.56 9.67 217.8 221.4 1

TSOPF/TSOPF FS b39 c7 883 15.96 17.22 572.6 672.7 1

Schenk IBMNA/c-64 42 1.00 1.00 0.89 0.92 1

GHS indef/ncvxqp1 10731 12.22 12.36 99.77 101.71 1

QY/case39 4800 13.75 15.14 416.2 520.4 1

GHS indef/boyd2 0 1.00 1.00 1.00 1.00 1

GHS indef/stokes128 2548 1.07 1.12 1.29 1.37 0

GHS indef/cvxqp3 18383 1.56 3.63 3.32 13.28 1

TSOPF/TSOPF FS b162 c3 441 26.97 27.09 1769 1782 1

TSOPF/TSOPF FS b39 c19 4640 26.20 29.01 2950 3551 1

GHS indef/cont-201 185801 47.45 55.88 3166 4134 1

TSOPF/TSOPF FS b162 c4 532 35.86 36.08 3143 3179 1

GHS indef/bratu3d 250517 15.67 16.03 155.6 163.0 1

TSOPF/TSOPF FS b39 c30 10135 37.37 41.72 6832 8235 1

GHS indef/darcy003 18909 1.26 1.32 2.48 2.57 1

Schenk IBMNA/c-62 421 1.42 1.48 2.57 2.76 1

TSOPF/TSOPF FS b300 1898 9.28 9.37 206.4 209.2 0

TSOPF/TSOPF FS b300 c1 2430 9.28 9.39 206.4 210.1 1

GHS indef/cont-300 NS 95.48 NS 9998 NS NS

GHS indef/ncvxqp5 NS 40.39 NS 772.2 NS NS

GHS indef/turon m 15101 3.21 3.28 14.55 14.65 0

GHS indef/d pretok 17715 2.85 2.92 11.27 11.40 0

GHS indef/ncvxqp3 NS 49.56 NS 1077 NS NS

TSOPF/TSOPF FS b300 c2 NS 18.05 NS 793.7 NS NS

GHS indef/ncvxqp7 NS 52.10 NS 1188 NS NS

TSOPF/TSOPF FS b300 c3 NS 26.12 NS 1671 NS NS

GHS indef/dtoc 0 0.88 0.88 0.80 0.80 0

GHS indef/bloweybl 3330 0.79 0.92 0.64 0.82 0

Marini/eurqsa 796 1.40 1.48 2.30 2.66 1

GHS indef/aug2d 0 7.92 7.92 31.81 31.81 0

GHS indef/aug3d 0 9.85 9.85 26.22 26.22 0

Pajek/Reuters911 4462 16.48 16.49 74.52 74.60 0

Newman/cond-mat-2003 47830 21.96 22.02 119.4 119.8 0

Newman/cond-mat-2005 106538 21.82 21.89 113.4 114.0 0

5.6 Matching-based ordering

Results for the matching-based ordering are given in Tables 5.11 and 5.12 for u = 0.01 and u = 10−8,

respectively. The implementation used is that provided by HSL MC80, which in turn exploits MC64 to

17

obtain the matching and scaling. In our tests, METIS is applied to the compressed graph. We see that the

predictions for the matching-based ordering can be substantially greater than for the METIS ordering. In

many instances, the predicted nzL is between 50 and 100% greater for the matching ordering. However,

the matching-ordering results in substantially fewer delayed pivots and for some problems, eliminates

delays altogether (for example, GHS indef/cont-201 and GHS indef/bratu3d). This is important as it

enables the solver to obey scheduling based on the analyse phase more accurately. If we run the matching

ordering with u = 10−8, with the exception of the singular problems, the number of delays is reduced

to 0 (or close to 0) and refinement is not required. For some problems, such as GHS indef/ncvxqp1 and

GHS indef/stokes128, the METIS ordering produces sparser factors (despite having a large number of

delays) but for others, including GHS indef/cont-300, the matching-based ordering produces the sparsest

factors.

Table 5.11: Results for the matching-based ordering with pivot threshold u = 0.01. In each case, refinement

is not needed to achieve the required accuracy. The number of delays, and the ratios of the predicted and

actual number of entries in L and flop counts to the predicted values using METIS ordering are given.

Identifier ndelay nzL nflop

Predicted Actual Predicted Actual

TSOPF/TSOPF FS b162 c1 348 1.24 1.26 1.52 1.58

TSOPF/TSOPF FS b39 c7 1356 1.46 1.50 1.88 1.98

Schenk IBMNA/c-64 0 1.25 1.25 1.70 1.70

GHS indef/ncvxqp1 25 1.70 1.70 2.83 2.84

QY/case39 5925 1.55 1.63 2.26 2.53

GHS indef/boyd2 0 1.00 1.00 1.00 1.00

GHS indef/stokes128 5 1.59 1.59 2.23 2.23

GHS indef/cvxqp3 64 1.82 1.82 3.08 3.08

TSOPF/TSOPF FS b162 c3 1264 1.40 1.43 1.96 2.03

TSOPF/TSOPF FS b39 c19 9010 1.49 1.56 2.15 2.44

GHS indef/cont-201 0 0.95 0.95 0.87 0.87

TSOPF/TSOPF FS b162 c4 1410 1.21 1.23 1.46 1.52

GHS indef/bratu3d 0 0.97 0.97 0.96 0.96

TSOPF/TSOPF FS b39 c30 5699 1.40 1.46 1.82 2.22

GHS indef/darcy003 119 1.75 1.75 3.95 3.95

Schenk IBMNA/c-62 0 1.71 1.71 2.09 2.09

TSOPF/TSOPF FS b300 1017 1.22 1.24 1.48 1.54

TSOPF/TSOPF FS b300 c1 1269 1.24 1.27 1.53 1.61

GHS indef/cont-300 0 0.95 0.95 0.87 0.87

GHS indef/ncvxqp5 112 1.64 1.64 2.36 2.36

GHS indef/turon m 129 1.36 1.37 1.52 1.52

GHS indef/d pretok 313 1.38 1.38 1.48 1.48

GHS indef/ncvxqp3 220 1.84 1.84 2.90 2.90

TSOPF/TSOPF FS b300 c2 2533 1.21 1.24 1.47 1.55

GHS indef/ncvxqp7 195 1.75 1.75 2.77 2.77

TSOPF/TSOPF FS b300 c3 6764 1.15 1.19 1.34 1.44

GHS indef/dtoc 48399 1.06 26.38 1.12 3760

GHS indef/bloweybl 0 1.04 1.04 1.04 1.04

Marini/eurqsa 252 1.64 1.67 3.20 3.36

GHS indef/aug2d 119457 1.50 23.06 2.51 1106

GHS indef/aug3d 517235 1.78 17.85 2.63 145.4

Pajek/Reuters911 846509 2.87 5.19 3.61 10.06

Newman/cond-mat-2003 137023 1.96 2.33 2.66 3.46

Newman/cond-mat-2005 258421 1.91 2.24 2.27 2.94

18

Table 5.12: Comparison of the METIS and the matching-based orderings for pivot threshold u = 10−8.

The number of delays, the ratios of the actual number of entries in L and flop counts to the predicted

values using METIS ordering, and the number of refinement solves are given. ∗ indicates FGMRES used

for refinement.

Identifier METIS matching

ndelay nzL nflop nitr ndelay nzL nflop nitr

TSOPF/TSOPF FS b162 c1 3961 1.20 1.45 2 0 1.24 1.52 0

TSOPF/TSOPF FS b39 c7 8527 1.24 1.64 2 0 1.46 1.88 0

Schenk IBMNA/c-64 734 1.02 1.05 1 0 1.24 1.72 0

GHS indef/ncvxqp1 9267 1.32 1.61 1 25 1.70 2.84 0

QY/case39 11011 1.21 1.56 2 0 1.55 2.26 0

GHS indef/boyd2 0 1.00 1.00 1 0 1.00 1.00 0

GHS indef/stokes128 9274 1.10 1.09 0 5 1.59 2.23 0

GHS indef/cvxqp3 26145 1.56 2.16 1 23 1.82 3.08 0

TSOPF/TSOPF FS b162 c3 12126 1.23 1.52 2 0 1.40 1.96 0

TSOPF/TSOPF FS b39 c19 22610 1.22 1.56 2 0 1.49 2.15 0

GHS indef/cont-201 66002 1.72 2.75 24∗ 0 0.95 0.87 0

TSOPF/TSOPF FS b162 c4 15926 1.25 1.60 3 0 1.21 1.46 0

GHS indef/bratu3d 41829 1.53 1.81 44∗ 0 0.97 0.96 0

TSOPF/TSOPF FS b39 c30 37293 1.22 1.56 3 0 1.40 1.82 0

GHS indef/darcy003 43702 1.09 1.08 1 119 1.75 3.95 0

Schenk IBMNA/c-62 583 1.01 1.02 1 0 1.71 2.09 0

TSOPF/TSOPF FS b300 19033 1.19 1.41 5 0 1.22 1.48 0

TSOPF/TSOPF FS b300 c1 19310 1.19 1.41 4 0 1.24 1.53 0

GHS indef/cont-300 141089 1.77 3.11 12∗ 0 0.95 0.87 0

GHS indef/ncvxqp5 10636 1.11 1.16 1 0 1.64 2.36 0

GHS indef/turon m 18928 1.05 1.02 0 127 1.37 1.52 0

GHS indef/d pretok 18012 1.04 1.02 0 301 1.38 1.48 0

GHS indef/ncvxqp3 64876 1.32 1.60 2 119 1.84 2.90 0

TSOPF/TSOPF FS b300 c2 41836 1.21 1.50 5 0 1.21 1.47 0

GHS indef/ncvxqp7 270790 1.58 2.25 2 35 1.75 2.77 0

TSOPF/TSOPF FS b300 c3 99361 1.19 1.43 5 0 1.15 1.34 0

GHS indef/dtoc 12391 1.79 4.44 0 15675 1.84 3.35 0

GHS indef/bloweybl 3117 1.14 1.24 0 0 1.04 1.04 0

Marini/eurqsa 267 1.05 1.15 2 91 1.66 3.27 0

GHS indef/aug2d 64563 11.62 222.1 0 119457 23.06 1106 0

GHS indef/aug3d 295845 32.59 592.4 0 517235 17.85 145.4 0

Pajek/Reuters911 45745 5.37 13.74 0 846524 5.19 10.06 0

Newman/cond-mat-2003 75836 1.95 2.80 0 135449 2.32 3.45 0

Newman/cond-mat-2005 129744 1.86 2.37 0 254168 2.24 2.93 0

19

5.7 Matching-based ordering with restricted pivoting

In Section 3.4, we considered restricting the search for pivots to the rows of the candidate pivot columns.

Experimentation found that, for our tough indefinite problems (scaled by MC64), iterative refinement

and FGMRES were not, in general, able to recover the required accuracy. However, if combined with

a matching-based ordering, the approach was successful for many of our problems; the results with and

without static pivoting are reported in Table 5.13. For completeness, we also include results for the

matching ordering used with static pivoting (but without restricting the pivot search). Note that when

static pivoting is used there are no delays. We see that, if restricted pivoting is used, a small number of the

non-singular problems failed to achieve the required accuracy. For the singular problems, incorporating

static pivoting can greatly improve performance but the downside is that, if diagonal entries are perturbed,

accuracy of the computed inertia is reduced.

Table 5.13: Results for the matching-based ordering used with restricted pivoting, static pivoting, and

restricted pivoting plus static pivoting. The number of delays, the ratios of the actual number of entries

in L and flop counts to the predicted values using METIS ordering, and the number of refinement solves

are given. nptb is the number of perturbed diagonal entries. - indicates required accuracy not achieved. ∗
indicates FGMRES used for refinement.

Identifier matching + restricted matching + static matching + restricted + static

ndelay nzL nflop nitr nptb nzL nflop nitr nptb nzL nflop nitr

TSOPF/TSOPF FS b162 c1 0 1.24 1.52 1 0 1.24 1.52 1 0 1.24 1.52 1

TSOPF/TSOPF FS b39 c7 0 1.46 1.88 1 0 1.46 1.88 1 0 1.46 1.88 1

Schenk IBMNA/c-64 0 1.25 1.70 0 0 1.25 1.70 0 0 1.25 1.70 0

GHS indef/ncvxqp1 37 1.84 3.24 1 2 1.84 3.24 1 1 1.84 3.24 1

QY/case39 0 1.55 2.26 1 0 1.55 2.26 1 0 1.55 2.26 1

GHS indef/boyd2 0 1.00 1.00 1 0 1.00 1.00 1 0 1.00 1.00 1

GHS indef/stokes128 4 1.59 2.23 32∗ 5 1.59 2.23 12∗ - - - -

GHS indef/cvxqp3 87 1.81 2.84 1 2 1.81 2.84 1 2 1.81 2.84 1

TSOPF/TSOPF FS b162 c3 0 1.40 1.96 1 0 1.40 1.96 1 0 1.40 1.96 1

TSOPF/TSOPF FS b39 c19 0 1.49 2.15 1 0 1.49 2.15 1 0 1.49 2.15 1

GHS indef/cont-201 0 0.95 0.87 1 0 0.95 0.87 1 0 0.95 0.87 1

TSOPF/TSOPF FS b162 c4 0 1.21 1.46 1 0 1.21 1.46 1 0 1.21 1.46 1

GHS indef/bratu3d 0 0.97 0.96 0 0 0.97 0.96 0 0 0.97 0.96 0

TSOPF/TSOPF FS b39 c30 0 1.40 1.82 1 0 1.40 1.82 1 0 1.40 1.82 1

GHS indef/darcy003 - - - - 109 1.75 3.95 2 - - - -

Schenk IBMNA/c-62 0 1.71 2.09 1 0 1.71 2.09 1 0 1.71 2.09 1

TSOPF/TSOPF FS b300 0 1.22 1.48 1 0 1.22 1.48 1 0 1.22 1.48 1

TSOPF/TSOPF FS b300 c1 0 1.24 1.53 1 0 1.24 1.53 1 0 1.24 1.53 1

GHS indef/cont-300 0 0.95 0.87 1 0 0.95 0.87 1 0 0.95 0.87 1

GHS indef/ncvxqp5 0 1.64 2.36 1 0 1.64 2.36 1 0 1.64 2.36 1

GHS indef/turon m - - - - 110 1.36 1.52 1 - - - -

GHS indef/d pretok - - - - 275 1.38 1.48 1 - - - -

GHS indef/ncvxqp3 31 1.87 2.96 1 3 1.87 2.96 1 3 1.87 2.96 1

TSOPF/TSOPF FS b300 c2 0 1.21 1.47 1 0 1.21 1.47 1 0 1.21 1.47 1

GHS indef/ncvxqp7 34 1.82 2.91 1 3 1.82 2.91 1 3 1.82 2.91 1

TSOPF/TSOPF FS b300 c3 0 1.15 1.34 1 0 1.15 1.34 1 0 1.15 1.34 1

GHS indef/dtoc 48399 26.38 3759.72 0 4996 1.06 1.12 1 4996 1.06 1.12 1

GHS indef/bloweybl 0 1.04 1.03 1 0 1.04 1.03 1 0 1.04 1.03 1

Marini/eurqsa 36 1.65 3.23 26 24 1.64 3.20 1 6 1.64 3.20 31

GHS indef/aug2d 119457 23.06 1106.25 0 11052 1.50 2.51 10 9733 1.50 2.51 1

GHS indef/aug3d 517235 17.85 145.36 0 14457 1.78 2.63 1 12415 1.78 2.63 1

Pajek/Reuters911 - - - - 2666 2.80 3.43 1 2600 2.80 3.43 1

Newman/cond-mat-2003 - - - - 1085 1.94 2.56 1 997 1.94 2.56 10

Newman/cond-mat-2005 - - - - 1436 1.97 2.49 1 1285 1.97 2.49 8

20

5.8 Sparse direct solver timings

So far, we have concentrated on looking at how different strategies impact on the number of delayed pivots

and on the factor size and flop count. In this section, we illustrate how the effect on computation time.

Here we use Version 2.0.0 of the recent multifrontal solver HSL MA97 [26]. HSL MA97 is used rather than

HSL MA77 because the latter is an out-of-core solver and as such its solve phase is comparatively expensive

(the factor L has to be read in once for the forward substitution and once for the back substitution); there

are also other overheads associated with the out-of-core design that result in HSL MA77 being slower than

HSL MA97. Furthermore, HSL MA97 is a parallel code. Table 5.14 reports complete solution times (which

includes the time for scaling, ordering and refinement) for HSL MA97 run on 8 processors with default

settings (u = 0.01), with and without scaling with MC64 and for the matching-based ordering with u = 10−8.

Times are wall clock times in seconds. We see that, for some problems (notably GHS indef/bloweybl and

GHS indef/ncvxqp5), scaling with MC64 dramatically reduces the time. For other problems, the cost of the

scaling results in an increase in the time (for example, GHS indef/aug2d and TSOPF/TSOPF FS b300).

Although the matching-based ordering produces denser factors, for many problems it gives the fastest

time. As it also produces few delayed pivots, this would appear to be an attractive approach.

5.9 Reusing the pivot sequence

In Section 4.1, we discussed reusing the pivot sequence from the first factorization when factorizing a

second matrix with the same structure and similar values. In Table 5.15, we report factorization times (in

this case, the same matrix values are used on both the first and second factorizations). For some problems

(such as GHS indef/ncvxqp7) the second factorization is, as we would like, substantially faster than the

first. However, for other examples (including GHS indef/ncvxqp3), although there are few delays, the

second factorization is slower than the first. The reason for this is that, when the pivot sequence from

the first factorization is input to the second analyse phase, the assembly tree can be very different from

that computed by the first analyse phase. In particular, we observe that the former can have significantly

fewer nodes while being much deeper. As a result, many of the nodes in the second analyse have a single

child and, in this case, it may be worthwhile to develop alternative node amalgamation strategies to try

and improve performance.

6 Summary of findings

For many problems from a wide range of applications, if a nested dissection or minimum degree ordering

is used with a sparse indefinite solver and the solver is run with its default settings, few pivots will be

delayed. In this study, we have concentrated solely on the problems where the standard approach leads

to a large number of delays: we have reviewed techniques designed to overcome this issue and we have

employed a set of hard-to-solve symmetric indefinite systems to examine how well these techniques perform

in practice. Our key findings (which are only for these tough problems) are:

• Scaling (and, in particular, the MC64 scaling) can significantly reduce the number of delays and so is

recommended but is not sufficient on its own to ensure only a few delays. All our remaining findings

are based on prescaling the system using MC64.

• Relaxing the pivot threshold parameter has limited effect on the number of delays and, for some

problems a large number of steps of FGMRES may be needed to recover accuracy.

• Static pivoting leads to no delays but a significant number of solves can be needed to recover accuracy

and, in a few cases, we were not able to achieve the requested accuracy using FGMRES. Furthermore,

knowledge of the inertia may be lost.

• The constrained ordering of Bridson without pivoting is not sufficiently general in that it requires the

(1, 1) block to be definite. If this is satisfied, in our experiments the approach works with no delays,

21

Table 5.14: The complete solution times (in seconds) for HSL MA97 run with METIS ordering (with and

without MC64 scaling) and the matching ordering (u = 0.01 and u = 10−8). - indicates insufficient memory

to perform factorization. Bold indicates the fastest time (±0.01 seconds).

Identifier METIS Matching

No scale MC64 MC64 MC64 MC64

u = 0.01 u = 0.01 u = 10−8 u = 0.01 u = 10−8

TSOPF/TSOPF FS b162 c1 0.34 0.34 0.41 0.30 0.31

TSOPF/TSOPF FS b39 c7 0.42 0.44 0.51 0.38 0.38

Schenk IBMNA/c-64 1.93 1.43 1.44 1.05 1.05

GHS indef/ncvxqp1 7.67 0.64 0.69 1.12 1.23

QY/case39 0.64 0.93 1.00 1.03 1.04

GHS indef/boyd2 56.93 47.38 47.35 37.69 37.68

GHS indef/stokes128 0.53 0.57 0.60 0.54 0.56

GHS indef/cvxqp3 47.76 1.59 1.72 2.37 2.34

TSOPF/TSOPF FS b162 c3 1.49 1.12 1.30 1.12 1.13

TSOPF/TSOPF FS b39 c19 1.62 1.39 1.55 1.19 1.17

GHS indef/cont-201 0.86 0.90 2.70 0.45 0.43

TSOPF/TSOPF FS b162 c4 2.11 1.52 1.64 1.32 1.32

GHS indef/bratu3d 2.51 2.61 3.47 0.73 0.72

TSOPF/TSOPF FS b39 c30 3.18 2.44 2.68 2.04 1.97

GHS indef/darcy003 3.12 3.66 3.75 2.70 2.70

Schenk IBMNA/c-62 30.03 2.34 2.21 7.26 7.27

TSOPF/TSOPF FS b300 2.75 3.34 3.26 2.62 2.51

TSOPF/TSOPF FS b300 c1 4.15 3.10 3.53 3.01 2.75

GHS indef/cont-300 2.27 2.47 6.52 1.02 1.02

GHS indef/ncvxqp5 167.8 3.64 3.84 5.59 5.55

GHS indef/turon m 2.21 2.43 2.66 2.13 2.11

GHS indef/d pretok 2.19 2.36 2.41 2.07 2.03

GHS indef/ncvxqp3 - 16.17 16.20 24.70 25.88

TSOPF/TSOPF FS b300 c2 7.81 5.67 6.87 6.23 6.28

GHS indef/ncvxqp7 - 46.10 46.90 37.00 36.78

TSOPF/TSOPF FS b300 c3 12.42 8.93 10.37 9.62 9.63

GHS indef/dtoc 2.11 2.73 0.85 1.82 0.82

Marini/eurqsa 0.62 0.07 0.08 0.09 0.09

GHS indef/bloweybl 51.76 0.20 0.22 0.11 0.11

GHS indef/aug2d 0.65 0.70 0.73 0.53 0.54

GHS indef/aug3d 11.38 11.40 13.91 38.95 38.94

Pajek/Reuters911 25.83 39.43 15.20 137.7 134.8

Newman/cond-mat-2003 6.49 6.79 6.56 20.03 21.62

Newman/cond-mat-2005 21.42 20.44 20.62 67.23 67.51

22

Table 5.15: Factorization times (in seconds) for HSL MA97. METIS ordering is used for the first factorization

and the second factorization uses the actual pivot order returned by the first factorization (MC64 scaling

and the pivot threshold u = 0.01).

Identifier First Second

TSOPF/TSOPF FS b162 c1 0.12 0.15

TSOPF/TSOPF FS b39 c7 0.11 0.10

Schenk IBMNA/c-64 0.41 0.56

GHS indef/ncvxqp1 0.52 0.68

QY/case39 0.44 0.41

GHS indef/boyd2 0.38 0.36

GHS indef/stokes128 0.18 0.17

GHS indef/cvxqp3 1.38 2.05

TSOPF/TSOPF FS b162 c3 0.38 0.48

TSOPF/TSOPF FS b39 c19 0.35 0.34

GHS indef/cont-201 0.28 0.24

TSOPF/TSOPF FS b162 c4 0.52 0.52

GHS indef/bratu3d 2.26 3.14

TSOPF/TSOPF FS b39 c30 0.63 0.63

GHS indef/darcy003 0.75 0.70

Schenk IBMNA/c-62 1.76 2.76

TSOPF/TSOPF FS b300 1.83 1.66

TSOPF/TSOPF FS b300 c1 1.58 2.15

GHS indef/cont-300 0.96 0.89

GHS indef/ncvxqp5 2.96 3.53

GHS indef/turon m 0.58 0.63

GHS indef/d pretok 0.57 0.63

GHS indef/ncvxqp3 15.08 18.64

TSOPF/TSOPF FS b300 c2 2.45 3.55

GHS indef/ncvxqp7 44.59 29.57

TSOPF/TSOPF FS b300 c3 3.87 4.64

GHS indef/dtoc 2.60 1.99

GHS indef/bloweybl 0.03 0.02

Marini/eurqsa 0.04 0.03

GHS indef/aug2d 0.54 0.61

GHS indef/aug3d 11.09 4.87

Pajek/Reuters911 39.13 50.77

Newman/cond-mat-2003 6.50 18.62

Newman/cond-mat-2005 19.98 45.41

23

although the fill-in of L and flop counts are generally significantly greater than for the unconstrained

METIS ordering.

• The MA47 ordering leads to no delays for the OXO matrices in our test set and, for many problems,

the number of delays was less than for a METIS ordering. However, for large problems, the MA47

ordering is less efficient than the METIS ordering (denser factors and higher flop counts).

• Matching-based orderings can substantially reduce the number of delays for non-singular problems.

In many cases, the computed factors were sparser than if METIS was used.

Thus, if delays occur, we always recommend scaling. If delays remain a problem and the efficiency

of the underlying factorization algorithm depends on there being few (if any) delays, a matching-based

ordering should be used (for OXO matrices, MA47 ordering could also be considered). If the inertia is not

required, incorporating static pivoting removes all delays and, when used with the matching ordering, gave

the required accuracy after refinement. We emphasize, however, that an approach based on matchings

is only recommended for tough problems such as those we have reported on in this study. If standard

threshold partial pivoting gives no delays, scaling may be unnecessary and using a matching-based ordering

is not desirable as it can be expensive to compute and result in denser factors and higher flop counts.

References

[1] P. Amestoy, T. Davis, and I. Duff, An approximate minimum degree ordering algorithm, SIAM

J. on Matrix Analysis and Applications, 17 (1996), pp. 886–905.

[2] M. Arioli and I. S. Duff, Using FGMRES to obtain backward stability in mixed-precision,

Electronic Transactions on Numerical Analysis, 33 (2009), pp. 31–44.

[3] M. Arioli, I. S. Duff, S. Gratton, and S. Pralet, A note on GMRES preconditioned by a

perturbed LDLT decomposition with static pivoting, SIAM J. on Scientific Computing, 29 (2007),

pp. 2024–2044.

[4] C. Ashcraft, R. G. Grimes, and J. G. Lewis, Accurate symmetric indefinite linear equation

solvers, SIAM J. on Matrix Analysis and Applications, 20 (1999), pp. 513–561.

[5] R. Bridson, An ordering method for the direct solution of saddle-point matrices. Preprint available

from http://www.cs.ubc.ca/∼rbridson/kktdirect/.

[6] J. R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving symmetric

linear systems, Mathematics of Computation, 31 (1977), pp. 1634–179.

[7] T. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Transactions on

Mathematical Software, 38 (2011). Article 1, 25 pages.

[8] A. de Niet and F. Wubs, Numerically stable LDLT -factorization of F-type saddle point matrices,

IMA Journal of Numerical Analysis, 29 (2009), pp. 208–234.

[9] I. Duff and J. Gilbert, Maximum-weighted matchingand block pivoting for symmetric indefinite

systems. in Abstract book of Householder Symposium XV, June 17-21, 2002, pp.73–75.

[10] I. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a sparse

matrix, SIAM J. on Matrix Analysis and Applications, 22 (2001), pp. 973–996.

[11] I. Duff and S. Pralet, Strategies for scaling and pivoting for sparse symmetric indefinite problems,

SIAM J. on Matrix Analysis and Applications, 27 (2005), pp. 313 – 340.

24

[12] , Towards a stable mixed pivoting strategy for the sequential and parallel solution of sparse

symmetric indefinite systems, SIAM J. on Matrix Analysis and Applications, 29 (2007), pp. 1007–

1024.

[13] I. Duff and J. Reid, The multifrontal solution of indefinite sparse symmetric linear systems, ACM

Transactions on Mathematical Software, 9 (1983), pp. 302–325.

[14] , MA27: A set of fortran subroutines for solving sparse symmetric sets of linear equations,

Technical Report Report R-10533, Computer Science and Systems Division, AERE, 1992.

[15] , MA47,: a Fortran code for direct solution of indefinite sparse symmetric linear systems,

Technical Report RAL-95-001, Rutherford Appleton Laboratory, 1995.

[16] I. S. Duff, MA57– a new code for the solution of sparse symmetric definite and indefinite systems,

ACM Transactions on Mathematical Software, 30 (2004), pp. 118–154.

[17] I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott, and K. Turner, Factorization of sparse

symmetric indefinite matrices, IMA Journal of Numerical Analysis, 11 (1991), pp. 181–2044.

[18] A. George, Nested dissection of a regular finite-element mesh, SIAM J. on Numerical Analysis, 10

(1973), pp. 345–363.

[19] A. Gupta, WSMP: Watson sparse matrix package (Part-I: Direct solution of symmetric sparse

systems), Tech. Rep. RC 21886, IBM T. J. Watson Research Center, Yorktown Heights, NY, November

2000. http://www.cs.umn.edu/∼agupta/wsmp.

[20] M. Hagemann and O. Schenk, Weighted matchings for preconditioning symmetric indefinite linear

systems, SIAM J. on Scientific Computing, 28 (2006), pp. 403–420.

[21] J. Hogg, J. Reid, and J. Scott, Design of a multicore sparse Cholesky factorization using DAGs,

SIAM J. on Scientific Computing, 32 (2010), pp. 3627–3649.

[22] J. Hogg and J. Scott, The effects of scalings on the performance of a sparse symmetric indefinite

solver, Technical Report RAL-TR-2008-007, Rutherford Appleton Laboratory, 2008.

[23] , A fast and robust mixed precision solver for the solution of sparse symmetric linear systems,

ACM Transactions on Mathematical Software, 37 (2010). Article 17, 24 pages.

[24] , An indefinite sparse direct solver for large problems on multicore machines, Technical Report

RAL-TR-2010-011, Rutherford Appleton Laboratory, 2010.

[25] , A note on the solve phase of a multicore solver, Technical Report RAL-TR-2010-007,

Rutherford Appleton Laboratory, 2010.

[26] , HSL MA97: a bit-compatible multifrontal code for sparse symmetric systems, Technical Report

RAL-TR-2011-024, Rutherford Appleton Laboratory, 2011.

[27] , Finding weighted matchings for rank-deficient sparse symmetric matrices, Technical Report

RAL-P-2012-003, Rutherford Appleton Laboratory, 2012.

[28] , New parallel sparse direct solvers for engineering applications, Technical Report RAL-P-2012-

001, Rutherford Appleton Laboratory, 2012.

[29] HSL, A collection of Fortran codes for large-scale scientific computation, 2011.

http://www.hsl.rl.ac.uk/.

[30] G. Karypis and V. Kumar, METIS: A software package for partitioning unstructured graphs,

partitioning meshes and computing fill-reducing orderings of sparse matrices - version 4.0, 1998.

http://www-users.cs.umn.edu/∼karypis/metis/.

25

[31] X. S. Li and J. W. Demmel, Making sparse Gaussian elimination scalable by static pivoting, in

Proceedings of the 1998 ACM/IEEE conference on Supercomputing, IEEE Computer Society, 1998,

pp. 1–17.

[32] , SuperLU DIST: A scalable distributed-memory sparse direct solver or unsymmetric linear

systems, ACM Transactions on Mathematical Software, 29 (2003), pp. 110–140.

[33] J. Liu, Modification of the minimum-degree algorithm by multiple elimination, ACM Transactions on

Mathematical Software, 11 (1985), pp. 141–153.

[34] MUMPS, MUMPS: a multifrontal massively parallel sparse direct solver, 2011.

http://graal.ens-lyon.fr/MUMPS/.

[35] J. Reid and J. Scott, An efficient out-of-core sparse symmetric indefinite direct solver, Technical

Report RAL-TR-2008-024, Rutherford Appleton Laboratory, 2008.

[36] , An out-of-core sparse Cholesky solver, ACM Transactions on Mathematical Software, 36 (2009).

Article 9, 33 pages.

[37] , Partial factorization of a dense symmetric indefinite matrix, ACM Transactions on

Mathematical Software, 38 (2011). Article 10, 19 pages.

[38] D. Ruiz, A scaling algorithm to equilibrate both rows and columns norms in matrices, Technical

Report RAL-TR-2001-034, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2001.

[39] D. Ruiz and B. Uçar, A symmetry preserving algorithm of matrix scaling, Technical Report RR-

7552, INRIA, 2011.

[40] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. on Scientific Computing,

14 (1993), pp. 461–469.

[41] O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with

PARDISO, Journal of Future Generation Computer Systems, 20 (2004), pp. 475–487.

[42] , On fast factorization pivoting methods for symmetric indefinite systems, Elec. Trans. Numer.

Anal, 23 (2006), pp. 158–179.

[43] O. Schenk, A. Wächter, and M. Hagemann, Matching-based preprocessing algorithms to the

solution of saddle-point problems in saddle-point problems in large-scale non-convex interior-point

optimization, Comput. Optim. Appl., 36 (2007), pp. 321–341.

[44] J. Scott, A note on a simple constrained ordering for saddle-point systems, Technical Report RAL-

TR-2009-007, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2009.

[45] M. Tůma, A note on the LDLT decomposition of matrices from saddle-point problems, SIAM J. on

Matrix Analysis and Applications, 23 (2002), pp. 903–925.

[46] W. Tinney and J. Walker, Direct solutions of sparse network equations by optimally ordered

triangular factorization, Proc. IEEE, 55 (1967), pp. 1801–1809.

[47] A. Wächter and L. T. Biegler, On the implementation of a primal-dual interior point filter line

search algorithm for large-scale nonlinear programming, Mathematical Programming, 106(1) (2006).

25–57.

26

	RAL-TR-2012-009-cover.pdf
	RAL-TR-2012-009-report.pdf

