
Parallel Implementation of Large Scale

Agent-based Models in Economics

Prof C Greenough, LS Chin and Dr DJ Worth

Software Engineering, STFC Rutherford Appleton Laboratory

Prof M Holcombe, Dr Simon Coakley and Dr Mariam Kiran

Computer Science, Sheffield University

Contents

 Introduction – CSED/SoftEng

 Acknowledgement – EURACE

 High Performance Computing - Why – Some issues

 HPC hardware

 FLAME – the software base

 Parallel FLAME implementation

 Verification and validation of FLAME

 Performance of FLAME infrastructure

 Performance of EURACE model

 Conclusions

Rutherford Appleton Lab - ADACE Bielefeld 2010

The Computational Science and

Engineering Department

 STFC (Science and Technology Facilities

Council) has two main Laboratories with

around 1500 staff in total:

– Daresbury Laboratory (near Warrington) and at

– the Rutherford Appleton Laboratory (near Oxford)

 Computation Science & Engineering has

around 100 research and support staff

 Development and application simulation

codes

– Usually collaborating with Universities

– Emphasis on high performance

 Interests in Science and Engineering

Rutherford Appleton Lab - ADACE Bielefeld 2010

Daresbury

Rutherford

Appleton

Large Scale Facilities at the

Rutherford Appleton Laboratory

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab

ISIS Neutron Source

Diamond Light Source

Computational Science & Engineering

 Material Sciences

 Life Sciences

 Systems Biology

Rutherford Appleton Lab - ADACE Bielefeld 2010

 Computational Engineering

 Ocean/Climate Modelling

 Advanced Algorithms

 Numerical Analysis

 Software Engineering

 Novel Hardware

Software Engineering Group

 Applications

– CFD

– Heat transfer

– Electromagnetics

– Semi-conductors

– Space detectors

 Parallel Algorithms

Rutherford Appleton Lab - ADACE Bielefeld 2010

 Software Engineering Support Programme (SESP)

– Practical/Pragmatic software engineering methods

– Development of software engineering tools

– Education – workshop, seminars, tech reports...

 Intelligent Agent Technology

– Agent-based frameworks and algorithm

– Biological Systems

– EURACE – EU Economic Modelling

Acknowledgements

This research is funded by the European Union via the

EURACE project (No 035086) which aimed to build a large

scale agent-based model of the European economy to aid

economic policy design.

The project required the development of an integrated

multi-agent model of economic and financial markets and

the development of software techniques and a software

platform for large-scale agent-based economic

simulations.

Rutherford Appleton Lab - ADACE Bielefeld 2010

Acknowledgements

The EURACE Project Partners:

 Economics/Finance

– Università degli Studi di Genova (UG) Italy (Coordinator)

– Universitaet Bielefeld (UNIBI) Germany

– Université de la Méditerranée (GREQAM) France

– Università Politecnica della Marche (UPM) Italy

 Software Engineering:

– University of Sheffield (USFD) UK

– Università degli Studi di Cagliari (UNICA) Italy

– STFC Computational Science & Engineering Dept (STFC) UK

– National Research Institute of Electronics and Cryptology

(UEKAE) Turkey

Rutherford Appleton Lab - ADACE Bielefeld 2010

Why High Performance Computing?

 Implementing software on an high performance system is

difficult and time consuming so there must be a good

reasons to embark on the task:

– Application can not be run on a conventional

computing system – insufficient power and/or

memory:

– Agent population to large (m/p)

– Agents are too complex (m/p)

– Number of simulations to large (p)

 Policy experiments

 Validation process

 Optimisation

Rutherford Appleton Lab - ADACE Bielefeld 2010

Some Issues in High

Performance Computing

 Parallel systems are in constant development

 Their hardware architectures are ever changing

– simple distributed memory on multiple processors

– share memory between multiple processors

– hybrid systems –

 clusters of share memory multiple processors

 clusters of multi-core systems

– the processors often have a multi-level cache system

Rutherford Appleton Lab - ADACE Bielefeld 2010

Some More Issues in High

Performance Computing

 Most have high speed multi-level communication switches

 Cloud/GRID architectures are now being used for very

large simulations

– many large high-performance systems

– loosely coupled together over the internet

– Specialised programming interfaces – no standards

 Performance can be improved by optimising to a specific

architecture

 Can very easily become architecture dependent

 Cost – most serious HPC machines can be very expensive

Rutherford Appleton Lab - ADACE Bielefeld 2010

Computing Systems

 Workstations/Desktop Systems:

– Multi-core processors (4,8....)

– Add-on processors (GPGPU..)

 High Performance Computing (HPC)

Systems:

– Large multi-processor system

(thousands of processors)

– Coupled Multi-core systems

– Complex communications hardware

– Specialised attached processors

(vector units, cells..)

Rutherford Appleton Lab - ADACE Bielefeld 2010

Parallelism does not come for free!!

 Cannot magically transform a program to run efficiently

on a parallel system

 Algorithm must be suitable for parallelisation

 There are such things as non-parallelisable algorithms

 Elements of work must localised – minimal dependencies

on other task!

 Communication and synchronisation between processors

significant overheads – so communication between task

must be minimised

Rutherford Appleton Lab - ADACE Bielefeld 2010

 An agent-based modelling framework

 Initially developed by Simon Coakley (University of

Sheffield). Extended in collaboration with STFC.

 Originally targeted at biological systems

 Developed further under the EURACE project:

– Now support larger class of models (e.g. economic models)

– Extension of the X-Machine Markup Language (XMML)

– Optimised performance (serial and parallel)

– Ported to various HPC machines (supercomputers) and

Operating Systems

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

How is FLAME different?

 It is a generic ABM program generator

 It has been design with HPC in mind – written in C using

MPI to manage communications

 Components are: model parser, a template library and a

run-time library

 Uses a model definition written a dialect of XML together

with user provided C code for agent functions

 It uses the concept of Message Boards for inter-agent

communication

 Uses an agent dependency graph to schedule and optmise

agent function (state change) activations

 Generates: the application and builder files for serial and

parallel execution

Rutherford Appleton Lab - ADACE Bielefeld 2010

Message Boards

Firms post

job vacancy

messages

Households

read list of

vacancies

Filters

Households can selectively

read messages using filters.

• salary > 1000 and skill level = 4

• All inter-agent communications are through messages boards

• There is a message board each message type within the model

• Messages only have two states – read or write (no read/write).

• The message board library (libmboard) manages these

The FLAME Process

 Input from the modeller:

– Model – XMML file

– C-code for functions

 Input from FLAME

– Template file

– Header files

 Output from FLAME

– Applications code

– State diagram

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

Creating a model

 What do we need to define:

 Agents

– Memory

– Behaviour – functions/states/communications

 Messages (information flow between agents)

 Optional extras

– Environment constants

– Custom data types

– Custom time units

Rutherford Appleton Lab - ADACE Bielefeld 2010

Specifying a Model using XMML

 XMML is a dialect of XML (X-Machine Agent Mark-up

Language)

 Standard set of XML tags

 Simple editable text file

 File has three main sections: models, environment, agents

and messages

 EURACE develop a tool set to help model developers and

users

Rutherford Appleton Lab - ADACE Bielefeld 2010

XMML – Overall Structure

<xmodel >

<name>circles</name>

<models>

<model>.... </model>

</models>

<environment>

<constants>.... </constants>

<functionfiles>.... </functionfiles>

<timeUnits>.... </timeUnits>

</environment>

<agents>

<xagent>.... </xagent>

<messages>

<message>.... </message>

</messages>

</xmodel>

Rutherford Appleton Lab - ADACE Bielefeld 2010

Programmers FLAME API

 Interface to agents and Framework

 Sending & receiving messages

 get_next_<message name>_message

 add_<message name>_message

 Accessing agent memory

 get_<variable>

 set_<variable>

 Creating & removing agents

Application Programmers Interface

The programmers interface to agent memory and to message

board information is through the FLAME Programmers API.

Example 1: Circle agent with memory of x, y, id and radius

communicating through the location message.

int outputdata()
{

double x, y, radius;
int id;

x = get_x(); y = get_y();
id = get_id(); radius = get_radius();

add_location_message(id, (radius * 3), x, y, 0.0);

return 0;
}

Rutherford Appleton Lab - ADACE Bielefeld 2010

Application Programmers Interface

Example 2: Circle agent get-ing and set-ing memory values x,

y, fx and fy using API functions.

int move()
{

double fx, fy;

fx=get_fx();
fy=get_fy();

set_x(fx);
set_y(fy);

return 0;
}

Rutherford Appleton Lab - ADACE Bielefeld 2010

API - MACROS

The FLAME parser generates predefined macros which allow

the programmer to generate loops over message boards.

Example 3: A loop to scan over LOCATION message board

#define START_LOCATION_MESSAGE_LOOP
for (location_message = get_first_location_message();

location_message != NULL;
location_message = get_next_location_message(location_message))

{

#define FINISH_LOCATION_MESSAGE_LOOP
}

Rutherford Appleton Lab - ADACE Bielefeld 2010

The FLAME Process

 Input from the modeller:

– Model – XMML file

– C-code for functions

 Input from FLAME

– Template file

– Header files

 Output from FLAME

– Applications code

– State diagram

Rutherford Appleton Lab - ADACE Bielefeld 2010

Two simple models

Circles Model

 very simple agent

 all have position data

 x, y, fx, fy, radius in

memory

 moves by repulsion from

neighbours

 1 message type

 3 functions

C@S Model

 mix of agents: Malls,

Firms, People

 a mixture of state

complexities

 all have position data

 agents have range of

influence

 9 message types

 9 functions

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

Dependency Graphs

Simple three-agent model

Circle agent model

Communications

State changesFirm

Mall

Person
Circle

Issues with HPC and FLAME

 FLAME is a applications generator

 Parallelism is hidden in the XML model and the modeller

provided C-code – this is in term of agent locality or

population groupings

 Inter-agent communications captured in XML

– In agent function descriptions

– In message descriptions

– The frequency of messages is not known

 The agent functions are the computational load

– Their weight not known until run time

– They could be fine or course grained

– Their activation is irregular – not lock stepped

Rutherford Appleton Lab - ADACE Bielefeld 2010

Parallel Implementation

 Based on :

– the distribution of agents – computational load

– distribution of message boards (MB) – data load

 Agents only communicate via MBs

 Cross-node message information is made available to

agents by message board synchronisation

 FLAME uses MPI to manage inter-node communications

 Communication between nodes are minimised

– Multi-threading on computation and communication

– Message filtering

– Domain/group halos

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

Parallelism in FLAME

Initial Problem Distribution

 The goal of using a high performance parallel computer is

to minimise the time taken to perform a simulation.

 We must balancing the use of resources available to

achieve this

 Some issues:

– communicating between processors takes time

– communication must overlap computation

– the model must contain parallelism

– the model must be sufficiently large

 Using all the available processors is not the solution

Rutherford Appleton Lab - ADACE Bielefeld 2010

A Very Simple Model

The circle agent is our basic test agent

 Very simple agents – zero size points

in 2D space

 all have a 2D (x,y) positional data

 all have a radius of influence

 values of x, y and radius are in

memory

 they move by repulsion from

neighbours

 there is only 1 message type

 there are 3 functions

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

Model Partitioning

 Round-robin: simple agent by agent allocation

– partitions are given a geometry

– agents are allocated to partition’s centroid

– agents distributed for load balance

 Geometric: based on prime factors

– using position as separator

– partitions are defined uniformly over x and y space

– for prime numbers x is preferred direction

– could be used of multi-variable separators

Rutherford Appleton Lab - ADACE Bielefeld 2010

Round-Robin Partitioning

centroids

range covers

whole domain

Rutherford Appleton Lab - ADACE Bielefeld 2010

Geometric Partitioning

halos

radius

P
1

P
2

P
3

P
4

P
7

P
10

P
11

P
12

P
9

P
6

P
5

P
8

Processors

P
i

Partitioning by Region

 For economics geographical

regions seem to be natural

 We still need to understand

the agent interaction the

work they perform – the

communication and

computation load

 Very difficult in unsteady

multi-agent systems

 Multiple agent weights

 Start with a static analysis!

Rutherford Appleton Lab - ADACE Bielefeld 2010

Parallelism in FLAME

Parallel agents grouped on parallel nodes.

Messages synchronised across nodes as necessary

Message board library allows both serial and parallel versions to work

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

Dependency Graphs

Simple three-agent model

Circle agent model

Communications

State changesFirm

Mall

Person
Circle

S1

S1

S4a

S6a

S3

S2

S4b

S6b

S5

Message Filtering

 The XMML filter provides a way of

selecting only the required data is

transferred

<function><name>inputdata</name>

<currentState>1</currentState>

<nextState>2</nextState>

<inputs><input>

<messageName>location</messageName>

<filter>

<lhs><value>a.id</value></lhs>

<op>NEQ</op>

<rhs><value>m.id</value></rhs>

</filter>

</input></inputs>

</function>

 Used to control scanning loops

 Used in message board synchronisation

Rutherford Appleton Lab - ADACE Bielefeld 2010

Message Board Synchronisation

 At these critical points we need to synchronise the

message information

 To continue every agent must have in place the

information it needs before the simulation can continue

 Local message boards must be updated with necessary

current information

 In its simplest form synchronisation by full replication of

all messages within each node – cannot be done in large

populations – insufficient memory

 We only transfer the information required as defined in

the model XMML.

Rutherford Appleton Lab - ADACE Bielefeld 2010

Multi-threading

 Synchronisation is a potential

bottleneck as the simulation must

wait for inter-node communication

 To reduce this problem libmboard

runs multiple threads:

– one for communication – data

transfer

– one for computation – doing agent

based work

 MB_SyncStar and MB_SyncComplete

control this process

Rutherford Appleton Lab - ADACE Bielefeld 2010

Parallel Platforms

 The FLAME framework has been successfully ported to

various HPC systems:

– SCARF – 360x2.2 GHz AMD Opteron cores, 1.3TB total

memory

– HAPU – 128x2.4 GHz Opteron cores, 2GB memory / core

– NW-Grid – 384x2.4 GHz Opteron cores, 2 or 4 GB

memory/core

– HPCx – 2560x1.5GHz Power5 cores, 2GB memory / core

– Legion (Blue Gene/P) – 1026xPowerPC 850 MHz; 4,096 cores

– HECToR (Cray XT4) – 1416xQuad Core Opterons, 2GB / core,

22,656 cores

– Leviathan (UNIBI) – 3xIntel Xeon E5355 (Quad Core), 24 cores

Rutherford Appleton Lab - ADACE Bielefeld 2010

Verification and Validation

 It is important to ensure that applications generated by the

FLAME framework execute correctly in both their serial and

parallel modes.

 A set of simple test models and problems have been developed

based on the Circles agent:

– Test 1: single Circles agent type; Initial population of no agents.

– Test 2: single Circles agent type; Initial population of one agent at (0,0).

– Test 3: Two Circles agent type; Initial population of agents at (-1,0) and (+,0).

– Test 4: Four Circles agent type; Initial population of one agent at (+/-1,+/-1).

– Test 5: Four Circles agent type; Initial population of one agent at (0,+/-1) and

(+/-1,0).

– Test 6: Four Circles agent type; Initial population of one agent at random

positions.

 In each of these models the expected results can be specified

and they can provide a very simple check of the correctness

serial and parallel implementations.

Rutherford Appleton Lab - ADACE Bielefeld 2010

Circles Model (1 Million Agents)

Rutherford Appleton Lab - ADACE Bielefeld 2010

C@S Model (124,000 agents)

Rutherford Appleton Lab - ADACE Bielefeld 2010

What we don’t know!

 Size of agent population – agent could be created and/or

destroyed

 Granularity of agents

– Is there a large computational load

– How often do they communicate

 Inherent parallelism (locality) in model

– Are the agents in groups

– Do they have short range communication

Rutherford Appleton Lab - ADACE Bielefeld 2010

The EURACE Model

 The main goal of EURACE was to develop:

– an agent-based software platform for European

economic policy design with heterogeneous interacting

agents

– discover new insights from a bottom up approach to

economic modeling and simulation.

– multi-agent

– multi-market

– regional and global effects

Rutherford Appleton Lab - ADACE Bielefeld 2010

EURACE markets and

their interactions

Rutherford Appleton Lab - ADACE Bielefeld 2010

The EURACE Model

Model Stats

• 9 Agent

• 55 Messages

•159 Functions

Markets

• Labour

• Goods

• Credit

• Financial

Rutherford Appleton Lab - ADACE Bielefeld 2010

stategraph_colour.pdf

EURACE Agent Populations

 Default unit of population

 5 fixed national agents

 4 regional agent groups

 Larger populations are

cloned using the this basic

population unit and

replicating the regional

agents

Agent type Number
of agents

National

Government 1

Central_Bank 1

Clearinghouse 1

Eurostat 1

IGFirm 1

Regional

Mall 1

Bank 2

Firm 80

Household 1600

Rutherford Appleton Lab - ADACE Bielefeld 2010

Performance analysis tools

 Two types of analysis tools have been developed for

FLAME generated applications: static and dynamic. Static

analysis tools process the model XMML and the C-code.

The dynamic analysis tools provide information on the

code during execution.

 Static Analysis Tools:

– Analyses_model.py : a static analysis of the FLAME model which

gives detailed information on the components of a model: agent,

function and messages types, number and sizes, a static

communications table, a weighted communications table.

– Check_message_consistency.py : a static consistency checker which

compares the XMML definition with C code and ensures that the

number and usage of messages is consistent.

Rutherford Appleton Lab - ADACE Bielefeld 2010

Performance analysis tools

 Dynamic Analysis Tools:

– The MM Package : The MM package is a dynamic to monitor

message tracing in the simulation. It is a set additional directives

included in the FLAME Templates which embedded in the application

code that monitor all message tracing and outputs to an SQL data

base. The data base can be post processed by the developed to

assess the message tracing in the model.

– The Time Package : The Timer package is a collection of timing

utilities which allow detailed timing analysis of any FLAME generated

application. The Timer package has been used to measure elapsed

CPU time for functions and message board synchronisations.

Rutherford Appleton Lab - ADACE Bielefeld 2010

Tools for Performance Analysis

 We need to assess the performance overhead of the

FLAME Framework: message management; iterator

creation and use; data input and output.

 The Timer Package is used to monitor the main message

board activities.

 A FLAME uses multiple threads for computation and

communication. FLAME attempts to overlap computational

and communication. We test non-overlapped and

overlapping overheads.

Rutherford Appleton Lab - ADACE Bielefeld 2010

Static Analysis

0 1 2 3 4 5 6 7 8

Firm 0 0.000 0.000 2.857 1.429 1.464 10.000 2.143 1.464 4.286

Central_Bank 1 0.000 0.000 0.000 0.000 0.036 0.000 0.000 0.000 0.036

Clearinghouse 2 2.143 0.000 0.000 0.000 1.429 0.714 0.000 0.000 0.000

IGFirm 3 1.429 0.000 0.000 0.000 0.036 0.714 0.000 0.000 0.714

Government 4 0.714 2.143 1.429 0.714 0.000 1.464 0.000 0.000 0.714

Household 5 6.464 0.000 0.714 0.000 2.179 0.000 1.429 0.036 0.714

Mall 6 0.714 0.000 0.000 0.000 0.000 2.857 0.000 0.036 0.000

Eurostat 7 0.036 0.036 0.000 0.000 0.714 0.000 0.000 0.000 0.000

Bank 8 1.429 1.429 0.000 0.000 0.036 0.714 0.000 0.000 0.000

Weighted Communications Matrix

Rutherford Appleton Lab - ADACE Bielefeld 2010

Effects of multi-threading

Rutherford Appleton Lab - ADACE Bielefeld 2010

Information from MM Package

Writing Reading
Message Name Counts Message Name Counts

order 57,557 order 2,935,407

bank_account_update 1,551 quality_price_info_1 13,700

job_application 666 info_firm 7,850

job_application2 552 accountInterest 6,000

order_status 337 dividend_per_share 3,000

accepted_consumption_1 274 bank_account_update 1,551

consumption_request_1 274 job_application 666

tax_payment 62 vacancies 666

hh_subsidy_notification 60 job_application2 552

hh_transfer_notification 60 vacancies2 552

Rutherford Appleton Lab - ADACE Bielefeld 2010

Serial Performance

Function Time (s) %
ClearingHouse_receive_orders_and_run 82.81 72.00

Household_stock_beliefs_formation 25.32 22.00

Household_send_orders 2.06 1.70

Household_bond_beliefs_formation 0.44 0.38

Household_rank_and_buy_goods_1 0.42 0.36

Firm_read_job_applications_send_job_offer_or_rejection 0.37 0.32

Household_update_its_portfolio 0.16 0.14

Household_receive_dividends 0.11 <0.10

Household_receive_info_interest_from_bank 0.09 <0.10

Household_send_account_update 0.09 <0.10

Function Time (s) %
Household_stock_beliefs_formation 245.78 61.00

Household_send_orders 46.44 11.00

ClearingHouse_receive_orders_and_run 41.76 10.00

Household_bond_beliefs_formation 4.98 1.20

Household_update_its_portfolio 1.48 0.30

Household_rank_and_buy_goods_1 1.04 0.28

Household_rank_and_buy_goods_2 0.90 0.22

Household_receive_dividends 0.80 0.20

Household_receive_info_interest_from_bank 0.79 0.20

Firm_read_job_applications_send_job_offer_or_rejection 0.62 0.15

Initial performance
analysis

Performance analysis
after initial optimisation

Rutherford Appleton Lab - ADACE Bielefeld 2010

Amdahl’s Law

N

P
P1

1

Where N is the number of
processors and P the
fraction of the code that can
be parallelised.

As N->∞ P/N -> 0 and the (1-P) term dominates.
The proportion of serial code dominates the parallel
performance.

Rutherford Appleton Lab - ADACE Bielefeld 2010

Parallel Performance

Node 1: Performance
analysis of agent functions

Function Time (s) %
Household_send_orders 2083.30 14.2

Household_stock_beliefs_formation 211.14 1.4

order 137.02 0.9

Household_receive_dividends 104.89 0.7

Household_receive_data 43.66 0.3

Household_receive_info_interest_from_bank 37.16 0.3

Household_update_its_portfolio 34.56 0.2

Firm_read_stock_transactions 17.74 0.1

Household_rank_and_buy_goods_1 16.10 0.1

Function Time (s) %

ClearingHouse_receive_orders_and_run 5125.29 35.0

Household_send_orders 2067.41 14.1

Household_stock_beliefs_formation 222.10 1.5

Household_receive_dividends 104.26 0.7

order 75.31 0.5

Household_receive_data 43.50 0.3

Household_receive_info_interest_from_bank 37.06 0.3

Household_update_its_portfolio 34.41 0.2

Household_rank_and_buy_goods_1 16.49 0.1

Node 0: Performance
analysis of agent functions

Rutherford Appleton Lab - ADACE Bielefeld 2010

Gustafson’s Law

 Gustafson's law addresses scaling to match availability of

computing power as the machine size increases.

where is the serial fraction and N the number of

processors.

 It removes the fixed problem size or fixed computation

load on the parallel processors: instead, he proposed a

fixed time concept which leads to scaled speed up for

larger problem sizes (i.e. weak or soft scaling).

)1()(NNNS

Rutherford Appleton Lab - ADACE Bielefeld 2010

Parallel Performance

Model

Regions

per

Processor

No. of

Agents

Time

(0.02)

Time

(0.01)

Time

(0.005)

Time

(0.0)

10R_10P 1 16,844 9.790 3.716 1.840 0.232

20R_10P 2 33,684 61.712 33.914 9.671 0.682

30R_10P 3 50,524 453.321 144.203 59.872 1.344

40R_10P 4 67,364 854.781 254.785 107.772 1.707

50R_10P 5 84,204 2083.108 578.451 305.411 2.605

60R_10P 6 101,044 262.061 107.489 3.535

70R_10P 7 117,884 101.094 55.440 4.504

80R_10P 8 134,724 76.171 30.587 5.739

90R_10P 9 151,564 73.339 41.525 6.660

100R_10P 10 168,404 97.151 96.784 8.174

200R_10P 20 336,804 361.985 25.716

300R_10P 30 504,712 64.041

Rutherford Appleton Lab - ADACE Bielefeld 2010

Serious Parallel Performance

 We have used two test models each with two different

populations in our testing:

– Population 1:

 20,212 agents, 12 regions

 Run on 1, 2, 3, 4, 6 and12 processors

– Population 2:

 101,044 agents, 60 regions

 Run on 5, 10, 15, 20, 30 and 60 processors

 The value of trading_activity also been varied.

Rutherford Appleton Lab - ADACE Bielefeld 2010

EURACE Results – Pop1

Rutherford Appleton Lab - ADACE Bielefeld 2010

Pop1: 20,212 agents, 12 regions

EURACE Results – Pop2

Rutherford Appleton Lab - ADACE Bielefeld 2010

Pop2: 101,044 agents, 60 regions

Some observations

 We do get limited improvement of performance

 The performance is very model dependent

– the serial component of the model

– the weight of each agent task

 Performance is very architecture dependent

– the speed of the processors

– the speed of the interconnect

– the size of the available memory

 It is difficult for modellers to express the parallelism in

their applications

Rutherford Appleton Lab - ADACE Bielefeld 2010

Research Issues

A short list of research subjects:

– definition and use of message filtering

– optimisation of scheduling from task graph

– generating communications overlap

– maintaining load balance over the system

– detecting serialism in the model and transforming

– coupling models with computational steering

– Use of multi-core processors and GPUs using OpenMP

or OpenCL/CUDA

– Verification and Validation methods and tools

– Use of in-complete data – try to carry on regardless!

Rutherford Appleton Lab - ADACE Bielefeld 2010

Rutherford Appleton Lab - ADACE Bielefeld 2010

Dynamic Load Balancing

 Goal to move agents between compute nodes:

– reduce overall elapsed time

– increase parallel efficiency

 There is an interaction between computational efficiency

and overall elapsed time

 The requirements of communications and load may

conflict!

Rutherford Appleton Lab - ADACE Bielefeld 2010

Balance - Load vs. Communication

 Distribution A

– P1: 13 agents

– P2: 3 agents

– P2 <--> P1: 1 channel

 Distribution B

– P1: 9 agents

– P2: 7 agents

– P1 <--> P2: 6 channels

Distribution A

Distribution B

P1 P2

Frequent

Occasional

Rutherford Appleton Lab - ADACE Bielefeld 2010

Moving Wrong Agents

Moving wrong agents could increase elapsed time

Problem of Load Imbalance

0

1

2

3

4

5

6

1 2 2 4 4 4 4 5 5 5 5 5 8 8 8 8 8 8 8 8

Partitions

T
im

e
 (

s
) Work by agents (geometric)

Elapsed time (geometric)

Work by agents (round-robin)

Elapsed time (round-robin)

Conclusions

 FLAME has proven to be a very versatile program

generator for agent-based applications

 The FLAME overhead in both the serial and parallel

implementations of FLAME applications is acceptably

small - ~5% of total elapsed time

 The parallel performance of the FLAME application is very

dependent of the inherent locality expressed in the model

and the architecture of the target hardware

 By using parallelisation techniques we have successfully

run populations of 500,000 agents

 To gain the best possible performance the modeller must

understand and exploit the nature of parallel computing

Rutherford Appleton Lab - ADACE Bielefeld 2010

Contacts

Prof Chris Greenough

Software Engineering Group

Computational Science & Engineering Dept

STFC Rutherford Appleton Laboratory

Harwell Science & Innovation Campus

DIDCOT

Oxfordshire OX11 0QX

Tel: +44 1235 445307

Email: christopher.greenough@stfc.ac.uk

Web: http://www.cse.scitech.ac.uk/seg

Rutherford Appleton Lab - ADACE Bielefeld 2010

mailto:christopher.greenough@stfc.ac.uk
http://www.cse.scitech.ac.uk/seg

Based on Publications/Reports

 C. Greenough, DJ Worth, LS Chin: An approach to the parallel

implementation for multi-agent systems, Rutherford Appleton

Laboratory Technical Report, Jul 2010

 C. Greenough, DJ Worth, LS Chin: Parallel Optimisation of the EURACE

 Agent-Based Economic Model, Rutherford Appleton Laboratory

Technical Report, Jul 2010

 C. Greenough, DJ Worth, LS Chin, M. Holcome and S Coakley,

Exploitation of High Performance Computing in the FLAME Agent-

Based Simulation Framework (CCEF 2008), Rutherford Appleton

Laboratory Technical Report RAL-TR-2009-022, Jul 2009

 C. Greenough, DJ Worth, LS Chin: Porting of agent models to parallel

computers, Deliverable D1.4, EURACE Project, 2006

 C. Greenough, DJ Worth, LS Chin: Porting of agent models to parallel

computers, Deliverable D8.4, EURACE Project, 2009

Rutherford Appleton Lab - ADACE Bielefeld 2010

