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ABSTRACT

A description of the method of solution of the integral
equations used in the GFUN program in two-dimensional,

three dimensional and axisymmetric versions.
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1.

INTRODUCT!ON

This note describes the methods used by the program GFUN to calculate the
fields of magnets, in particular magnets which contain iron. GFUN has
been applied to two-dimensional, axisymmetric, and three-dimensicnal
magnet designs.(l’z)
Both the field from the currents, and the field from the iron are found
by direct calculation. First the magnetisation of the iron is found by
solving the integral equation it obeys. Then the field anywhere can be

found from the known currents and previously determined magnetisation.

The direct method described here has two important advantages over other
methods, eg. relaxation and finite-element technlques, which require the
solution of partial differential equations. First, because the direct
calculation 1s performed only over the iron, fewer elements are reguired.

Second, difficulties with boundary conditions de not arise,

. THE METHOD. GENERAL CONSIDERATIONS

In the presence of current-carrying conductors and magnetic materials, the
magnetic field H can be written as the sum of a field ﬁc due to the currents
and a field ﬁm due to the magnetisation of the iron. In S| units, the field

due to the current is given by the volume integral

1 TxF
T-Tc=-ﬁ-1? 3 dv (1)
where ¥ is the vector from the source point to the field point. In practice

the current density Jis specified, and the evaluation of ﬁc is straight-

forward.

A. Finding ﬁm from M

The field ﬁﬁ can be found from the scalar potential Um:

ﬁm = -grad Um

The scalar potential Vm is given by the volume integral:

"':Fi?f gt | (2)

r



and thus;:

-1 m.T
ﬁh =4 grad h/ﬂ r3 dv (3)

Let the field point have coordinates (x, vy, z); and the source point

(x', y', 2'}. Then Equation {3) has x component:

o) B_J’ My (x=x') + H;(Y"Y') + M) (z-z') dx'dy'dz' (&)
mx by 3x 3

with similar expressions for Hmy and Hmz' In Equation (4)

2= (x-x)? + (v-y')z + (z-2")2,

Carrying out the differentiation in Eqn{4) yields:
=] ! _I2 5_ 3 ! | . | 5
L Hff M, 3(x-x")"/r? - 1/r7} + SMY(x x')(y-y")/r
! 5
+ 3Mz(x-x') (z-z')/r”] dx'dy'dz’ (5)
The integration is carried out over the iron region. Consider this

region divided into N elements, over each of which the magnetisation is

taken as constant. Also denote the field point by a. Then Egqn (5)

becomes:
N .
H_(a) = bil Cax, bx M (b) + Cax, by My(b) * Cox bz M (b) (6)
with
? v
_ ] ! P | 5 | ]
cax,by_ﬂ-\[ff‘lb 3(x~x") (y=y ") /r | dx'dy'dz (7b)
Cox bz = %;;jff 3{x-x"') (z-z')/r5 dx'dy'dz (7¢)
! Vb

and analogous expressions for H  and H
my mz



Using the notation X3=X, x2=y, x3=z, we can write the general expression

for the Cai,bj:

1 ! ! 5 3 .
Cai,bj = F{fjbe {3(xi.-xi)(xj-xj)/r -8 /7)Y (7d)

The C's are purely geometrical factors; their evaluation is described
below. |f the magnetisation is known for each element, then Eqn(6)

will give the field Hm at any point a.

. Determination of f

Before Equation (6) can be evaluated, the magnetisation of each element
must be known. We shall see that Eqn (6) itself suggests a way the

maghetisation can be determined.

Consider the field point a to be the center of the element a. The total
field at a is the sum of ﬁca and ﬁﬁa' Also the magnetisation is related

to the total field H through the magnetic susceptibility.
+ -
H = yH,with x(H) = u(H)/uo-l

Combining these considerations yields:

N

Hx(a) = ch(a) * i Cax,bxbux(b) * Cax,bybuy(b) + cax,bszHz(b)

b=1

which can be rearranged to read:

N

bzl (cax,bxxb-aab)Hx(b) * Cax,bybuy(b) * cax,bszHz(b) = -ch(a) (8a)
similarly

N

bil Cay,bxxbﬂx(b) ¥ (cay.byxb- ab)Hy(b) + cay,bszHx(b) - —Hcy(a) (8b)
and

N

bzl Caz,bxbux(b) * Caz,bybuy(b) ¥ (Caz,bsz_aab)Hz(b) - ch(a) (8c)

If the x were known, Equations (8) would be a system of 3N simultaneous
linear equations, which could be solved for the ﬁb' In practice we solve
Eqns (8} using some initial values for xp» next find the values of X, corre-

sponding to the solution of ﬁb, and then iterate until the solution cenverges.

_3_



. General! remarks about the coefficients

In the sections that follow, we shall discuss the cai bj coefficients
(subseripts i and j refer to x, y or z}, but here we list some general

relations they obey. First from the form of Eqn (7) we can write:

Caiobi = LaiLbj (9a)
cax,bx * cay,by * caz,bz =0ifazsh (3b)

o} in general if the point a is outside the element b.
C_,_=-1ifa=b (9¢)

Cax,bx * Cay,by * az,bz
or in general if the point a is inside the element b.

General remarks about symmetry

If the magnet being calculated has a plane of symmetry, then oniy half
the current and iron elements need enter the calculation. Likewise, if
the magnet has two or three planes of symmetry, the calculation need
include only the elements in one quadrant or octant. The coefficients
are calculated by Eqn(7) for both the direct and reflected elements;

and the results are added or subtracted depending on whether the magnet-
isation component of the reflected elements has the same or opposite sign

as the component of the direct element.

Because the x, vy and z components will have different reflecticon behaviour,

the combined coefficients will not obey Eqn(9).

. Point dipoles: a simple example.

In the following sections, we treat solutions of Eqns{7) and (8) that are
useful in solving problems. But first we look at an oversimplification
that has not proved useful in.calculating fields, but which may give some
insight into the way the method works. If we assume the magnetic moment

of each element is concentrated at its center Eqn{7d} can be re-written as;

- - B 5_ 3 _

Caivb * T Vb DBUxaixp;d (g7 50 /r7-6; 5707 (10)
Eqn{ 10} is easy to evaluate, but cannol be used when r = 0, ie. for the
self field coefficients €. aj’ For the case a = b, we could find the
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coefficients directly from gqn(9c) if there is sufficient symmetry and
otherwise use one of the expressions developed below. However even
using better expressions for the self-field coefficients does not
produce accurate calculations; Eqn{10) is too crude an expression for
neighbouring elements as well. Probably eqn{10) is useful only for

checking the results of other expressions for widely separated elements.

3. TWO-DIMENSIONAL CALCULATIONS
Much of the testing of the method has been done in two-dimensional calcu-
lations because calculation by other methods are available for compariseon.
The general Equations (7) and (8) can be specialised to two-dimensions
and soived., Many of the results have a simpler form when expressed in
complex variables; the results are here expressed in both real and complex

variables.

A. The general coefficients

We find the required equations by limiting i and j to x and y in Eqns
(7) and (8), and integrating Eqn(7) over z between minus and plus

infinity. Equations(7) become:

cax,bx B %ﬁj}r [(X'X')z - (Y‘Y')Z]/rh dx'dy' (11a)
A
b

Cax,by - %;J[[ 2(:~<--x')(y-y')/riI dx'dy* (11b)
Ay

Cay,bx B cax,by (11c)

cay,by N -cax,bx (114)
and Eqns (8} become:

N

bzl (Cax,bxxb_aab)Hx(b) + Cax,bybuy(b) - —ch(a) (12a)

N — .

bz] Cay,bxbux(b) + (Cay,byxbrﬁab)Hy(b) = _Hcy(a) (]2b)

-5-



|f we carry out the integration of Eqn(11) for an element b which is
in cross section a polygon of n sides, we obtain:
1 n

1 . 2 -
cax.,.bx T 2m kZl sin ¢k[ta"

R A C R L A TR VICHREOY

+ 5in¢k cos¢, [In M~ In rk+]]

n

(13a)

=1 -sin¢kcos¢k[tan-](yi-y)/(x&-x)—tan-](yi+|-y)/(x&+]-x)]

Cax,by 2n k=

—cosz¢k[1n r 1o rk+]]
where k labels the vertices in anti-clockwise order and
- -1 I oyl P oyl
b= ran T O /Oy

Problems can arise because the arctangent is not a single-valued

function. |f we adopt the usual convention:
-1
-1 <tan y/x < 5

then the calculations should obey the rule

RULE 1. An element should not be intersected by the half line

y' =y, x'<x

[f the location of the source element and field point causes this rule
to be violated, the substitution x»>-x, y»>-y, X'»-x', y'=-y', should be
made before Eqns{13) are calculated. This substitution is allowed

because it leaves Eqns(11) unchanged.

. Self-field coefficients

The self-field coefficients present particular difficulties. Clearly
if the field point is inside the element, Rule 1 cannot be obeyed. The
self-field coefficients should be found from Eqn{13) and then modified

as follows:

{(13b)

(14)



. . 2
Replace Cxx with Cxx sin ¢£ (15a)
Replace ny and ny with ny+sm¢2 cosd, (15b)
Replace ¢ with C -coszi (15¢)
Yy Yy 5
where ¢ is the angle from the half line y'=y, x' x to the side of
the polygon that the half line cuts.
. Coefficients, expressed in complex variables
If we let z=xtly, and following Beth'? write
_ -igk
@ = e sing) (16)
with ¢k as defined above, then we can find a complex coefficient
! n
= 1 - 1o
C =5 kzl (ak+| ak) n (zk z) (17}
from which we can find the coefficients needed in Eqn{12).
Cox = Re(C) (18a)
= -Rell
ny e(C) (18b)
= = -l -
Coy = Cyx m(c) (18c)
if Rule 1 is obeyed. For self field coefficients, Eqns (17) and (18)
are replaced by
"
¢ o= [E}' L (uk+]-ak) In (zi—z)] - g {19)
k=1 £
Cx = Re (c) (20a)
c = R c) -1
vy e (C) (20b)
= = = I C
cxy ny m(c) (20c)



D. Symmetry Considerations

If the magnet being calculated has a plane of symmetry, then only half

the current and iron elements need enter the calculation.
For example, let us consider a two-dimensional magnet design in which
the x-z plane is a plane of symmetry. That is, if there is iron at

{x, y}, there is iron at {x, -y); and the same for the currents. We

specify that the current densities obey:
J {x, -y} =J (xy) (21a)

From the symmetry we have assumed, it follows that:

H (%, =) = H (%) (21b)

H (x, -vy)

N HY (x,v), (21¢)

and the magnetisation obeys similar equations. These equations can be
used to reduce the number of unknown field components, and also the
number of linear equations that need be solved to find them, by a factor
of two. For if we used Eqn(21)} to eliminate on Eqn(12) all the field
components of elements in the lower half plane, we would need only

half as many equations to find the remaining components.

Suppose that element d is the mirror image at element b, and that neither

is element a. Then initially Eqn{12) would have terms:

G bi%Mbx * Cai,b2Xe ey * oo tCai, d1Xdlx T CaiaaXdMay T T HGai

Substitﬁting Eqn(2%) yields:

G

ai, b1 ox * 8ai b2%plby T oGt a1 X (Hpd * Gay aaxp(Mp) +eH
or
8 178 a1 ek T (Cai o * Bai a2l XHpy * oo = Hear
Finally, we will redefine the Gai bj to include contributions from:the:

image elements.



We write below the expressions for the Ga b for several symmetry
¥
configurations, using complex notation for simplicity. First we define

a general expression for each quadrant:

= - -

or

_ | . -
¢, = R (ak+] ak)ln(z ZL)

depending on which obeys Rule 1
! &
C, = 7 L (a*k+l-an)ln(z—zL)

_ | - _
c3 =71 (uk+] ak)ln(z ZL)

_I i . R |
Ch = E;-E (a"k+l u*k)In(z zk) (22)

The self-field modifications of Section B affect only €

1

For single plane dipole symmetry, described above,

J(x, -y) = J(X.v),Hx(x,-y) = -Hx(x.y).HY(X,-y) = Hy(x,y)

C.x = Re (Cl'ch)
Coy = Im (-C,-Cy)
_cYx = Im ('C|+ch)
CW = Re (-Cl—Ch) | (23)

A symmetrical dipole magnet has, in addition to the condition of Eqn({21)
the conditions J{-x,y) = —J(x,y),Hx(-x,y), and Hy('X,Y) = HY(X:Y) and

has elements:



XX

cxy = lm(-C]-Cz-CS—CA)

Cy = Im(-CI+C -C +°h)

cyy = Re(- Cy=Cy- Ch) (24)

.A quadrupole magnet cbeys the conditions:
J(-x,y) = J(x,y) = J{x,-y)
Hx(—x,y) = Hx(x,y) = -Hx(x,—y)
(%) = B (xy) = B (o) (25)

and has elements:

€. = RelC,+C, “Cy -C,)
Cy = Im(-C,+C 2*Cs -C,)
ny = 1m(—c]—c2+53+ch)
Cyy = Re{-C +C,+C ch) | (26)

4. THREE DIMENS IONAL CALCULATIONS
In all three-dimensional calculations attempted so far the iron elements
have been right polygonal prisms oriented in the z direction, and the
current elements have been either infinite conductors carrying currents

in the z direction or coils about the z axis.

A. The general coefficients

Equations (7) can be integrated over a prism between z, and 22 and of

polygonal cross section. Introducing the expressions:

(zi-z)[(yi-y)sin¢k + (xj—x)cos¢k]

Tij = tan rijLixgxdsing = lyi-y)cosg, ] (??a)

L_j =3 In (r.j+z;‘z)/(r.j—zi+z) (27b)

-10-.



Vi = 2 In {(yj-y)sin¢k + (xj -x)cosg, + £ 53 (27¢)

we can write the coefficients:

2 3 i
1 i . 2 . _
‘xx = 7n iil Z 1) 510y (T Th e i) TSTndgeoso (L oLy )
(28a)
- : ; (—1)i 24 (T, T )+sing, cosd, (L. -L )
“woiw I o5 O T Ti ka1, 1! TEINGC08d (L =Ly
(28b)
=L I g (-l)i sing, cosé, (T.  -T )+c052¢ (L., -L )
xy " Zm L LA TRV S ) k' Eikh ke
(28¢c)
23 P g
“xz = 27 ifl o SN sing WV Vi ke i (284)
¢ 3 i
Gzt E U o il (26¢)
Y i=1 k=1

Values for ny, sz, czy and sz can then be found by Eqn(9).
Those coefficients which Include the arctangent term Tijk are subject
to problems because the arctangent is not single-valued. The correct
quadrant of Tikk,k+l,k can be found by finding the correct quadrant
for the corresponding two dimensional situation whan z!-z goes to

1
infinity.

B. Self field coefficients

The corrections needed for the self-field coefficients are exactly

those listed as Eqn(15). None are needed for ¢ _, C_, ¢ _, C_ or
xz' “zx' “yz’ “zy
c

zz’

5. AXISYMMETRIC CALCULAT!ONS

Only iron elements of rectangular cross section have been used heretofore.

The coefficients are given by:

- 11 -



) Ty Zy

¢, - fdefrdrf 92(32%/05-1/03) (29a)
W T z)

= %Ejl[[he rdrdz 3z (r—xo cos B)/p5 (29b)

= %ﬁi[]];e rdrdz 3z (r cos 8 - xo)/p5 (29¢)

= %ﬁ}[[[;e rdrdz [3(r cos & - x )(r - x_cos 9)/95 = cos 6/p7]  (29¢)

where for convenience, but without lack of generality, the field point
has been taken as the polint with cartesian coordinates (xo. 0, 0). We

are also denoting the source coordinates by (x,y,z) or by {p,8,2):

2 2, 2
Z +x +r -2rx_ cos
[a] o

o
It

N J Diserens has evaluated the Eqn{29).

The integration over z can be performed analytically; the integration
over 9 yields elliptic integrals, which can then be integrated numer-
ically over r.

l“2 22

-hrx brx
_ 1 | | o 3
czz = — - 3 2 2 i 21] dar
m . (2 +(x, +r) ) /2 2"+ (x +r)? 2 +(x_+r)

1 2

(30a)

- 12 -



2 x 242?-p ~4rx brx
C,r = o — 23 > VA 2 2
2t Zn (z2+(x ) 232 2" 22 (x_+r) z +{x _+r)
r o] =) o]
1
I | F 1+r)(o “2
- T f—-——— dr (30b)
2 2 2
dzz+(x +r)2 z +(xo-“-)
o z, :
r
2 x 2-r2-2% -hrx Lrx
¢ =4 L o ]_[ T ° . o
rz.  2m *o (zz+(xo+r)2)3/2 2 zz+(x°+r)2 zz+(xo+r)2
-
| : hrxo "2
+ = | — dr (30c)
f22+(x_+r)2 f:- 2 22+(x0+r)2
z
1
ry ry
] i}
Cr = T [red f pdr (30d)
r r

with

X -r -hrx Lrx
4= 22 1 o ) o o
N X +r 2’ 2’ 2 2
o /22+(x0+r)2 o {xo+r) z +(xo+r)

(1r Ln‘xo Zy (

+ g 2 ) 30 )

I 22+(x +r)2 ©
) o - z,

Iron elements of triangular cross section could be calculated by

£qn{30), but with z) and z, linear funmctions of r.

_|3_



6. CONCLUSIONS
These equations should be useful to any GFUN user who wishes to understand

the program or extend it.
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