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Role of surface shape on boundary slip and velocity defect
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Although many gas-phase microfluidic devices contain curved surfaces, relatively little research has been
conducted on the degree of slip over nonplanar surfaces. The present study demonstrates the influence of the
surface shape (i.e., convex/concave) on the velocity slip and formation of the Knudsen layer. In addition, the
study reveals that there is a simple relationship between the shear stress exerted on the surface and the velocity

defect in the Knudsen layer.
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I. INTRODUCTION

The Knudsen layer extends just over one mean free path
from a surface, and within this layer the momentum and heat
transfer properties of the gas deviate considerably from the
conventional continuum description of the fluid. The transport
properties within the layer have been studied extensively for
flows associated with planar surfaces [ 1-4]. The Knudsen layer
manifests itself as a significant velocity defect (i.e., a deviation
between the actual velocity profile and that predicted by the
Navier-Stokes equations) in the near-wall region, and it is
crucially important when modeling the flow behavior in gas-
phase microdevices. The Knudsen number is defined as Kn =
A/L, where A is the mean free path of the gas molecules and
L is the characteristic length scale of the flow. The Knudsen
number, in fact, relates the thickness of the Knudsen layer to
the length scale of the flow domain. As the Knudsen number
increases, the Knudsen layer becomes increasingly influential
on the flow behavior and causes a considerable velocity defect
at any solid-gas interface.

The present study considers the flow of a rarefied gas driven
by a thin rotating cylindrical shell positioned in the middle
of the gap between two concentric stationary cylinders. The
standard DSMC algorithm proposed by Bird [5] has been used
with the exception of a small modification in the calculation
of the maximum collision number in a cell, as described by
Stefanov et al. [6]. In addition, a second-order slip model
(the Navier-Stokes equations with slip boundary conditions)
has been adopted for cylindrical surfaces. The velocity defect
can be evaluated by comparing the difference between the
normalized velocities from the slip solution with the results
obtained from the direct simulation Monte Carlo (DSMC)
solution. The present study highlights the profound role of
the surface shape (i.e., whether the surface is convex/concave)
on the flow behavior by specifically eliminating the effects
of curvature and surface area. The study also demonstrates
that anomalous velocity and temperature profiles appear in
nonplanar geometries due to the surface shape.
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II. THEORETICAL CONSIDERATION OF THE
SHELL PROBLEM

In a cylindrical-polar coordinate (r,60) reference frame, the
circumferential momentum expression of the incompressible
Navier-Stokes equations can be written as

d2u+d u _0 )
dr2 dr\r) 7

where u is the velocity in the tangential direction and r is the
radial distance. The general solution of Eq. (1) is given by

M(r)=C1r+%, ?)

where C; and C, are constants determined by the slip boundary
conditions.

Higher-order slip boundary conditions have great practical
significance since they improve the accuracy of first-order slip
models and extend the validity of the Navier-Stokes equations
to higher Knudsen numbers. Several second-order slip models
are proposed in the literature and their predictive capabilities
have been the subject of many studies, as reviewed by Barber
and Emerson [7] and Cao et al. [8]. Most of these boundary
conditions, however, can only be applied to planar surfaces. To
analyze the flow over cylindrical surfaces, we adopt a generic
second-order slip boundary condition, formerly developed by
Sone [9] for an arbitrary surface shape, and we express it by
incorporating the Maxwell first-order slip boundary condition
[10] as follows:
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where the subscripts “gas” and “wall” refer to the velocity of
the gas and wall, respectively, o is the tangential momentum
accommodation coefficient, A is the mean free path, p is the
dynamic viscosity, T is the shear stress, d/0dn is the derivative
in the direction normal to the surface, and A; and A, are
the first- and second-order slip coefficients, respectively. The
(viscous) mean free path is defined as A = (u/p)(TRT/2)"/,
where p is the pressure, R is the specific gas constant,
and T is the temperature. In the present study, the Knudsen
number is defined in terms of the annular clearance between
the shell and the confining inner (or outer) cylinder, i.e.,

wall
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Kn =2A/(R; — R;), where R; and R, are the radii of the
stationary inner and outer cylinders, respectively.

The first-order term of the slip boundary condition in
Eq. (3) was originally derived by Maxwell [10]. Subsequently,
a second-order slip boundary condition for an arbitrary surface
geometry was established by Sone [9,11] through a systematic
asymptotic analysis of the Boltzmann equation and its bound-
ary condition in half-space for small Knudsen numbers. In
the case of isothermal flow between two concentric cylinders,
Sone’s second-order slip boundary condition can be cast in
the form of Eq. (3), but it differs by the values of the first-
and second-order coefficients. The £ sign in front of the
first-order term in Eq. (3) is determined by the direction of
the normal vector pointing into the gas. In this particular
confined geometry, the direction of the normal vector at the
inner cylinder is positive (r direction) while it is negative at the
outer cylinder. The curvatures of the cylindrical surfaces also
have opposite signs depending on whether the normal vector
points toward the center of curvature or not; the curvatures
of the convex and concave surfaces are positive and negative,
respectively. This makes the magnitude of the second-order
slip coefficient, A,, in Eq. (3) identical at both the convex and
concave surfaces with a minus ( —) sign in front. In addition,
it should be noted that the generic second-order boundary
condition shown in Eq. (3) reduces to a form of a second-order
slip boundary condition for planar surfaces, which has met
with considerable success up to a Knudsen number as high
as 0.4 [12-16].

The general solution of Eq. (1) for the concave and convex
sides of the shell is obtained using the generic nonplanar
boundary condition to give
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where

I'(r) =44, +2Ar +r* and
Ca(r) = —4A, + 2Ar —r?, (6)

and r{ = R{/A, rs = Rg/X\, and r, = R,/)\ are the nondi-
mensional radii of the inner cylinder, the shell, and the
outer cylinder, respectively; r* = (r — R;)/(Rs — R;) and
7 = (r — Rs)/(R, — Ry) are the normalized radial distances
for the concave and convex sides of the shell, respectively,
and €2 is the angular velocity of the cylindrical shell. The slip
coefficients in the present study are specified as A} = 1.11
and A, = 0.61 (following [12]) and the flow profiles are
obtained for the fully diffusive case (i.e., 0 = 1). The surface
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temperatures are assumed to be identical and specified as
273 K.

The present study implements the standard DSMC method
proposed by Bird [5] for a cylindrical geometry but uses the
modification detailed by Stefanov et al. [6] for the calculation
of the maximum collision number in a cell. The DSMC
method is a stochastic particle approach based on kinetic
theory which can be shown to converge to the solution of
the nonlinear Boltzmann equation in the limit of infinitesimal
discretization if a sufficiently large number of particles is
used in the simulation [17]. Each simulation particle in the
DSMC method represents a large number of gas molecules,
and therefore a relatively small number of particles is needed,
which is an important advantage of the technique compared to
molecular dynamics approaches. Another important feature
of the DSMC method is that it is unconditionally stable.
However, when the number of particles is small, the statistical
noise increases considerably due to the fact that the collision
term of the Boltzmann equation is simulated using random
numbers based on the molecular chaos assumption of the
collision process. The macroscopic properties of the gas (i.e.,
the physically observable quantities such as pressure and
temperature) are postulated to be the averaged values of the
microscopic random motion, and therefore the macroscopic
quantities are calculated by averaging the microscopic values
at the center of each cell.

In the present study, the gas behavior over the convex and
concave sides of the shell has been simulated separately due to
the two-part geometry of the shell problem. The simulations
consider a hard-sphere model for argon at STP conditions
and implement the Maxwell (specular-diffusive) gas-wall
interaction model. Both flow domains over the concave and
convex sides of the shell are divided into 200 cells in the
radial direction, with each cell containing approximately 1000
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FIG. 1. (Color online) Comparison of velocity and temperature
profiles over the concave and convex surfaces of a rotating cylindrical
shell obtained using DSMC simulations. The shell is positioned
midway between two stationary cylinders and has a radius of
curvature of 5A, where A is the mean free path. The bold vertical lines
in the middle of the figures represent the location of the shell while
the shaded areas demonstrate the spatial extent of the S layers. The S
layer extends from the convex surface by a distance of approximately
A2k [18], where k = 1/7A~! is the magnitude of the curvature of the
convex surface and 7 = r¢onvex /A 15 the nondimensional radius of the
convex surface.
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FIG. 2. (Color online) Difference in (a) slip velocities and
(b) temperature jumps between the convex and concave surfaces of
the shell. The radius of the shell is specified as 6A, 12A, 20A, and
50A, and the curvature « is defined as the inverse of the magnitude
of the shell radius. The slip velocities and temperature jumps are
normalized by the velocity and temperature of the shell, respectively.

simulation particles on average. For the initial part of the study
(showninFigs. 1 and 2), the DSMC profiles have been obtained
for a tangential wall velocity of 160 m/s (corresponding to
a Mach number of ~0.5). However, for the analysis of the
velocity defect and formation of the Knudsen layer (Figs. 3
and 4), the DSMC data have employed a lower tangential
wall velocity of 40 m/s (corresponding to a Mach number of
~0.12). At this Mach number, the DSMC simulations show
less than a 1% variation in density and temperature throughout
the flow domain, demonstrating that compressibility and
thermal effects are not important, and suggesting that our
theoretical analysis shown above is valid.

III. VELOCITY SLIP AND THE FORMATION OF
THE KNUDSEN LAYER

The anomalous velocity and temperature profiles for the
rotating shell problem are presented in Fig. 1. The cylindrical
shell is positioned in the middle of the annular gap and has a
radius of curvature of 5\, where X is the mean free path. The
bold vertical lines in the middle of the figures represent the
location of the rotating shell, and the flows on the left- and
right-hand sides of the shell are driven by concave and convex
surfaces, respectively. The surfaces of the shell obviously have
identical surface areas and equal magnitudes of curvature,
and therefore any differences in the velocity and temperature
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FIG. 3. (Color online) The effects of curvature on the velocity
defect over concave and convex surfaces. The velocity defect
is calculated as the difference between the normalized velocities
obtained from the slip and DSMC solutions. (a) Velocity defect on
the concave side, (b) velocity defect on the convex side of the shell.
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FIG. 4. (Color online) The velocity defect variation as a function
of the magnitude of the nondimensional shear stress (a) at a concave
surface and (b) at a convex surface. The shear stress exerted on
the cylinder surface is obtained from the DSMC results. Identically
shaped symbols from left to right represent the velocity defect at
Knudsen numbers of 0.1, 0.2, 0.3, and 0.4, respectively.

profiles can be attributed to the effects of the surface shape
(i.e., convex/concave) since the magnitudes of the slip and
temperature jump would be equal on both surfaces in the
equivalent planar flow problem. Figure 1 shows the remarkable
differences in the slip and temperature jump on the concave
and convex sides of the shell, and it highlights that the surface
shape can have profound effects on the flow and temperature
profiles over nonplanar surfaces.

Figures 1(a) and 1(b) show that the degree of slip over
a convex surface is larger than that over a concave surface.
This may be explained by the presence of the S layer over the
convex surface; the S layer was originally described [18] as a
“thin sublayer within the Knudsen layer,” and its thickness
was estimated to be of the order of A%k, where « is the
magnitude of the curvature of the convex surface. However,
the present results show that the influence of the S layer
is rather significant. Furthermore, on the left-hand sides of
Figs. 1(c) and 1(d), the temperature is shown to increase from
the rotating concave surface to the stationary convex surface.
These temperature profiles demonstrate a behavior that is
analogous to the phenomenon of velocity inversion [19-21].

The variation of the slip velocity and temperature jump
between the concave and convex sides of the shell is shown in
Fig. 2 for different Knudsen numbers and different magnitudes
of the shell curvature, . The radius of the shell is specified
as 6A, 124, 20A, and 50A. Figure 2 shows that both the slip
velocity and the temperature jump differences increase with
the magnitude of curvature, but interestingly, they decrease
with the Knudsen number.

The Knudsen layer effects reveal themselves by a velocity
defect at the solid wall which is the difference between the
actual velocity of the gas molecules at the wall and the velocity
predicted using a fluid-dynamic (Navier-Stokes) slip-flow
description of the fluid. The velocity defect is obtained as
a percentage using the formula

UDSMC — Uslip

velocity defect =
QRg

x 100, @)

where upsmc and ug;p are the velocities at the wall obtained
from the DSMC and the second-order slip model, respectively.

Figure 3 shows the effects of curvature on the velocity
defect at a tangential wall velocity of 40 m/s (corresponding
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to a Mach number of ~0.12). Figure 3(a) demonstrates that
the velocity defect over a concave surface decreases with
curvature, whereas Fig. 3(b) shows that the velocity defect
over a convex surface increases with curvature. This can be
interpreted as an “opposing curvature effect” on the velocity
defect over convex and concave surfaces. For a given Knudsen
number, the velocity defect over the convex side of the shell
is always larger than the velocity defect over the concave side.
Moreover, the velocity defect for the equivalent planar flow
case defines the effective upper and lower limits for the velocity
defect over concave and convex surfaces, respectively.

Figure 4 demonstrates the important relationship between
the magnitude of the nondimensional shear stress [i.e., 7% =
T A/(1t QRs)] and the velocity defect over concave and convex
surfaces. The relationship is linear over concave surfaces but
exhibits a slight nonlinear trend over convex surfaces. A linear
function of shear stress with a slope of 0.472 has been fitted
to the velocity defect in Fig. 4(a) for concave surfaces. In
this fit, the root mean square error (RMSE) is 0.00025 and
the coefficient of determination is 99.72%. Identically shaped
symbols (for example circles) from left to right correspond to
Knudsen numbers of 0.1, 0.2, 0.3, and 0.4, respectively. On
the other hand, in the case of a convex surface, the relationship
between the magnitude of the shear stress and the velocity
defect is found to be

velocity defect =0.37 x |shear stress| + 1.2 x |shear stress|?,
®)

where the RMSE is 0.001 65 and the coefficient of determina-
tion is 99.17%.

IV. CONCLUDING REMARKS

This study has highlighted the profound effect of the surface
shape (i.e., whether the surface is convex/concave) on the ve-
locity and temperature profiles in rarefied cylindrical Couette
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flow, and it has illustrated that the temperature profiles can
exhibit anomalous behavior with the temperature increasing
from a rotating concave surface to a stationary convex surface.
This anomalous behavior can be explained by the role of
the surface shape on the formation of the Knudsen layer. In
addition, the study shows that the S layer, which is normally
considered to be a thin sublayer within the Knudsen layer, can
have a profound effect on the flow over convex surfaces.

The study has revealed that there is a remarkable re-
lationship between the velocity defect within the Knudsen
layer and the shear stress exerted on the flow surface. The
results demonstrate that the formation of the Knudsen layer is
markedly different over concave and convex walls. It is shown
that the relationship between the shear stress and the velocity
defect is linear over a concave surface but slightly nonlinear
in the presence of the S layer over a convex surface.

Finally, the study has highlighted an important opposing
effect of curvature on the velocity defect over concave and
convex walls. A similar opposing effect on the velocity slip in
liquid *He was proposed by Einzel et al. [22], who predicted
a monotonic increase in the degree of slip at a convex
surface, and conversely a monotonic decrease in the degree
of slip at a concave surface, as the magnitude of the surface
curvature increases. The direct simulation Monte Carlo results
in the present study provide clear evidence that this opposing
curvature effect on the velocity slip also occurs in rarefied gas
flows over rotating cylindrical surfaces.

ACKNOWLEDGMENTS

The research leading to these results was funded by
the European Community’s Seventh Framework Programme
(ITN-FP7/2007-2013) under the GASMEMS project (Grant
Agreement No. 215504). The authors would also like to
acknowledge support from the UK Engineering and Physical
Sciences Research Council (EPSRC) under the auspices of
Collaborative Computational Project 12 (CCP12).

[1] C. Cercignani, Rarefied Gas Dynamics: From Basic Concepts to
Actual Calculations (Cambridge University Press, Cambridge,
2000).

[2] Y. H. Zhang, X. J. Gu, R. W. Barber, and D. R. Emerson, Phys.
Rev. E 74, 046704 (2006).

[3] J. M. Reese and Y. H. Zhang, J. Comput. Theor. Nanosci. 6,
2061 (2009).

[4] X. J. Gu, D. R. Emerson, and G. H. Tang, Phys. Rev. E 81,
016313 (2010).

[5] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation
of Gas Flows (Clarendon, Oxford, 1994).

[6] S. Stefanov, P. Gospodinov, and C. Cercignani, Phys. Fluids 10,
289 (1998).

[7] R. W. Barber and D. R. Emerson, Heat Transf. Eng. 27(4), 3
(2006).

[8] B. Y. Cao, J. Sun, M. Chen, and Z. Y. Guo, Int. J. Mol. Sci. 10,
4638 (2009).

[9]1 Y. Sone, in Rarefied Gas Dynamics, edited by L. Trilling and
H. Y. Wachman (Academic, New York, 1969), p. 243.

[10] J. C. Maxwell, Philos. Trans. R. Soc. London 170, 231
(1879).

[11] Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and
Applications (Birkhauser, Boston, 2007).

[12] N. G. Hadjiconstantinou, Microscale Thermophys. Eng. 9, 137
(2005).

[13] C. Cercignani and S. Lorenzani, Phys. Fluids 22, 062004 (2010).

[14] S. Colin, P. Lalonde, and R. Caen, Heat Transf. Eng. 25, 23
(2004).

[15] I. A. Graur, P. Perrier, W. Ghozlani, and J. G. Méolans, Phys.
Fluids 21, 102004 (2009).

[16] P. Perrier, I. A. Graur, T. Ewart, and J. G. Méolans, Phys. Fluids
23, 042004 (2011).

[17] W. Wagner, J. Stat. Phys. 66, 1011 (1992).

[18] Y. Sone, Phys. Fluids 16, 1422 (1973).

[19] K. W. Tibbs, F. Baras, and A. L. Garcia, Phys. Rev. E 56, 2282
(1997).

[20] K. Aoki, H. Yoshida, T. Nakanishi, and A. L. Garcia, Phys. Rev.
E 68, 016302 (2003).

[21] S. Yuhong, R. W. Barber, and D. R. Emerson, Phys. Fluids 17,
047102 (2005).

[22] D. Einzel, P. Panzer, and M. Liu, Phys. Rev. Lett. 64, 2269
(1990).

016314-4


http://dx.doi.org/10.1103/PhysRevE.74.046704
http://dx.doi.org/10.1103/PhysRevE.74.046704
http://dx.doi.org/10.1166/jctn.2009.1263
http://dx.doi.org/10.1166/jctn.2009.1263
http://dx.doi.org/10.1103/PhysRevE.81.016313
http://dx.doi.org/10.1103/PhysRevE.81.016313
http://dx.doi.org/10.1063/1.869561
http://dx.doi.org/10.1063/1.869561
http://dx.doi.org/10.1080/01457630500522271
http://dx.doi.org/10.1080/01457630500522271
http://dx.doi.org/10.3390/ijms10114638
http://dx.doi.org/10.3390/ijms10114638
http://dx.doi.org/10.1098/rstl.1879.0067
http://dx.doi.org/10.1098/rstl.1879.0067
http://dx.doi.org/10.1080/10893950590945021
http://dx.doi.org/10.1080/10893950590945021
http://dx.doi.org/10.1063/1.3435343
http://dx.doi.org/10.1080/01457630490280047
http://dx.doi.org/10.1080/01457630490280047
http://dx.doi.org/10.1063/1.3253696
http://dx.doi.org/10.1063/1.3253696
http://dx.doi.org/10.1063/1.3562948
http://dx.doi.org/10.1063/1.3562948
http://dx.doi.org/10.1007/BF01055714
http://dx.doi.org/10.1063/1.1694535
http://dx.doi.org/10.1103/PhysRevE.56.2282
http://dx.doi.org/10.1103/PhysRevE.56.2282
http://dx.doi.org/10.1103/PhysRevE.68.016302
http://dx.doi.org/10.1103/PhysRevE.68.016302
http://dx.doi.org/10.1063/1.1868034
http://dx.doi.org/10.1063/1.1868034
http://dx.doi.org/10.1103/PhysRevLett.64.2269
http://dx.doi.org/10.1103/PhysRevLett.64.2269

