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Abstract. The present study investigates the importance of the surface shape in a micro-scale 

heat conduction problem. A heated infinitely-thin cylindrical shell is positioned in the middle 

of two concentric cylinders, and the heat transfer through a rarefied gas between the shell and 

the confining inner (or outer) cylinder is investigated. The study initially considers the solution 

of the first- and second-order temperature-jump models (i.e. the conventional heat equation 

with temperature-jump boundary conditions). The study then examines the numerical solution 

of the nonlinear Shakhov model kinetic equation subject to the Maxwell boundary condition 

using the discrete velocity method (DVM). The variable-hard-sphere molecular interaction 

model is taken into account in the temperature-jump models allowing the presence of 

significant temperature differences between surfaces to be considered. Anomalous temperature 

profiles near the convex (or concave) side of the shell are attributed to the effects of surface 

shape. 

1. Introduction 

Understanding the role of heat flow is an essential part of designing various MEMS and NEMS 

devices. Several microelectronic devices are exposed to a significant quantity of heat in operation, 

while many microdevices are based on heat transfer phenomena such as thermoelastic actuators and 

thermal anemometers [1,2]. Some other MEMS devices are designed to enhance the heating or cooling 

performance by incorporating more complex manifold geometries. However, the role of surface shape 

and curvature in the heat transfer between a microsystem and its environment has not been fully 

understood. 

The present study investigates the importance of the surface shape in micro-scale heat conduction 

around an infinitely-thin cylindrical shell. A heated cylindrical shell is positioned in the middle of two 

concentric cylinders, and the heat transfer through a rarefied gas between the shell and the confining 

inner (or outer) cylinder is investigated. Since the shell has both concave and convex sides with the 

same surface area and same degree of curvature, any anomalous behaviour in the heat flow over the 

concave or convex side can be attributed directly to the effects of surface shape. The study initially 

considers the solution of the first- and second-order temperature-jump models (i.e. the conventional 

heat equation with temperature-jump boundary conditions) by taking into account the presence of 

significant temperature gradients. Then, the study examines the numerical solution of the nonlinear 
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Shakhov model kinetic equation subject to the Maxwell boundary condition using the discrete velocity 

method (DVM).  

The present study reveals the remarkable effects of the surface shape and curvature. The results 

show that the degree of temperature jump over a convex surface is markedly larger than that over a 

concave surface. The results clearly demonstrate the difference in the magnitudes of the heat fluxes 

over the concave and convex surfaces of the shell. The present study also investigates the accuracy of 

temperature-jump models over nonplanar surfaces in comparison with both the solution of the 

nonlinear Shakhov model kinetic equation and direct simulation Monte Carlo (DSMC) results. The 

DSMC data and the nonlinear Shakhov kinetic solution are found to be in excellent agreement for the 

cases considered in this study. 

2. Continuum description of the problem 

The present study considers a heated infinitely-thin cylindrical shell positioned in the middle of a gap 

between two concentric cylinders. The energy equation for the heat transfer through a rarefied gas 

between the shell and the confining inner (or outer) cylinder can be written in a cylindrical-polar 

coordinate reference frame as 

 ( ) 0
T

k T r
r r

  
   

 (1) 

where T is the temperature and r is the radial distance. The thermal conductivity ( )k T  depends on 

temperature T with a variable hard sphere (VHS) power law 
0 0( ) ( )k T k T T  , where 0T  is the 

reference temperature and 0k  is the thermal conductivity at 0T . In the presence of a significant 

temperature difference between the surface and its environment (i.e. in the presence of  

significant temperature gradients), the variable hard sphere power law must be taken into account in 

the modelling. The exponent,  , typically lies in the range between 0.5 (for hard sphere molecules) 

and 1 (for Maxwell molecules). 

The general solution of equation (1) is given by 

 
1 ( 1)

1 2 0( ) ( 1) lnT r C C T r





      (2) 

where 1C  and 2C  are the constants determined by the temperature-jump boundary conditions. The heat 

flux can then be written as  

 
1 1 ( 1) ( 1)0

2( ) ( ) (1 )
kdT

q r k T C
dr r

                (3) 

where 
1 2 0 lnC C T r   . 

Several first- and second-order temperature-jump boundary conditions are proposed in the 

literature for modelling the heat transfer over planar surfaces, as reviewed by Colin [3]. The 

temperature-jump solutions for the planar geometry are reported to be in good agreement with DSMC 

data up to a Knudsen number of 0.4 [4]. However, relatively little research has been conducted on 

their accuracy at nonplanar surfaces. The Knudsen number can be defined in terms of the annular gap 

between the shell and the confining inner (or outer) cylinder, i.e. 2 12 ( )Kn R R  , where 1R  and 

2R  are the radii of the inner and outer cylinders, and   is the mean free path, defined as 
1 2

0( )( R / 2)p T    where p is the pressure,   is the dynamic viscosity and R  is the specific gas 

constant. When the mean free path is considered to be globally constant throughout the annular gap, 

the Knudsen number can be interpreted as a scale parameter which increases monotonically down to 

the micro/nanoscale.  

The second-order temperature-jump boundary condition can be written as 
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where T  is the thermal accommodation coefficient,   is the specific heat ratio, Pr is the Prandtl 

number and n   is the derivative in the direction normal to the surface. The specific heat ratio, , is 

assumed to be 5/3 and the Prandtl number, Pr, is taken as 2/3 whilst the thermal accommodation 

coefficient is specified as 1.0T   [5]. We employ a second-order temperature-jump boundary 

condition with a minus sign in front of the second term of order 2  in equation (4), instead of the 

positive sign originally proposed by Karniadakis et al. [6]. The first-order temperature jump condition 

can be obtained by omitting the second term in equation (4).  

The solution of equation (2) can be found in the continuum regime for 1 1( )T R T  and 2 2( )T R T  

as 

 

1/(1 )

1 1 2 2 2 1

1 2

( (1 )) ln( ) ( (1 )) ln( )
( ) (1 )

(1 )ln( )
cont

T T r R T T r R
T r

R R


  






   
   

 
 (5) 

and the heat flux is given as 

 

1

2 2 1 1

0

0 2 1

(1 ) ( (1 )) ( (1 ))
( ) .

ln( )
cont

T T T T
q r k

rT R R

  



        
   (6) 

When equation (2) is subjected to temperature-jump conditions, the constants 1C  and 2C  cannot be 

obtained straightforwardly. These constants are obtained numerically using a technique for the 

solution of the system of nonlinear equations. The exponent,  , is set to 0.5 (i.e. hard sphere 

molecules) unless otherwise stated.  

3. Formulation of the problem by the nonlinear Shakhov kinetic model  

For the heat conduction problem through a rarefied gas between the heated shell and confining (cold) 

cylinder, the nonlinear Shakhov model kinetic equation is solved numerically and compared with first- 

and second-order temperature-jump models. The nonlinear Shakhov model kinetic equation is 

obtained by replacing the problematic collision term of the Boltzmann equation by a simpler collision 

model [7,8]. The Shakhov model is generally accepted to be more accurate for flows associated with 

heat transfer compared to the BGK (Bhatnagar, Gross and Krook) model, since the BGK model gives 

an incorrect Prandtl number equal to unity (i.e. Pr=1) instead of Pr=2/3 for monatomic gases [9,10]. In 

the present study, the Maxwell (specular/diffusive) boundary condition has been employed with the 

nonlinear Shakhov kinetic equation. It is important to note that the Boltzmann equation describes gas 

behaviour for all flow regimes and it is valid at all Knudsen numbers. The relation between the 

microscopic and macroscopic descriptions of gas is postulated as follows: all macroscopic quantities 

such as density, velocity and temperature are described in terms of the microscopic states, which are 

the solution of the Boltzmann equation. The state of the gas is given by the distribution function  

( , , )f tx v , where x  is the position vector and v  is the velocity vector of a molecule at time t. Once the 

distribution function is known, all the moments, for example gas density, pressure or heat flux can be 

computed.  

By taking into account the axial symmetry of the shell problem problem in cylindrical coordinates 

(r, ,z) in physical space, and considering the cylinders to be long enough to neglect the effects in the 

z-direction, the Shakhov model kinetic equation (i.e. the Boltzmann equation with the Shakhov 

collision model) can be written at steady-state as [10-12]  
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using cosr pv v  , sinpv v   with 2 2

p rv v v   and arctan( / )rv v  , where the distribution 

function does not depend on   (i.e. 0f    ) due to the axial symmetry. The term on the right-hand 

side of equation (7) is the Shakhov collision model  

 
( )

( , )
S

S

S

f f
Q f f




  (8) 

where p   is the relaxation time,   is the dynamic viscosity and p is the gas pressure, and 

 
2

2

4 5
( , ) ( , ) 1 ( ) cos

15 ( )( ( )) 2 ( ) 2

S M

p

B B

mm
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c

c c

v
v v  (9) 

with  

 

3 2
2

( , ) ( ) exp
2 ( ) 2 ( )

M

B B

mm
f r n r

k T r k T r

   
    

   

c

c

v
v  (10) 

where 
cv  is the molecular velocity vector, r is the radial distance, Mf  is the local Maxwellian 

distribution, m is the molecular mass, Bk  is the Boltzmann constant, ( )q r  is the heat flux profile in the 

radial direction, and n(r) and T(r) are the macroscopic number density and temperature profiles, 

respectively.  

The unknown distribution function, f, in equation (7) depends on four variables (three velocity 

components and the radial distance). Collisions occur in this four dimensional phase space. However, 

the dependence of the distribution function on the velocity in the z-direction can be eliminated using a 

projection procedure. The reduced distribution functions   and   are introduced [13] as 

 ( , , ) ( , )p zr v f r dv    cv  and 2( , , ) ( , )p z zr v f r v dv    cv . (11) 

The dimensionless variables in the present study are specified as 

2

0

2

2 2 0 0 2 2 0 0 0

2ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ    ,     ,     ,     ,    ,      ,      ,     
f vr T n p

r T n p T f q q
R T v n p n n mv





        

v
v  (12) 

where 0 22 Bv k T m  is the most probable molecular velocity at 2T  and 0n  is the average numerical 

density, which is  

 
2

1

0 2 2

2 1

2
( )

R

R

n n r rdr
R R


  . (13) 

The rarefaction parameter is defined as 2 2 2 0( )R p v   where 2  is the dynamic viscosity at 2T . 

According to equations (12) and (13), the rarefaction parameter can be related to the Knudsen number 

as 2 2 1(2 ( ))R Kn R R   , where the rarefaction parameter is inversely proportional to the 

Knudsen number. 

Multiplying equation (7) by 1 and 2

zv , and integrating over zv  according to the relations in 

equation (11), two reduced kinetic equations are obtained in terms of the reduced distribution 

functions as 

 1
ˆ sin

ˆˆ ˆcos ( )
ˆ ˆ

p S

p

v
v nT

r r


 

   


 
  

 
 (14) 
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where 
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with 

 

2

2 2 2
ˆˆˆ
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The macroscopic quantities can be found in terms of the reduced distribution functions,   and  , 

as [10-12] 
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0 0
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0 0

2
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    (21) 

with the equation of state Bp nk T . 

The present study implements the Maxwell (specular/diffusive) gas-wall interaction model. In the 

Maxwell model, a proportion of the molecules,  , are reflected diffusively from the surface while the 

remaining proportion, 1  , are reflected specularly from the surface. The specular reflection model 

is straightforward. When a molecule strikes a wall, the normal velocity component of the molecule is 

simply reversed and directed back into the flow domain; the other velocity components remain 

unchanged. In other words, the molecules bounce off the wall with the same velocity distribution 

except their reversed normal velocity components, while their other velocity components remain 

unchanged. For the diffuse reflection, the reflected tangential velocity of the molecule is considered to 

be uncorrelated with its impinging velocity and the molecules bounces off the surface according to the 

local Maxwell distribution. Therefore, for equation (14), the Maxwell boundary conditions at the inner 

and outer cylinders can be written as 

 

2

1
1 1

1 1

ˆ
ˆ ˆ( , , ) (1 ) ( , , ) exp ,     2 2

ˆ ˆ
p

p p

vn
r v r v

T T
         



 
        

 
 

 (22) 

 
22ˆ ˆ ˆ(1, , ) (1 ) (1, , ) exp( ),     2 3 2p p p

n
v v v         


        (23) 

associated with impermeability assumption [10]:  

 

2 3 2

2 2

1 2

0 2 0 21

ˆ ˆ ˆ ˆ2 cos      and     2 cos
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where 0 1   is the accommodation coefficient, 1 1 2r R R  is the ratio between cylinder radii and 

1 1 2T̂ T T  is the ratio between the inner and outer cylinder temperatures. The boundary conditions for 

equation (15) can be written in a very similar manner. In the present study, the accommodation 

coefficient,  , is specified as unity (i.e. 1  ), and therefore only fully diffusive reflections are 

considered. 

The heat transfer problem under consideration is solved using a computational scheme that 

discretizes equation (14) (and equation (15) in a similar manner) into 

 
, , , , , , , , 1 1 1 1 1

, , , ,

sin ˆˆcos ( ) (( ) )
ˆ ˆk k

j j j j
i k m i k m i k m i k m j j S j jm

p m p i i i k m i k m

i

v v n T
r r

 
   

   
 

     
 

  
 

 (25) 

where i and m are the indices in the r and   directions, respectively, j is the iteration index, 

(cos )msign   is the sign of cos m ; and k is the index for the Gauss quadrature points. In the 

present study, the annular clearance between the cylinders 1 2[ ,1]R R  and the angular period [0, ]  are 

divided into 100 equal intervals. For the velocity space, the magnitudes of the molecular velocity, 
kp

c , 

are mapped onto 20 Gauss quadrature points with their associated weights. Integrals (19)-(21) for 

calculating the macroscopic quantities are obtained using the Gauss quadrature rule at each iteration. 

When the difference between macroscopic temperatures of successive iterations is smaller than a 

certain tolerance value, the convergence criterion is assumed to be fulfilled. 

4. Results and discussions 

The second-order temperature profiles of the shell problem are shown in figure 1. The temperature-

jump models predict the profound effects of the surface shape (i.e. convex/concave) on the degree of 

temperature jump. The bold vertical lines in the middle of the figures represent the location of the 

shell. The profiles on the left (blue) and right (red) sides of the shell are created by the concave and 

convex sides of the heated shell, and they have obviously identical curvatures and surface areas. The 

remarkable differences in the degrees of temperature jump are attributed to the effects of surface 

shape. Figure 1 clearly reveals the role of the surface shape, since the degrees of temperature jump 

would be equal on both sides of the shell in an equivalent geometry between parallel plates. 

Figure 1. Second-order temperature profiles over the concave and convex surfaces of a 

heated cylindrical shell. The profiles on the left (blue) and right (red) sides of the shell are 

created by the concave and convex shell surfaces, respectively. The shell is positioned 

midway between two cold cylinders and it has a radius of (a) 25  and (b) 15 , where   is 

the mean free path. The ratio of the temperature of the shell to the temperature of the inner 

(or outer) cylinder is 2. (a) Kn=0.05 and (b) Kn=0.1. 

 

 

(b) 

(a) 

1st European Conference on Gas Micro Flows (GasMems 2012) IOP Publishing
Journal of Physics: Conference Series 362 (2012) 012017 doi:10.1088/1742-6596/362/1/012017

6



 

 

 

 

 

 

The effect of the Knudsen number on the temperature jumps over the concave and convex surfaces 

of the heated cylindrical shell are demonstrated in figure 2. The temperature jumps are obtained from 

first- and second-order jump models and the nonlinear Shakhov model solution. Figure 2 presents the 

results in terms of the Knudsen number where the corresponding rarefaction parameter can be 

identified using the formula 2 2 1(2 ( ))R Kn R R   . According to this formulation, the rarefaction 

parameter is 2 2(2 ( ))convex SR Kn R R    on the convex side, whilst it is 

1(2 ( ))concave S SR Kn R R    on the concave side of the shell, where SR  the radius of the shell. 

Therefore, the rarefaction parameter is slightly higher (i.e. Kn is slightly lower) on the convex side of 

the shell; in fact, this supports our important conclusions about the significant effects of curvature.  

In figure 2, the concave and convex sides of the shell have the same surface area and same degree 

of curvature. The results remarkably show that the degree of temperature jump over a convex surface 

is markedly larger than that over a concave surface. Moreover, the jump models predict the amount of 

temperature jump relatively well up to Kn=0.3. However, beyond Kn=0.3, the predictions of the 

temperature-jump models start to deviate from the nonlinear Shakhov model solution. Figure 2 also 

shows that the second order jump solution is slightly in better agreement with the solution of nonlinear 

Shakhov model equation compared to the first-order solution in predicting the amount of temperature 

jump over the shell. 

Figure 2. Temperature jumps over the concave and convex surfaces of a heated cylindrical 

shell against the Knudsen number. The red and blue curves illustrate temperature jumps over 

the convex and concave sides of the shell, respectively. The solid and dashed curves are the 

first- and second-order temperature-jump solutions, respectively. The square symbols 

illustrate the temperature jumps obtained from the solution of nonlinear Shakhov model 

kinetic equation. The shell curvature is 11 50S   (i.e. the shell radius is 50SR  ). 

 

Figure 3 shows that the DSMC data and the nonlinear Shakhov model solution are in excellent 

agreement. On the other hand, the accuracy of temperature-jump models deteriorates when the 

cylinder surface is cooler than the surrounding gas. This has been reported before for the planar heat 

conduction problem by Pan et al. [14] when trying to determine the temperature-jump coefficient of a 

first-order temperature-jump boundary condition. Using the DSMC method, Pan et al. [14] deduced 

different coefficients for the heat flow from a hot gas to a colder wall compared to the heat flow from a 

hot wall to a colder gas.  
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The magnitudes of the heat fluxes over the concave and convex surfaces of the shell are 

demonstrated in figure 4. The profiles are obtained from the solution of the nonlinear Shakhov model 

kinetic equation. The shell curvature is 11 6S   (i.e. the shell radius is 6SR  ). The results 

remarkably show the dramatic effect of the surface shape on the heat flux; the heat flux is significantly 

higher over the convex surface compared to the concave surface of the shell.  

The variation of the normalized heat fluxes over the concave and convex surfaces are shown in 

figure 5 for increasing values of curvature of the shell. The heat fluxes are obtained from the first-

order temperature-jump model and normalized by the heat flux of the continuum regime as obtained in 

equation (6). For Knudsen numbers of 0.05 and 0.1, the first and second-order order jump solutions 

are expected to be very close to each other. Figure 5 shows that, as the curvature of the shell increases, 

the heat fluxes over the concave and convex surfaces of the shell start to show significant differences. 

It can be seen that the heat flux over the concave side becomes considerably lower than the heat flux 

over the convex side of the shell, beyond a certain curvature value depending on the Knudsen number.  

Figure 3. Temperature profiles over the concave and convex surfaces of the heated 

cylindrical shell. The profiles on the left- and right-hand sides of the shell are created by the 

heated concave and convex shell surfaces, respectively. The red and blue curves illustrate the 

temperature profiles obtained from the jump models over the convex and concave sides of 

the shell, respectively. The solid and dashed curves are the first- and second-order 

temperature-jump solutions, respectively. The green curves illustrate the temperature profiles 

obtained from the solution of nonlinear Shakhov model kinetic equation. The black dots are 

the DSMC data.  

Figure 4. Magnitudes of the heat fluxes in the radial direction over the concave and convex 

surfaces of the shell. The profiles are obtained from the solution of the nonlinear Shakhov 

model kinetic equation. (a) Kn=0.4, (b) Kn=4.0. 

(b) 
(b) (a) 
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Figure 5. Normalized heat fluxes at the shell surface predicted by the first-order 

temperature-jump model against the curvature of the shell. The dashed and solid curves are 

the heat fluxes over the convex and concave surfaces of the shell, respectively, and contq  is 

the heat flux in the continuum regime as Kn 0 .  
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