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Abstract

This short paper brings together some thoughts on the software engineering needs of
ExaScale software development. The work was part of the efforts of Working Group
4.6 (Scientific Software Engineering) of EESI - the European ExaScale Software Ini-
tiative [1]. EESI is a Support Action co-funded by the European Commission. Its
objective is to build a European vision and roadmap to address the challenges of
the new generation of massively parallel systems composed of millions of heteroge-
neous cores which will provide multi-Petaflop performances in the next few years
and Exaflop performances in 2020.
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1 Introduction

Software engineering is the process by software is developed. As software becomes more complex
and longer lived the importance of these manufacturing processes increases. The step from the
design and implementation of a simple serial code to one utilising tens of processors was vast
requiring different programming models and a whole array of new software engineering tools. As
is often the case the systems and development software has lagged far behind the technological
developments. Even so, the computational community is already considering systems with
thousands of processors. Some applications have reach Petaflop performance and those with
sufficient budget are considering ExaScale long before the software tools have caught up.

This short paper brings together some thoughts on the software engineering needs of ExaScale
software development. The work was part of the efforts of the Working Group 4.6 (Scientific
Software Engineering) of EESI - the European ExaScale Software Initiative. EESI is a Support
Action co-funded by the European Commission. Its objective is to build a European vision and
roadmap to address the challenges of the new generation of massively parallel systems composed
of millions of heterogeneous cores which will provide multi-Petaflop performances in the next
few years and Exaflop performances in 2020.

Supercomputers are used for computational intensive tasks such as problems involving quan-
tum physics, weather forecasting, climate research, molecular modelling (computing the struc-
tures and properties of chemical compounds, biological macromolecules, polymers, and crystals),
physical simulations (such as simulation of aircraft in wind tunnels, simulation of the detonation
of nuclear weapons, and research into nuclear fusion). A particular class of problems, known as
Grand Challenge problems, are problems whose full solution requires semi-infinite computing
resources. EESI is looking to provide a computing ecostructure that will support such applica-
tions.

The EESI Support Action will :

e Investigate how Europe is located, its strengths and weaknesses, in the overall international
HPC landscape and competition

o Identify priority actions

e Identify the sources of competitiveness for Europe induced by the development of Peta/ExaScale

solutions and usages

e Investigate and propose programs in education and training for the next generation of
computational scientists

e Identify and stimulate opportunities of worldwide collaborations

More information about EESI can be found on the EESI web site: http://www.eesi-project.eu.

2 The Scientific Software Engineering Working Group

The core software technologies of today are ill-equipped to handle Peta- and ExaScale systems.
One of the major difficulties will be to manage massively parallel systems, composed of millions
of heterogeneous cores. The challenge is particularly severe for multi-physics, multi-scale sim-
ulation platforms that will have to combine massively parallel software components developed
independently from each others. Another difficult issue is to deal with legacy codes, which are
constantly evolving and have to stay in the forefront of their disciplines. Scalability and load
balancing of scientific applications strongly depend on the quality of the spatial discretisation.

Meshing tools adapted to massively parallel computing, including parallel meshing, mesh
healing, CAD healing for meshing and dynamic mesh refinement are still mostly missing software
pieces. One example from the field of fluid dynamics serves to illustrate the scale of the problem



to run a simulation on one million cores requires a computational mesh with many billions of
grid nodes. Most grid generation software is provided by ISVs and is serial. How do we create
a mesh with 50+ billion nodes? Assuming we can generate the mesh, how can we partition the
grid to run on a million cores? How do we minimise load imbalances?

ExaScale computing does make sense if the entire simulation process is not adapted to Ex-
aScale computing capacities. Thus building a unified Simulation Framework and associated
services adapted to massively parallel simulation is mandatory. This includes:

e Meshing tools
e Parallel visualization, remote and collaborative post-processing tools
e Supervising and code coupling tools

Each scientific discipline is faced with different challenges and future software development
must solve these problems to enable their research to take advantage of the potential offered
by ExaScale computing. In particular, we need to anticipate the bottlenecks we are likely to
encounter and plan a software development route that ensures each application chooses the
optimal algorithm that best exploits a given architecture for productive science.

One element of the deliberations of Working Group 4.6 is software engineering methods and
tools.

3 A Common View

We need to define the scope of this activity and a have a common understanding of our terms.
There is no better place to start than by quoting Sommerville (2007):

Software engineering is an engineering discipline that is concerned with all aspects
of software production from the early stages of system specification to maintaining
the system after it has gone into use.

This has not changed as computing systems have grown in power and complexity. The need to
apply a systematic and organised approach to software development has not changed. It is still
the most effective way to produce high-quality software even though the informal practices of
many research groups have lead to world leading software.

The changes of scale from PetaScale to ExaScale may be larger and more complex but the
basic software engineering principles remain: requirements, design, implementation, testing and
documentation all bounded together by an iteration loop the scale of which is most often de-
termined by the application or the working practices of the developing group. The tools to aid
the developer perform each of these steps must reflect the underlying computational model and
expose to the programmer only those elements of the programming model that he really needs
to see and understand.

4 The Software Engineering Characteristic of ExaScale Systems

The fundamentals of new software development, in software engineering terms, are not going to
change radically with a new programming model. The major difference will probably be in the
granularity of the process steps and to what these processes are applied. This will be driven by
the programming model and by the programming languages available on each system.

The next generation of computing systems the so called ExaScale Systems will have hundreds
of thousands of multi-core processors. Processors with tens or hundreds of cores will not be
uncommon. Many of these issues were explored (Gropp 2009) with the advent of PetaScale
systems and many things have not changed.



We still can view most existing approaches to parallel programming as extensions to ex-
isting programming languages. The two approaches currently dominate in scientific comput-
ing: OpenMP for a single processing node and the message-passing interface (MPI) for multi-
processors. For systems with thousands to hundreds of thousands of processors, developers
typically either use MPI alone (that is, as a Fortran, C, or C++ program that calls MPI-defined
routines) or use OpenMP to manage several threads within each MPI process. However, there
are still limitations in OpenMP and MPI and the programming models have not changed seri-
ously since their inception. New ideas include the languages developed as part of the DARPA
High Productivity Computing Systems program which are designed to alleviate some of these
difficulties - including Chapel, Fortress, and X10 - and provide more powerful capabilities have
yet to deliver - few systems have production-quality implementations. As a result the associated
software engineering tools are primitive and consequently Fortran, C and C++ continued to be
the implementation language of choice.

The use of Partitioned Global Address Space (PGAS) programming languages, which let
programmers describe the data structure, such as an array or matrix, as distributed across all
of a parallel systems nodes has been explored. Out of this work have come Unified Parallel C
and Co-Array Fortran. One of the strengths of these languages is their support for distributed
data structures and direct access to data on remote nodes through load-store operations. These
ideas reduced the need for the programmer to manage his own data structures. However there
is still much to be done.

The next phase of hardware developments has brought the GPGPU and the add-on acceler-
ator plus languages such as CUDA and OpenCL but these are really still in their infancy even
though heavily used by the community.

In addition, theres been a great deal of research on optimizing and parallelizing compil-
ers. However, these compilers still have trouble optimizing even dense matrix operations for
a single thread or process, even for existing languages such as C and Fortran. Ultimately, for
these new languages to displace current approaches, they must provide some route to increased
performance, whether through new performance-optimization approaches or through hybrid ap-
proaches, such as those based on annotations.

Transforming applications from PetaScale to ExaScale systems will require a very large in-
vestment in several areas of software research and development (Heroux 2009). Many-cored
processor nodes, each with an abundance of parallelism, assembled into vast systems with an
increased possibility of system and software faults is the environment of ExaScale computing.

If has been note in numerous roadmaps and scoping studies that: significant scientific results
have been achieved in many areas of computational science despite software engineering not
because of it. For many, software is a means to an end and not the end in itself. It is becoming
more and more apparent to the research community maybe already realised by some commu-
nities, in particular the HPC community - that future software will not be, in fact cannot be
disposable, it must be sustainable and re-usable. The complexity of the virtual laboratory will
be beyond a single mind and lifetime.

It is interesting that the IESP Roadmap spends considerable time on operating systems,
compilers and debugging tools for example but little time on programming model, languages,
standards and software development tools.

5 Is ExaScale software development different?

The X-stack has been coined by IESP to represent the total computing and software development
environment of the ExaScale system.

The section of the IESP road map that has a strong impact on software engineering is that of
Development Environments. The development environment will include a whole range of issues:
The application development environment is the software that the user has to program, debug,
and optimize programs. It includes programming models, frameworks, compilers, libraries,



debuggers, performance analysis tools, and, at ExaScale, probably fault tolerance. It is worth
noting their comments on programming. Programmability: The applications developers cannot
be expected to manage, at a low level, distribution, replication, load balancing, and other issues
explicitly in their codes. Complex aspects of distributed services need to be available as high-
level APIs to allow end users to optimize their code, perform tuning operations, and improve
their applications.

There will be great changes in the resources provided by an ExaScale system and to utilize
them effectively the programming models will undergo an evolution. Non-MPI programming
models will become common place in ExaScale systems. Data-centric computations - computa-
tions in which the data is far more significant and difficult to move - will become increasingly
important as simulations begin to include behavioural models and also significant feature ex-
traction (data mining) tasks. Much computing will move from prediction of results and effects
to the detection of emergent trends and properties. Programming models will continue to em-
phasize the management of distributed-memory resources but they will also need to provide a
formalism that will enable functional, procedural and declarative approaches to co-exist.

Given the evolution in programming models, we can also expect that individual applications
will incorporate multiple programming models. A simple example would be a single application
may incorporate components that are based on MPI and other components that are based on
shared memory. The particular combination of programming models may be distributed over
time (different phases of the application) or space (some of the nodes run MPI; others run shared
memory).

Software engineering must reflect these programming models.

6 A Portfolio of Tools

IESP have their X-Stack and so EESI must have its own X-Toolbox (maybe we should consider
hte Software Carpentry ideas of Greg Wilson Wilson 2006/2009). In principle we are not looking
for the most cutting edge software engineering tools although these maybe the only ones but
we need a set of practical and useful tools that make the developers life easier and lead to the
development of good quality sustainable software. We can easily build a list of tools in the EESI
X-Toolbox:

e IDEs Integrated Development Environments. These might provide an integrated and
consistent interface to the following elements.

e Compilers options rich for debugging and performance
e Debuggers capable of selectively monitoring tens of thousands of threads

e System simulators software representations of the hardware seeded with architecture and
timing data that could allow estimations to be made about performance

e Performance analysis tools providing information on not only computation performance
but memory/cache/register usage and even power consumption.

e Language and architecture intelligent editors that provide auto-completion of standard
language elements and APIs and even annotations on potential execution issues

e Static analysis tools (language conformance, complexity, quality etc)

e Automatic documentation tools (e.g. doxygen, robodoc) tools that parse and either
prompt the programmer for documentation or generate templates automatically.

e Tools for collaborative working combining SVC systems with develop management Source-
Forge, CCPForge, Git etc in easy to use forms.



e Version control systems cvs, svn, git etc
e Testing tools tools that will help generate and monitor software testing on the ExaScale.

Much of these will be driven once again by the programming model and the languages provided
by the systems. An assumption being made it that the developments will be done by large
teams. Clearly this will not always be the case so the tools must be capable and useful to the
single user.

Bring together the X-Toolbox under a single environment should be a goal but we must
recognised that many IDEs are not used because of the step learning curve they often require
and their opaque documentation. IDEs developers dont seem to understand the possibilities
of a layered approach. One look at any of the eclipse IDEs or Windows Studio demonstrates
this. However integration and interoperability is required for the benefits of the X-Toolbox to
be realised.

7 Legacy Software

We will have the problem of legacy software software that has been design for a previous
generation of hardware and programming model but still has useful life. This problem has been
extensively studied under the Software Modernisation Programme and by many other groups.
Post and Kendall (2003) and Decyk and Norton (2001) to mention just a few have graphically
described the processes required to migrate legacy software in a language context but similar
processes and tools will be required to address to system portability issues.

The main issue must be the balance between some form of re-use/transformation or developing
new software.

8 Rewrite vs New

For scientific applications, there may be several reasons motivating a full rewrite:
e change of language, environment, development team,

e change of numerical approach (i.e. mesh-based to particle-based, space-based to frequency
based, implicit to explicit, )

In the first case, a full rewrite and incremental evolutions of the code base could in theory lead
to the same result, so the choice is more one of cost-vs-risk and HR management issues. In
the second case, we replace a solution method that has some advantages and disadvantages by
another, which has different trade-offs. Is the science the same, and does it need to be the same?
Also, how do we measure the performance increase? For example, if moving from an implicit
to an explicit time scheme requires using time steps 100x smaller but the cost per time step is
divided by 10, we have still lost an order of magnitude. If this is deemed necessary to go from
petaflops to exaflops, we only get 100 out of the 1000x fold increase in performance, so the gain
compared to a less-scalable implicit time-stepping may be only one of bragging rights.

Then again, the resulting simplification may unlock other optimization possibilities, and
allow further improvements and more science. In a similar fashion, moving from mesh-based to
particle-based methods may have many advantages, but though complex physics may be more
easily possible, such a move may be require much more computing resources for relatively simple
cases.

When using software whose domain of application, validation, and testing includes a broad
range of physical resolutions, optimizing for ExaScale by using a different algorithm could actu-
ally be detrimental to other applications of the software, while maintaining 2 branches would be
unrealistic, not only from a maintainability perspective, but also validation-wise, as each branch
would probably be less tested.



This does not mean that we should try to push all legacy applications to the ExaScale level,
but that we need to determine whether we recommend focusing on enabling technology for new
approaches is a priority, or if we also seek a roadmap for existing applications.

9 The Need for processes and associated tools

It might be that re-writing is the only way in which applications will be able to exploit ExaScale
systems. However the weight of legacy software is such that re-use must be addressed. Given a
programming model tools need developing that will aid the transformation of existing codes. Al-
though basic re-structing and re-editing (pretty printing) can be achieve if the target language is
not very different from the orginal, automatic serious decomposition and re-factoring will prob-
ably not be possible. However tools that allow for limited code extraction and transformation
should be possible.

If the target language of the new systems in the same or very similar to an original then tools
that anotate the source with information on the suitability of of the code may be possible.

10 Verification, validation and testing

The need for these has not changed but these processes are still religated to the background by
the need to implement. We have not really learnt the lessons. These steps will reduce the need
for major debugging but we are seriously bad at performing these stages. This is not helped by
the lack of tools available to those involved in large scale parallel computing.

Even at the PetaScale level there are many application that execute successfully on hundreds
of processors yet fail on thousands. It is very difficult to trace the source of the problem in such
complex systems.

Basic testing processes such unit and integration testing are used by many teams. These
reflect the underlying programming model. Since the complexity of the application in ExaScale
computing the need for good testing tools is essential if the developers are not going to spend
all their valuable run time debugging.

Verification and validation of basic language elements (string data typing should be a re-
quirement of any new ExaScale programming language) plus interface definitions which can be
tested for all library routines should be the starting point.

The developer should not land up debugging the operating system and associated support
libraries.

11 Collaboration tools

There is no doubt that the next generation of software will be built by team particularly for
ExaScale applications. Collaborative development tools will be required not only to share source
code and documentation as we can currently do using svn and Git for example but to share
development processes and system configurations we will need better

12 Resourceing Developments

Develop software engineering tools can take considerable resourse both in term of man power
and time. Each tools requires as its basis the target programming model and programming
language. The requirements of many of these tools are well known but with any change in
programming model these willing require refinement.

In Section 6 the basic elements of the X-Toolbox are listed. Each of these could require at
least 5 to 10 staff years to design, implement and debug. Even if building on existing tools these
will take considerable effort.



13 Conclusions

It was said for PetaScale systems and its hasnt change for the migration to ExaScale systems
only the degree has increased (Gropp 2009 with a slight edit) - ExaScale systems arent just
bigger versons of the current PetaScale systems. The degree of concurrency as well as increasingly
complex processors means that existing alogorithmic and software approaches no longer work.
In making use of these vast resources new model of computation will be development and use
will be made of co-design. As a consequence for quality sustainable software to be developed
these advances must progress hand-on-hand with the development of usable software engineering
approaches and tools.
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