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Abstract

This report describes an approach to the parallelisation of agent-based applications.
The software framework which forms the foundation of this work is the Flexible
Large-scale Agent Modelling Environment - FLAME - which is being developed
in a collaboration between the Computer Science Department of the University of
Sheffield and the Software Engineering Group at STFC’s Rutherford Appleton Lab-
oratory.

FLAME is a generic program generator for agent-based simulations. Using a defini-
tion of the agent-based model and an C implementation of the agents state change
functions, FLAME generates a complete ABM application. FLAME can generate
versions of the application which can execute on both serial and parallel systems.

This report describes this process in detail and focuses on the techniques used within
FLAME to parallelise the agent-based application. Some test results are presented
which show some promising speed-ups of these applications.

The report concludes with some future developments of the FLAME functionality
and architecture which should improve the parallel efficiency of FLAME generated
applications.
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1 Introduction

In this report we describe in detail the parallel implementation of the FLAME - The Flexible
large-scale Agent-based Modelling Environment. FLAME [1] has been developed in a collabo-
ration between members of the Software Engineering Group at the STFC Rutherford Appleton
Laboratory and the Computer Science Department at Sheffield University. This work was per-
formed as part of the EU EURACE Project [2] which was a three-year project with the goal
of investigating the use of agent-based modelling in economic and financial applications. The
report builds on [3] which describes some initial developments of FLAME.

There are many agent-based modelling systems. A detailed survey of such programs, systems
and frameworks is given by [4] and , [8]. Many of these systems are based on Java as their
implementation language and although a good language for web-based and some communications
applications, it is not the language of choice for high performance computing. Similarly there
are relatively few agent systems that address the problem of scalable parallel simulations.

Before considering the parallelisation of FLAME it is worth considering the characteristics of
a software system that make it worth taking the time and effort to parallelise. It should also be
remembered that FLAME is not the applications program to be parallelised: FLAME is but an
applications program generator. So it is the generated program that should exploit parallelise,
not FLAME itself. FLAME takes a description of an agent-based model (the XMML definitions
plus the associated function code) and generates a bespoke code for the particular application.

We are directing our attention to systems that are often referred to generically as high per-
formance clusters. This hides the multitude of differences in the hardware architectures of these
systems - the types of processors - single or multi-core, the communications network between
processors - specialised integrated or commodity. Collectively these systems can be considered
Single Program Multiple Data - SPMD architectures.

It is interesting to summaries some reason for parallelising an application:

e It is not possible to run the application on a single processor - memory requirement or run
time too long.

e The application will be reused very frequently and has a very long execution time but the
results are very important.

e The code easily decomposes into independent tasks which require little communication
with other task.

However, in general terms it should also be remembered that some algorithms simply do not
parallelise - there is insufficient independence in the component parts of a algorithm to utilise
a multi-processor system. The algorithm just does not map onto the system of distributed
processes exchanging information through a communications network.

As mentioned above the FLAME Framework is not the agent application - it is the application
generator. Hence the approach to parallelisation of FLAME generated applications must rely
on the underlying generic architecture of the generated application. Although this underlying
architecture determines much of the potential parallelism in applications code might be utilised
there, must be parallelism in the application.

It is clear that developing a scalable agent-based framework will be difficult - the underlying
structure may well be determined by the framework but the application tasks - their compu-
tational size and communications characteristics are really unknown to the frameworkand will
have a considerable impact of the parallelisation.

There are many other agent systems such as Netlogo [5], REPAST [6], MASON [7], SAMAS
[9], JADE [10], SIMJADE [11], MACE3J [12] and SPADES [13] to name a few. Each have their
own approach to implementation and each achieve varying levels of performance. Some been
used to demonstrate scalable agent computing but these have been relatively small simulations.

The starting point of FLAME has been different from many these systems. High perfor-
mance computing was thought to be essential to address large-scale simulations and thus the



implementation language was chosen to be C. This is the implementation language favoured by
many of those programming HPC systems. This choice opens the implementation to many par-
allel programming tools and harnesses such as MPI - Message Passing Interface and OpenMP
- Open Multi-Processing. These are the two main parallel processing tools used by the high
performance computing community.

2 The FLAME architecture

We initially focus on the most basic characteristics of FLAME and ABM systems in general:
that of communications - the exchange of information agent to agent and computational load -
the work the agents perform.

The communication between agents is one of the most important characteristics of an agent-
based application. There are various ways in which this communication can be implemented.
In FLAME we have chosen to represent this communication and its associated data as a set of
message boards on which agents can post messages and from which agents can read the messages.
Figure 1 show this diagrammatically. We show two agent types: Firms and Households. The

Firms post
job vacancy Households —
ﬁ messages read list of ('8 )
Wb

vacancies/
\{.ﬂ.CANF_IES _— u
1 J /

Figure 1: FLAME Message Boards

Firm agents require employees and communicate with Households about job opportunities by
posting vacancy notices on the Vacancies message board. Households then read the information
on the message board and select suitable job possibilities. In FLAME all the communications
are through message boards and there are no direct agent-to-agent communications. FLAME
provides the modeller with a message board API through which they can manage agent com-
munications. The management of the message data and its access by agents are key operations
within FLAME.

The second element of FLAME to be considered is the computational load - the work the
agents perform. It is reasonable clear that an effective use of parallel system will be to distributed
the computational load over all the processors. Figure 2 show the FLAME agent. It is an
extension of Eilenburg’s X-machines [14]. The important components of an agent are:

e The agent memory (M EMORY): this is local to the agent and can contain any form of
agent-specific information;

e the agent states (5;): these are the states each an agent can take depending on values in
the agent memory or the condition of the overall model;



e the state transition functions (¢;): these functions describe the rules by which agent can
change state, and

e the FLAME message boards (In this example Message Boards X and Y'): the primary
communication mechanism.

The structure and number of each of these agent attributes is defined in the model description.
Figure 2 shows transition function ¢; reading (blue) and writing (red) to local memory and
reading from message board X and writing to message board Y. There can be any number of

i

Message Board X

(]

Message Board Y

Figure 2: The FLAME agent

such reads and writes within a transition function and any number of potential agent states.
However, in the design of FLAME we make one serious restriction on an agent’s access to
message boards. Within a single transition function an agent cannot read and write to the same
message board: transition function ¢ cannot read and write to message board X or Y.

3 Developing a FLAME model

Details of how to the develop a FLAME model are given the in the FLAME User Manual [15]
but it sensible to give a brief overview here. FLAME has the two components: the model
specification and the state transition functions. The model specification is defined in FLAME’s
agent specification language, XMML which is based on the XML standard and has its own set of
XML tags. The state transition functions are implemented in C and use FLAME APIs to access
agent memory and FLAME message boards. FLAME uses these files plus a set of templates to
generate the application as a C program. This can then be compiled and link with the message
board library using standard tools to produce an executable.

Figure 3 show the model development process. FLAME allows modellers to define their agent
based systems and automatically generate efficient C code which can be compiled and executed
on both serial and parallel systems. So the main elements of FLAME are: the FLAME xparser
with associated templates and the message board library (libmboard). The modeller provides
two input files: the Model XMML and the agents functions. These are parsed by the xparser
and the results combined with the xparser’s template library to generate the application.

Using this approach the modeller can design a model that can be realised as a serial or
a parallel program. Although for many models this naive approach might achieve reasonable
parallel performance there are many pitfalls. To gain reasonable parallel performance in a very
complex model the modeller will need to be aware of the impact of his choices on the performance
of the model.

4 Parallisation of FLAME applications

The FLAME architecture has some inherently good characteristics that lend itself to paral-
lelisation. However, because FLAME is an application generator it does not have a complete
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Figure 3: The structure of the FLAME Environment

understanding of the application it is generating.

Agent-based applications can be characterised as a set of communicating tasks. Although the
agent population and their interactions can be specified a prior: the computational load of each
agent and the number of communications they perform are very difficult to determine without
running the application on an example agent population.

However we clearly have a set of self-contained computational task - be it the agents or
the state transition functions within them - and a vast amount of associated communications
data. It is reasonable to propose distributing the agents - the computational load - across a
processor array. Also, as FLAME uses a collection of message boards to facilitate inter-agent
communication this data can also be distributed across the processors. As the majority of large
high performance computing systems currently use a distributed memory model a Single Pro-
gram Multiple Data (SPMD) paradigm is considered most appropriate for the FLAME. So in
a nutshell, the parallelisation of FLAME utilises partitioned agent populations and distributed
message boards linked through MPI communication. Figure 4 shows the difference between the
serial and parallel implementation. The most significant operation in the parallel implemen-
tation is providing access to the message information required by agents on one node of the
processor array which are stored on a remote node of the processor. The FLAME Message
Board Library manages these data requests a synchronisation process. This synchronisation
essentially ensures that local agents have all the message information they need as the simu-
lation progresses. Coupled with this process of distribution there two main areas that specific
attention: initial and dynamic load balancing and communications strategy for message board
synchronisation.

Initial load balancing is not too difficult: we have a population of agents, of various complex-
ities, to which we can assign relative weights and so in the most general case the agents can be
distributed over the available processors using the weights. This may well give an initial load
balance but makes no account of the possible communication patterns of the agent population.

As the simulation develops the numbers of agents in the population may change and adversely
affect the load balance of the processors. It is a very interesting and difficult problem to gauge
whether the additional work (computation and communication) involved in remedying a load
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Figure 4: Serial and Parallel Message Boards

imbalance is worth the gain. Given that the goal of any dynamic re-organising of the agents is to
reduce the elapsed time of the overall simulation, determining whether a process of dynamically
re-balancing the population will contribute to this is very problematic. It may well be that a
slight load in-balance will have no significant effect of the wall clock time of the simulation.

The patterns and volumes of communication for the population will have a considerable im-
pact on the performance and parallel efficiency of the simulation. In general, agents are rather
light-weight in terms of computational load. Where all agents can and do communicate with all
others through the message boards the communications load within and across processors will
be great. Fortunately communications within a processor are generally efficient. However across
processors this communication can dominate the application. FLAME manges the communi-
cation between agents thought the Message Board Library, which uses MPI to communicate
between processors. The Message Board Library attempts to minimise this communication
overhead by overlapping the computational load of the agents with the communication and
minimising the amount of data being transferred. In a model in which there is a fully con-
nected and communicating agent population, the inter-agent interaction may not be local but
long range. This could lead to many-to-many, inter-node communication which can drastically
impact the scalability and simulation time. FLAME addresses this situation by providing the
modeller with tools to filter selectively the information being transferred between processors.

Where the agents have some form of locality the initial distribution of agents can make
use of this information in placing agents on processing nodes. During the simulation agents
can be dynamically re-distributed to maintain computational load balance. However given the
light-weight computational nature of many agent types the effect of dynamically re-distributing
agents on the grounds of their communications load may well turn out to be more important
than considering computational load.

5 The Message Board Library

As described above the distribute of the message boards is one element of the parallelisaton of
FLAME applications. It is the job of Message Board Library to manage these message boards:
their creation and deletion, synchronisation and access to message information.

The Message Board Library is decoupled from the FLAME framework and implemented as a
separate library. This provided the flexibility to experiment with different parallelisation strate-



gies while minimising the impact on current users of the FLAME framework. The Message
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Figure 5: Parallelisation of FLAME using distributed Message Boards

Board Library (libmboard) can be built as a set of static libraries which are linked to users’
simulation object files to create serial and parallel executables. This setup enables users to
maintain a common source base for both serial and parallel simulations, thus simplifying code
management and testing. It also provides libmboard developers with the facility to quickly switch
between different library implementations without having to constantly recompile the test pro-
gram. libmboard uses the Message Passing Interface (MPI) to communicate between processors,

Agent function code
(written by modellers)

Simulation code
(generate by xparser)

(serial) (parallel)

libmboard Il libmboard

Figure 6: Users can create either serial or parallel executables by linking their object files to the
appropriate libmboard library

and POSIX threads (pthreads) to manage a separate thread for handling data management and
inter-process communication. The details of these components will be discussed in later sections
(Section 5.4 and Section 5.6 and also in the full libmboard Reference Manual [16].

5.1 libmboard API

All functionality provided by the Message Board Library is accessible via the libmboard Appli-
cation Program Interface (API) which defines a set of routines and opaque datatypes. Through
the API, the full functionality of the library is made available without exposing the inter-
nal implementation. With this separation between interface and implementation, the complete
communication strategy and data representation system can be replaced without the users being
affected.

The libmboard API is intended for use within the FLAME generated simulation code. It pro-
vides the functionality for creating, managing and accessing Message Boards. Implementation
details such as internal data representations, memory management and communication strate-
gies are transparent to API users and therefore can be replaced or improved without affecting
FLAME developers and end-users.

Modellers are provided with model-specific routines that hide the complexity of managing



boards and packaging data into suitable datatypes. Figure 7 shows an example of this whereby
an agent’s message add request gets translated into a libmboard API call.

Agent function code

add preduction message(x, y, z);
L

E FLAME-generated routine call

Simulation code {}

add production message

meg -

MB_AddMessage(production_board, &msg);

, libmboard APl call

Vs

libmboard

Figure 7: Modellers use FLAME-generated routines which get translated to the appropriate
libmboard API call

5.2 The Message Boards

Message Boards are essentially distributed data structures that can be read from and written to
by agents on all processing nodes. Up to 4096 different Message Boards can be created, whereby
each Board is created to store message objects of a specified size.

Message Boards are created using the MB_Create () routine. This routine will return a Board
Handle (of type MBt_Board) which can be used to reference the Board when performing further
operations.

Once a Board is created, messages can be added to it using the MB_AddMessage () routine.
During an add, the message data is duplicated and stored in the Board, allowing the calling
code to reuse or deallocate the original message data. The cloning of data greatly simplifies the
usage of the API and protects the internal data representation from accidental corruption.

Messages added to the Board are immediately available to all agents within the local pro-
cessing node, or, after a sync (see Section 5.4), across all processing nodes.

The API provides further routines from emptying (MB_Clear()) and deleting (MB_Delete())
Boards.

5.3 Message Board Iterators

Iterators are opaque objects used for traversing Message Board content. They provide libmboard
users access to messages while isolating them from the internal data representation of Boards. It
also aids in enforcing the rule that Boards should be not modified in any way by a read access.
With this rule in place, multiple Iterators can be created to traverse the Board independently
using different access patterns.

Iterators are created against a Board using the MB_Iterator_Create() routine. Upon cre-
ation, the Iterator generates a list of the available messages within the Board and places a cursor
at the first entry. When an Iterator is created, it essentially creates a snapshot of the content
of a local Board. Any data added to the Board after the creation of the Iterator will not be
available, while emptying or deleting the Board will invalidate the Iterator.
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Figure 8: Using specialised Iterators to achieve different access patterns

Data traversal is performed by repeated calls to MB_Iterator_GetMessage(). This routine
returns a copy of the data from a single message, then moves the cursor to the next item. Once
the cursor moves beyond the last item, further calls to MB_Iterator_GetMessage () will return
a NULL pointer indicating that iteration has ended. MB_Iterator _Rewind() can be used to move
the cursor back to the first item to allow for reuse of the Iterator.

The libmboard API also provides several routines for creating specialised Iterators which allow
users to traverse subsets of the Board content in a customised order. These routines accept user-
defined sort and/or compare functions that are used to control the selection of messages and
their order in the Iterator. These specialised Iterators are traversed just like a standard Iterator,
using MB_Iterator_GetMessage().

Other Iterator routines include MB_Iterator Randomise () for randomising Iterator entries,
and MB_Iterator Delete() for deleting an Iterator.

5.4 Message Board Synchronisation

Synchronisation of Boards involves the propagation of message data such that agents farmed
out across the different processing nodes have a unified view of the collective content through
their local Boards. This is vital to ensure that the simulation is coherent even though instances
of the Board are distributed across different processing nodes.

Synchronisation of Boards is performed in two stages — the initial Board synchronisation
request, and the actual completion of synchronisation.

The initial Board synchronisation request is performed using MB_SyncStart (). This routine
locks the Board and adds it to the Synchronisation Request Queue (discussed in Section 5.6.1).
The calling code is then immediately given back control and is free to proceed with other tasks
that do not require access to the Board in question.

When read access to the Board is required, the synchronisation process must first be com-
pleted using MB_SyncComplete (). This routine is blocking, and will wait for the Board to be un-
locked before returning control to the calling code. Alternatively, there is also the MB_SyncTest ()
routine which is non-blocking and returns immediately with the completion status of the synchro-
nisation. The calling code can immediately access the Board if the returned status is MB_TRUE,
or, if the returned status is MB_FALSE, proceed with other tasks and repeat the test at a later
stage.

The sequence diagram in Figure 9 depicts how a board synchronisation request may take
place. The process of actually synchronising and unlocking the board is performed concurrently
in the background by the Communication Thread. This is discussed further in Section 5.6.

To make the most of the concurrent nature of libmboard, calls to MB_SyncStart() should
be placed as early as possible within the code (immediately after the final message has been
written) such that more work can be scheduled before MB_SyncComplete () is called. This will
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Figure 9: Other work can be scheduled during board synchronisation to hide the overheads of
communication

maximise the amount of overlap between useful computation and the synchronisation overheads.

5.5 Message Board synchronisation optimisation

In its simplest form, a Board synchronisation may be implemented as a full replication of all
messages within each local Board. This method is rather straightforward to implement, and
would indeed serve its purpose of providing every agent access to the collective Board content.
Unfortunately, it is also extremely expensive in terms of communication and memory require-
ments, and would therefore defeat the purpose of running in parallel (considering the key reasons
behind parallelisation are to reduce elapsed time and per-node memory usage).

libmboard overcomes this problem by tagging each message with the IDs of processing nodes
that require read access to it (see Figure 10). With the tagging in place, full data replication is
avoided by only propagating the relevant messages to each processing node.

In order to tag messages, each processing node would need to indicate the selection of messages
that it requires. This facility is provided by the MB_Function Assign() routine which assigns
used-defined filter functions and their associated parameters to each Board. At the start of
each synchronisation the parameters are gathered from all remote nodes and message tagging is
performed.

Within the FLAME framework, the filter functions are generated automatically based on
the <filter> tag that modellers assign to the input of each agent function, while the function
parameters are computed at run-time based on an analysis of agent memory.

Obviously, if the <filter> tags are not used, filter functions will not be assigned to Boards
and the synchronisation process will fall back to a full data replication.
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Figure 10: Full data replication is avoided by only propagating tagged messages to the relevant
nodes

5.6 The Communication Thread

During the initialisation of the Message Board environment, libmboard starts up a separate
thread (the Communication Thread) to handle the synchronisation of distributed boards.

Apart from potentially making better use of multi-core processors, delegating communica-
tion and memory intensive operations to a separate thread allows us to minimise the effective
overheads by performing them concurrently with the main simulation and thus overlapping the
Board synchronisation time with that of useful computation.

Once the Communication Thread is started, it goes into a continuous loop of processing two
control queues — the Synchronisation Request Queue (Sync Queue), and the Pending Commu-
nication Queue (Comm Queue).

The loop is interrupted whenever both queues are empty, whereby the thread sleeps till it
receives a signal from the parent thread, or quits when the termination flag is set. This is
depicted by the Activity Diagram in Figure 11.

5.6.1 The Sync Queue

The Sync Queue is the interface between the Communication Thread and the parent thread,
and acts as a staging point for a Board’s synchronisation requests. Boards that need to be
synchronised are locked by the main thread and pushed into the Sync Queue for further action
by the Communication Thread. Access to the queue is protected by the mutex lock mechanism
provided by the pthreads API.

When the Sync Queue is processed, all Boards within the queue are placed in an appropriate
state! and moved into the Comm Queue. The individual Board will remain locked until it has
passed through the Comm Queue.

5.6.2 The Comm Queue

The Comm Queue manages the list of Boards that are in the midst of synchronisation. Each
Board within the Comm Queue is assigned a state based on the synchronisation stage it is in.
Whenever the Comm Queue is processed, the Communication Thread iterates through the list
of Boards and executes the transition function associated with the state of each Board.

Boards that reach their END state are removed from the Comm Queue and unlocked to indicate
that synchronisation is complete. The unlocking of the board would be picked up by the parent

!depending on whether filter functions and parameters have been assigned to the Board

10
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Figure 11: Activity diagram for Communication Thread

thread when the appropriate libmboard API routines are called (refer back to Figure 9 for further
clarification).

5.6.3 Stages of synchronisation

The synchronisation process of a Board is split into stages such that inter-process communication
(non-blocking MPI sends and receives) spans across at least two state transition functions — one
to initialise the non-blocking send/receive operation, and the others to test and complete the
communication.

For example, when a Board is in the PRE_PROPAGATION state (see Board synchronisation state
diagram in Figure 12), the InitPropagation() transition function will prepare the necessary
buffers, issue a series of non-blocking MPI sends and receives, and transition the Board to
the PROPAGATION state without waiting for the communication to complete. During the next
iteration, the Communication Thread would come back to the same board and either transition
it to the next state if all communication has completed, or maintain the state if there are still
pending communications.

By ensuring that transition functions never involve idle waits for events or specific conditions,
the Communication Thread can continuously cycle through all pending synchronisations and
perform the transition of each Board as they are ready.

5.7 Use of pthreads with FLAME Message Boards

During the design stage of libmboard, several complications were identified when considering
the use of pthreads for implementing the Communication Thread. Some of the issues that were
recognise are:

11
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Figure 12: State diagram for processing Comm Queue nodes

e Portability — some platforms do not natively support pthreads. For example, pthreads are
not supported on the IBM Bluegene/L system. They are also not available natively on
Microsoft Windows Operating Systems. However, pthreads support has been introduced
in the latest generation of Bluegene (Bluegene/P), and on Windows, pthreads can be used
through Cygwin or by using third-party libraries.

e Thread-safety — Not all MPI Libraries currently available are thread-safe. This made the
development of libmboard much harder as this introduces an additional limitation that
the parent thread (which includes the calling code and the API routines themselves) must
not issue MPI calls when the Communication Thread is also issuing a call or has any
outstanding MPI communication. Extensive testing had to be performed using different
compilers and MPI Libraries to ensure that libmboard functions correctly.

e Process mapping — Mixed-mode programming (Multi-threaded + MPI) makes the launch-
ing of jobs on multi-core SMP clusters more complicated. Choosing the most efficient
mapping of threads and MPI tasks to the various cores of different affinity is not immedi-
ately obvious. Additionally, once a reasonable mapping is decided upon, conveying it in a
request to the different job schedulers when launching jobs on shared clusters could prove
to be a challenge.

It was eventually decided that the possibilities brought about by using a threaded model out-
weighed the potential drawbacks.

5.8 Use of <filter> in the FLAME Message Boards

As mentioned previously in Section 5.5, libmboard relies on the filter functions assigned to Boards
to reduce communication and avoid full data replication by tagging messages. This in turn relies
on the FLAME framework providing the relevant information gleaned from <filter> tags in
the model definition.

The <filter> tags provide additional information to the FLAME framework about the
information required buy agents. This information is use in two ways: firstly in constructing
iterators (see Section 5.3) to reduce the number of messages presented to an agent for processing
and secondly they are use by the Message Board synchronisation routines to reduce the volume
of data being gathered from other nodes.

The analysis and use of this information is performed by the FLAME framework which
generates suitable call to the libmboards API. The use and combination of message filters requires
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developing some complex algorithms and strategies. In the current release of FLAME although
the iterator can use any form of filter only constant data is use in the synchronisation filters.

6 Data Partitioning

As described above in general terms, parallelisation in FLAME has been introduced through dis-
tributed message boards and distributed agent populations. Hence at the start of any simulation
the agent population must be distributed over the available processors.

As achieving some form of load balance - each processor performing a similar work load - is
important in reducing the elapsed time of a simulation, the initial distribution of the population
should attempt to achieve this. However such an initial distribution can only be based on the
information provided in the XMML models files and the associated user provided C code. In
the current version of FLAME there is little useful information provided.

Although achieving a load balance over the processors is important in reducing elapsed time,
reducing inter-processor communication is equally if not more important in agent-based appli-
cations. Deriving information on the communications load of an agent population can only be
achieved whilst the application is executing although some information can be derived from the
XML and C code.

Two basic methods of static partitioning have been developed: partitioning based on a sep-
arator and round robin partitioning. Both are implemented within FLAME and the user can
request one or the other with command line flags when the model is run.

6.1 Separator Partitioning

Separator partitioning distributes the agents amongst the partitions based on one or more mem-
ory variables of the agent. Every agent must have these variables for this to work and the
variables can be either discrete or continuous numerical values. The most obvious example is
distributing agents using their position (z,y, z co-ordinates) which gives a good initial distribu-
tion in cases where communication is between near neighbours. This is already implemented in
FLAME due to the framework’s initial field of application, biological systems, and is referred
to as geometric partitioning. Other examples of separators could be considered but the overall

N
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e

\
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Figure 13: Geometric partitioning of agents

aim is to get those agents that will generate a lot of communication with each other on to the
same partition - something that is not always feasible.

6.2 Round Robin Partitioning

This is the simplest form of partitioning in which agents are distributed, one at a time to each
partition in turn. No account is taken of behaviour during the simulation but this may be
the only way of partitioning if the agents have no common memory variables. This type of
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partitioning is implemented in FLAME. It is possible to extend this method by using the agent
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Figure 15: Round Robin distribution of agents

type as a discriminator. Agents of a particular type would be allocated to one partition (or set
of partitions) on a round robin basis if it were known (or envisaged) that agents communicated
with other agents of their own type more than any other type.

7 Static and Dynamic Analysis Tools

There are many elements to the testing and assessment of an application and this is all the
harder in the case of FLAME as FLAME is a program generator. We have not only to verify
that FLAME generates correct code as defined in the FLAME model definition but also that
the generated code is also correct.

A number of static and dynamic analysis tools have been developed to help perform this type
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of consistency analysis and verification. The example outputs are taken from the EURACE
Model [2]

FLAME_Analyses : a static analysis of the FLAME model which gives detailed information
on the components of a model: agent, function and messages types, their number and
sizes, a static communications table,and a weighted communications table. An example
of the outputs from FLAME_Analyses are given in Tables 1, 2 and 3.

Agent list:

( 260 Bytes) (M: 7, 7) Bank

( Dyn Memory) (M: 5, 6) Mall

( Dyn Memory) (M: 3, 5) IGFirm

( Dyn Memory) (M:19,16) Household

( Dyn Memory) (M:11, 7) Government

( Dyn Memory) (M:20,29) Firm

( Dyn Memory) (M: 4, 3) Eurostat

( Dyn Memory) (M: 3, 2) Clearinghouse
( Dyn Memory) (M: 6, 1) Central_Bank

Table 1: : Agent list with internal memory descriptions

In Table 1 we have a list of all the agents present in the model and an indication of the
internal memory state: Dyn Memory indicates that the agents internal memory is dynamic.
The expressions (M:7,7), as in the case of the Bank agent indicates that this agent receives
7 message types and sends 7 message types. For the Clearinghouse agent 3 message types
are received and two types are sent. Note that these numbers refer to the message types,
not the number of messages as this will be population and model state dependent.

* Bank

|--( bank_identity )----- --> Firm (daily,0)
|--( dividend_per_share )--—--————————————-—- > Household (monthly,1)
|--( accountInterest )----------—-——————————— > Household (daily,O0)
|--( loan_conditions )--- -—- --> Firm (daily,0)
|--( bank_interest_payment )----------------- > Central_Bank (daily,0)
|--( tax_payment )---------—-—-—-——————————— > Government (monthly,O0)
|--( bank_to_central_bank_account_update )---> Central_Bank (daily,0)

F <= ( policy_announcement )--| Government (yearly,1)
<——- e ( policy_rate )--| Central_Bank (monthly,1)

F <-—- e ( loan_request )--| Firm (daily,0)

F == - ( loan_acceptance )--| Firm (daily,0)
<--- ———— ( installment )--| Firm (daily,O0)
<--- ——mmm ( bankruptcy )--| Firm, Firm (daily,O)

F m—-mmmmmmmmmeee o ( bank_account_update )--| Firm, IGFirm, Household (daily,0)

Table 2: : Message activity of Bank agent including timing and filtering

In Table 2 the arrows (-->) show the direction of the messages and the F indicates that
the message is filtered. At the end of each line the entry (daily,0), for example indicates
the period and phase of a message.

The final example of the output from the analysis tool is the inter-agent communications
table show in Table 3. The table displays the possible inter-agent communication based
on the communications defined in the model definition. Although this has been weighted
using the message size as a measure of a message’s volume the table takes no account of
the numbers of particular agents in the population. Despite this it gives some indication
of the likely communications traffic between agent types which can be used to inform any
agent distribution process in a parallel implementation of the model.
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0 1 2 3 4 5 6 7 8
Firm O | 0.000 0.000 3.065 1.533 1.571 10.000 2.299 1.571 4.598 I
Central_Bank 1 | 0.000 0.000 0.000 0.000 0.038 0.000 0.000 0.000 0.038 I
Clearinghouse 2 | 2.299 0.000 0.000 0.000 1.533 0.766 0.000 0.000 0.000 I
IGFirm 3 | 1.533 0.000 0.000 0.000 0.038 0.038 0.000 0.000 0.766 |
Government 4 | 0.003 2.299 1.533 0.003 0.000 0.808 0.000 0.000 0.003 |
Household 5 | 6.935 0.000 0.766 0.000 2.337 0.000 1.533 0.038 0.766 I
Mall 6 | 0.766 0.000 0.000 0.000 0.000 3.065 0.000 0.038 0.000 I
Eurostat 7 | 0.038 0.038 0.000 0.000 0.805 0.766 0.000 0.000 0.000 I
Bank 8 | 1.533 1.533 0.000 0.000 0.038 0.805 0.000 0.000 0.000 I

Table 3: : Weighted Inter-agent Message Analysis

In this example it is clear that Firm agents have considerable communications with House-
hold agents and vica versa. However it should be noted that the information flow is not
symmetric. Given the population sizes of each agent type is possible to determine the po-
tentially dominant communications and hence determine possible strategies to minimise
the communications overheads in a parallel simulation.

FLAME Consistency : a static consistency checker which compares the XMML definition
with C code and ensures that the number and usage of messages is consistent. The script
scans all the XMML and C code looking for message definitions and where messages are
being passed. The tool checks that all messages that are sent by agents can be received.
The consistency of the data being sent and received is not checked. This checking is
included in the compilation and building of the application.

The Message Monitoring Package : The MM package is a dynamic library designed to
monitor message traffic in the simulation. It is a set of additional directives included
in the FLAME templates which are embedded in the application code that monitor all
message traffic and writes to an SQL database. The database can be post-processed to
assess the message traffic in the model. It also gathers information on the agent population
in the simulation and the records of all function calls.

The Timer Package : The Timer package is used to measure elapsed CPU time for functions
and message board synchronisations during a simulation. Knowing which functions take
the longest time has helped to narrow the application of more detailed profiling tools such
as gprof allowing for quicker identification of problems and possible solutions. Analysis of
message board synchronisation times has shown that the message board implementation
has provided excellent overlap of communication and computation.

FLAME _Analyses and FLAME_Consistency are python scripts that process the FLAME model
definition and C-code files and the MMP and TP are libraries included in the FLAME application
at build time to produce run time output.

8 Performance of the FLAME Framework

Two of the fundamental design features of FLAME are that all communications between agents
takes place through a specified message board - a message repository - and that these message
boards are distributed over the processing nodes of the parallel system. These message boards
can be considered the data load and the agents themselves the computational load. However,
although there may be some imbalance in computational load, with a reasonable initial data
- agents - distribution, any imbalance should be small. The crucial element in the parallel

16



implementation of FLAME is the distribution of the message boards over the system and their
synchronisation.

It is clearly essential that the FLAME infrastructure does not impose a high overhead on
the application. The Timer package has been use to estimate the overhead of the FLAME
infrastructure. The most important task performed by the FLAME framework is message and
message board management. Although applications make use of a variety of message board func-
tion - writing and reading messages from message boards - the message board synchronisation
process is potentially the most costly.

Table 4 gives details on the time taken by the FLAME framework to perform this synchroni-
sation for part of the EURACE Model [2]. Each row in the table gives the synchronisation time
as a percentage of the total elapsed time per iteration for the most significant message boards.
The columns show the basic synchronisation time with and without overlapping. Even when
combined it is clear the all the message board synchronisations are only taking 5% of the total
run time. Although we would expect to reduce this through some more detailed optimisation of
the synchronisation algorithms and code, 5% is considered to be an acceptable overhead.

No overlap Overlap
Message board Node 0 ‘ Node 1 | Node 0 ‘ Node 1
order 3.3 2.9 3.0 2.2
loan_conditions 0.1 0.2 - -
info_firm < 0.1 < 0.1 - -
order_status < 0.1 < 0.1 < 0.1 < 0.1
bank_account_update < 0.1 - < 0.1 < 0.1
eurostat_send_macrodata | - 1.2 - -
vacancies2 - - < 0.1 -
capital_good_request - - < 0.1 < 0.1
capital_good_delivery - - - < 0.1

Table 4: Percentage of total time spent synchronising top nine message boards

In the design of FLAME care has been taken to overlap communication and computation
so that, as far as possible, agent functions are not waiting for data during their activation.
This has been achieved by FLAME analysing the sending and receiving of messages defined in
the model XMML file to push the start of communication (call to MB_SyncStart()) as high as
possible in the call tree (i.e. just after all messages of a particular type have been sent to the
message board) and the wait for communication to complete (call to MB_SyncComplete()) as
low as possible (just before the messages are required).

To illustrate the effect of overlapping communication and computation a special version of
FLAME that placed the calls to MB_SyncStart and MB_SyncComplete as successive operations
was run alongside the usual version. The timer package was used to time the MB_SyncComplete
functions in both cases and the results are given for the 5 longest elapsed times in Figure 16.
Runs were for a population of around 25,000 agents distributed over 2 processing nodes and the
simulations ran for 40 iterations.

It is clear that the eurostat_send_macrodata message board is a significant beneficiary of
overlapping. On the top right bar chart (Node 1 with no overlapping) this message board takes
a significant time to synchronise. This cost disappears in the overlapped version (bottom right).
By a careful analysis of the model’s state graph the messages sent by the Eurostat agent are
sent very early in an iteration and read by the Government agents very late in the iteration.
This gives the system plenty of time to complete the synchronisation process. In the same way
it is clear that the order message board benefits less since order messages are required very
soon after they are sent.

Part of the optimisation process performed by FLAME is the re-organise tasks in the model’s
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Figure 16: Elapsed times (s) for message board synchronisations with an without communica-
tion/computation overlapping

dependency graph in order to maximise the separation of the start and completion of the message
board synchronisations.

9 Testing serial and parallel implementations

Verification and validation of FLAME and its parallel implementation is again made difficult by
its nature. We must verify and validation FLAME itself and we must also verify in some way
the application generated by FLAME. It should be noted that FLAME has two distinct parts:
the xparser which generates the application from the models XMML and C code files and The
Message Board Library - libmboard which is the underlying infrastructure that manages the
inter-agent communications. libmboard also provides an application to any parallel hardware
through the MPI message passing interface.

libmboard has is own set of unit tests and test programs. It has been developed using an agile
test driven methodology. These are documented in the libmboard documentation. Similarly the
xparser has its own set of tests which are detailed in other reports.

For the developers we need to verify that FLAME is generating the model specified in the
XMML and C code and that the execution of the generated application is correct. Throughout
the project we have gather a number of test examples which help verify the FLAME implemen-
tation. These test examples are model definitions and their associated C code.

We have started to provide a set of simple problems that enable us to do this. They need to
be simple for the only way of checking that the code in correct is by very careful walk throughs.
Their main characteristics being they exercise the FLAME infrastructure and we can determine
the expected results of the simulation. By using these types of simple models we are able to
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verify that both the serial and parallel versions of the FLAME generated applications are correct
- in as much that they produce the expected results.

It is important to ensure that applications generated by the FLAME framework execute
correctly in both their serial and parallel modes. Because of the stochastic nature of the agent-
based approach to modelling it is unrealistic to expect complex simulations to following exactly
the solution path although general trends should be similar. However for some simple applica-
tions we can expect the serial and parallel implementations to produce exactly the same results
throughout the simulation. Such example applications can be used to verify the correctness of
both the serial and parallel implementations.

The Circles Model is one such application. The Circles agent is very simple. It can be viewed
a small elastic circular ring of specified radius. Each agent will interact with its neighbours by
deforming their boundaries and responding to a simple ’spring’ like force. So given a sufficient
simulation time any initial distribution of agents will tend to a steady state as the agents move
away from each other until they are fully separated. Each agent has in memory its position, x,
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Figure 17: The Clircles agent dependency graph

y, the current forces acting on it fx, fy and its radius of influence. The agent has three states:
outputdata, inputdata and move. The agents communicate via a single message board, location,
which holds the agent id and position. Figure 17 shows the dependency graph of the Circles
agent. The force function use in the model to calculate the change of position is:
ny = Z kuv[d(pwpv) - luv]
(u,v)

Ty — Ty

d(puapv) (1)

where ky,, is the spring strength d(p,, p,) the distance between the two agent centres and x,, and
x, the z position coordinates of the centres. [, is the resting (undeformed) separation distance
between agent centres. There will be a similar express for the FY, term.

Given the simplicity of the agent it is possible to determine the final result of a number of
ideal models. A set of simple test models and problems have been developed based on the Circles
agent. Each test has a model.xmml file and a set of initial data (0.xml).

Test 1 : Model: single Circles agent type; Initial population of no agents.
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Figure 18: Particle interactions

Test 2 : Model: single Circles agent type; Initial population of one agent at (0,0).

Test 3 : Model: Two Circles agent type; Initial population of agents at (-1,0) and (+,0).
Test 4 : Model: Four Circles agent type; Initial population of one agent at (+1,%1).

Test 5 : Model: Four Circles agent type; Initial population of one agent at (0,£1) and (£1,0).
Test 6 : Model: Four Circles agent type; Initial population of one agent at random positions.

In each of these models the expected results can be specified and therefore they provide a very
simple check of the implementation.

The Circles agent also provides a good mechanism to check the parallel implementation
against the serial. Such is the nature of the model, the positions of the agents at each iteration
of the simulation is independent of the order of calculation. As the order of calculation can not
be easily prescribed in the parallel simulation we can use this characteristic to test the validity
of the parallel implementation against the serial. We would expect to get the identical positions
for each agent at every iteration of the simulation.

In the general testing of FLAME using these test models the results produced were as ex-
pected. The final initial test was to use a larger population of Clircles model. Figure 19 shows
the initial data of a circles simulation for a population of 2000 agents and their positions after
500 iterations. As expected we can see that the population gradually spreads out towards and
steady state during the simulation. Identical results were reproduce by both the serial and
parallel versions of the model once the random seeds had been set to the same values.
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Figure 19: Positions for Circles agent population: Initial (left) and after 500 iterations (right)

10 Parallel Performance

The final section of this report considers the parallel performance of FLAME. We will only
give some overall results from a number of computational experiments. In general we fix the
initial agent population size and note the overall execution time as the number of processors
increases. Five different models were used in this exercise. These models are characterised in
Tabel 5. The experiments were performed on a variety of distributed memory machines and in

Model Agents Messages Population
Circles 1 1 10°
cas 3 9 124,000
Labour Market 4 10 110,101
Bielefeld 4 29 4,3100
EURACE 9 62 101,044

Table 5: Details of Initial Benchmark Models

each case the initial agent population was partitioned to produce a reasonable load balance over
the processors.

We will not go into the detail of the hardware architectures of the systems used save to say
that they are generally very different and have different interconnects and balances.

Figure 20 shows the results for the basic test model - Circles. The agent population was
partitioned using the geometric method which is appropriate for the type of position dependent
agent. The Circles model was run on five different HPC systems with the number of processors
ranging from 1 to 100. The graph presents the time taken to perform a single iteration of the
model. As can be seen for this population of 10° agents there are considerable improvements
in performance up to around 40 processors. From that point the improvements in performance
decrease rapidly.

The other test examples were all developed during the EURACE project and are a gradual
development of an economic model. The second test example is a simple two-agent model which
simulates

The final test model comes from the EURACE project and is the most complex FLAME
model so far constructed. It contains 9 agents types and has been run with populations of over
500,000 agents.

Analysis of parallel performance includes profiling the agent functions as for the serial case
but also investigating how the EURACE application performs as the number of processes is
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Figure 20: Results of Circles model

increased for a fixed initial population.
In general the results showed promising parallel speedup using up to 40 processors.

11 Conclusions

In this report we have described in detail the parallel implementation of the Flexible Large-
scale Agent-based Modelling Environment (FLAME) and its assessment together with some
benchmarking results using the Circles and EURACE models. We have also demonstrated
FLAMEs use on populations ranging from a few hundreds of agents, through tens of thousands
to, in one case, a million agents. In some of these simulations the parallel implementation of
FLAME has shown reasonable scalability and parallel efficiency but in other the results have
been disappointing.

Communication and synchronisation between computational modes is seen as one major
difficulty in the parallel performance in general. These are being addressed in a re-design of
FLAME [17] by developing more sophisticate filtering functions within the framework together
with better neighbour representations and searching.

An important goal of the EURACE project has been to perform, in parallel, a large simulation
using the EURACE Model. The project achieved this to a degree: the model has been defined,
important parameters have been values, a method of generating agent populations implemented
and a parallel implementation of the EURACE model can be generated by FLAME. Using these
steps serial and parallel simulations of the EURACE Model have been perform. In this process
a detail assessment of the FLAME generated code, the serial and parallel implementations and
the EURACE Model have been performed. Message counts, function times and synchronisation
times are a few of the measures that have been used together with a detail static analysis of the
model to identify the performance deficiencies in both the FLAME framework and the EURACE
model.

All this analysis has lead to improvements in FLAME which in general have improved its
computational performance. However the presence of substantial serial components in any of
these models has resulted in very poor parallel scalability. It is well known that parallel speedup
is limited by the serial faction of a code - this is Amdah’s Law. The analyses performed on the
EURACE Model have shown that the singleton agents have a significant impact of the parallel
performance.

In the re-design of FLAME we are addressing the problems presented by singleton agents
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Figure 21: CQS Model

through a more fine grain decomposition of the agents into tasks which form the basis a new
approach to scheduling the agent state changes. The initial results from this re-design and
re-implementation should be report over the next few months.
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