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ABSTRACT: Read-out of Silicon Photomultipliers is commonly achieved by means of charge in-
tegration, a method particularly susceptible to after-pulsing noise and not efficient for low level
light signals. Current signal monitoring, characterized by easier electronic implementation and in-
trinsically faster than charge integration, is also more suitable for low level light signals and can
potentially result in much decreased after-pulsing noise effects. However, its use is to date limited
by the need of developing a suitable read-out algorithm for signal analysis and filtering able to
achieve current peak detection and measurement with the needed precision and accuracy.

In this paper we present an original algorithm, based on a piecewise linear-fitting approach, to
filter the noise of the current signal and hence efficiently identifying and measuring current peaks.
The proposed algorithm is then compared with the optimal linear filtering algorithm for time-
encoded peak detection, based on a moving average routine, and assessed in terms of accuracy,
precision, and peak detection efficiency, demonstrating improvements of 1÷2 orders of magnitude
in all these quality factors.

KEYWORDS: Pattern recognition, cluster finding, calibration and fitting methods; Data processing
methods; Data reduction methods

1Corresponding author.

c© 2012 IOP Publishing Ltd and Sissa Medialab srl doi:10.1088/1748-0221/7/08/P08014

mailto:m.putignano@liverpool.ac.uk
http://dx.doi.org/10.1088/1748-0221/7/08/P08014


2
0
1
2
 
J
I
N
S
T
 
7
 
P
0
8
0
1
4

Contents

1 Introduction 1
1.1 Silicon Photomultipliers 1
1.2 SiPM noise 2

2 SiPM structure and working principle 3
2.1 Individual SPAD cells 3
2.2 Signal form model 5
2.3 Read-out techniques 5

3 Algorithm description 7
3.1 Challenges posed by the SiPM signal 7
3.2 Linear fitting algorithm 7
3.3 Non-linear fitting algorithm 8

4 Performance measurement 10
4.1 Characteristics of the test signal 11
4.2 Results 11
4.3 Comparison with experimental data 15

5 Conclusions 17

1 Introduction

1.1 Silicon Photomultipliers

Sensors capable of detecting single photons have found different applications in diverse fields such
as astronomy [1, 2], laser ranging [3], biomedical imaging [4], Positron Emission Tomography
(PET) [5–7], optical time domain reflectometry [8] and beam loss detection in particle accelera-
tors [9] to name a few, replacing in such applications the former useof photomultiplier tubes [10].

These developments call for low cost, small dimensions and high amplification photon count-
ing detectors, and have triggered a growing interest in recent years on the development of solid
state technologies, in particular related to Avalanche Photo Diodes (APDs). Amongst these de-
tectors, the highest amplification, sufficient to discriminate single photons, is achieved by APDs
operated well above the breakdown voltage, in the so calledGeiger mode, known as Single Photon
Avalanche Diodes (SPADs) [11] .

In a SPAD, a single impinging photon which creates an electron hole pair in the depletion
region initiates a self sustaining avalanche process fed bythe large reverse voltage, creating a
signal large enough to be detected. The avalanche is then switched off, orquenched, by suitable
circuitry, until no current is flowing anymore, the junctioncapacitance recharges, and the device
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Figure 1. Photograph of a SiPM. The individual cells forming the arrays are visible.

is ready for another detection. However, SPADs are intrinsically digital devices, as the number
of photons creating electron-holes pairs within the same avalanche event does not influence the
amplitude of the signal, thus preventing their use for single shot light flux measurements.

Increase in the dynamic range of these sensors has been demonstrated by replicating the SPAD
structure into many cells connected in parallel to a single output channel, resulting in the so called
Silicon Photo Multiplier (SiPM). Bi-dimensional, closely packed arrays of up to 500 independent
SPADs per square millimeter are now available commercially, an example of a SPAD array is
shown in figure1. Such arrays provide an output signal proportional to the incident light, respond-
ing with macroscopic currents of some mA to each photon detected. The SiPM retains the photon
counting ability of the SPAD while outperforming it dramatically for dynamic range and recovery
time, hence allowing use of this technology in the fields requiring single shot light flux measure-
ments. Nowadays SiPMs are widely used in diverse applications including fluorescence analy-
sis [12, 13], fluorescence lifetime measurement [14], single molecule detection [15] and PET [16].
Furthermore, due to their small dimensions and rather low intrinsic radioactivity, SiPM are also
considered to be promising candidates for light detectors in rare event searches applications.

1.2 SiPM noise

One important limit to the successful application of SiPM, however, is constituted by noise. Use
of high-quality materials and state of the art device fabrication techniques minimize the number
of impurities and defects that contribute to noise; however, it still stays significant, especially in
low light conditions, making noise an important branch of research in the field [17, 18]. Indeed,
high levels of noise make it impossible, when light levels are modest or measurement precision
is a priority, to reliably measure light fluxes, and limit SiPM applicability in these cases to on-off
photon detection [19].

Noise which significantly contributes to counting errors isSiPMs is caused by three phenom-
ena:

• electron-hole pairs created in the depletion layer by random thermal ionization (dark count).

• parasitic avalanche triggering by photons created during aprimary avalanche and migrated
to a neighboring cell (optical cross-talk). Optical cross talk has been reported to be sensibly
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reduced for SiPM featuring optical trenches: strips of material with different refraction index
placed between neighboring cells, which deflect photons away from the active area [18].

• time delayed release of a hot carrier by a trap level due to imperfections in the lattice, leading
to a time delayed second avalanche phenomenon (after-pulsing).

One important effect of these noise sources is that dark noise and afterpulsing signals in par-
ticular are indistinguishable from areal event, and can therefore lead to erroneous counting. This is
not immediately applicable to cross-talk noise, whose contribution is to overestimate a given event
amplitude, rather than creating spurious counts. However,by virtue of their high dynamic range,
SiPMs are virtually insensitive to dark noise when used in presence of medium to high intensity
short light pulses of a few ns duration, as the combined signal coming from several cells firing at
once due to inbound photons easily overshadows the signal from dark noise random firing cells.
The other two noise sources however cannot be ignored, and can be corrected, by adjusting the ex-
pected signal distribution of the SiPM, only within the statistical effects of shot noise [18, 20–22].

Reduction of cross-talk noise can be obtained by modifying the structure of the SiPM at the
manufacturing stage with the inclusion of optical trenches; after-pulsing is instead more difficult
to deal with, and it also increases when lowering the temperature in the junction, which results
otherwise in the positive effect of reducing the dark noise.Nevertheless, the error associated to
after-pulsing is mainly due to the readout procedure commonly used for SiPM, which relies on
charge integration over a defined gate time: all events happening within this gate time are hence
superimposed, so that afterpulsing and signal are no more distinguishable.

An alternative read-out procedure, based on direct detection of the signal peak current in the
time domain, would instead allow discrimination of after-pulsing noise from signal, and ultimately
more reliable operation of SiPM for light flux measurement. However, such procedure faces the
challenge of reliably extracting the signal information from the complex waveform constituting a
SiPM current signal (see e.g. the signal shown in figure11). Standard linear noise filtering algo-
rithms, indeed, fail to provide accurate results especially in the high sensitivity operation mode,
characterized by high overvoltage, in which dark noise peaks are more closely packed and super-
impose severely.

In this paper, after a basic description of SiPMs and their typical output signal, we analyze
more in depth the noise reduction advantages linked to the use of peak height monitoring over
charge integration and describe the difficulties met by commonly used analysis procedures. We
then describe an original, non-linear algorithm for noise filtering and SiPM current signal analysis,
which overcomes the limitations of standard linear alternatives, and extracts current peak height
and rise time accurately even in presence of high intensity,high frequency noise. Finally, we em-
pirically compare the two approaches, showing a significantly better performance of the non-linear
analysis proposed.

2 SiPM structure and working principle

2.1 Individual SPAD cells

The SiPM signal results from the superposition of the signals due to the individual SPAD cells in
the array; thus, analysis of the SiPM signal rests on the operation principle of the individual SPADs.

– 3 –



2
0
1
2
 
J
I
N
S
T
 
7
 
P
0
8
0
1
4

Figure 2. Equivalent circuit of a SPAD in the current-mode output configuration [23].

If individual SPAD cells are biased above the breakdown voltageVb, the avalanches triggered
are self sustaining, and need a suitable control circuitry in order not to persist indefinitely. The pro-
cess of turning off the avalanche, readying the device for another detection, is known asquenching
and can be achieved in two different ways: actively and passively.

Passive quenching is the most elementary way of quenching, and the one still used in SiPM.
It makes use of a large resistance, of about 100 kΩ, in series to the SPAD: when the current rises
due to an avalanche event, a large voltage drop develops across the resistance, which reduces the
external voltage across the SPAD belowVb, quenching the avalanche. Passively quenched SPAD
cells are well described and reduced to an equivalent electric circuit in the work of Cova [23]. When
the avalanche is triggered and the voltage drop develops on the quenching resistorRL, the voltage
across the diode is kept above breakdown by the charge storedin two capacitances in parallel with
the diode: the junction capacitance and the capacitance of the diode with respect to ground, with
total effective capacitanceC. As the capacitances discharge with a time constantRdC, with Rd being
the internal resistance of the diode, the voltage across thediode drops, together with the current,
until the latter eventually falls below thelatching current, at which level the probability of the
avalanche turning off out of pure statistical effects is notnegligible, and the avalanche is quenched.

The leading and restoring edges of the current peak are hencedue to two different phenomena
and present timescales which differ by several orders of magnitude: the rise time of the peak is
driven by the velocity of the charge carriers avalanche multiplication process and the immediate
effects of opening the switch in the equivalent circuit shown in figure2. This results in a theoretical
rise time of the order of tens of picoseconds, and is thus muchfaster than the restoring time, which
is instead linked to the time constantRdC, and is about 3 orders of magnitude longer.

From the discussion presented in [23], it is shown that the current passing through the diode
shows a peak whose maximum value is given by:

Ip = ∆V/Rd = (Vext−Vb)/Rd (2.1)

where∆V, also known as “overvoltage”, is the difference between theapplied bias voltage and
Vext the breakdown voltage, andRd ranges from a few hundredΩ for wide area devices with thick
depletion layers up to several thousandsΩ for small area devices with thin depletion layers, which
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is the case for most SiPMs. Equation (2.1) is thus relevant insofar as the current peak signal is
monitored, as suggested in this paper. On the other hand, charge integration is usually preferred
instead, and the relevant quantity becomes the total chargein the pulseQpc. Qpc can be obtained
by integrating the current signal or, from the equivalent circuit analysis, estimate as the total charge
stored in the total capacitance in parallel with the diode for the given overvoltage:

Qpc = ∆V ·C (2.2)

2.2 Signal form model

Full analysis of the equivalent circuit shows that the current across the diode after an avalanche has
been triggered is described by a sum of two exponentials withdiffering time constants:

Id = I0
(

e(−αt)−e(−β t)
)

(2.3)

As mentioned above, the time constant of the rising exponential is of the order of tens of
picoseconds, whilst the restoring edge time constant is up to 3 order of magnitude larger. Therefore,
the fine structure of the peak rise time is inevitably lost in the≈10 GHz bandwidth commonly
available for the electronic read-out. However, the peak height is correctly sensed, as the decrease
in current due to the falling exponential is usually negligible in the time scale of electronic signal
acquisition. Therefore the SPAD signal, and hence, by superposition, the SiPM signal, can be
approximated by a rising straight line and a falling exponential:

I(t) =











PH · t−t0
tR

t0 ≤ t ≤ tp

PH ·exp
(

−
t−tp

trec
· ln(Rc)

)

tp ≤ t ≤ tp + trec

(2.4)

wherePH is the peak height;t0 the time when the avalanche is triggered;tR is the rise time;trec the
recovery time defined as the time which the current takes to drop below 1/Rc of its peak value and
tp is the time when the peak occurs, equal tot0+ tR. The time constantstR andln(Rc)/trec are found
empirically and are related to the amplifier rise time and theproductRdC of diode resistance and
total capacitance respectively.

Figure3 shows the superposition of the approximation described in equation (2.4) on a real
SiPM dark noise signal. As expected from the analysis of the equivalent circuit shown in figure2,
the approximation follows the signal very closely, apart from random deviations due to noise. In
this work, the signal form shown in equation (2.4) has thus been used to approximate the SPAD
signal.

2.3 Read-out techniques

It is established since early literature in the subject [18, 23], that there exist 3 main ways to read
the output signal of a SiPM following an avalanche:

1. Measuring the total charge displaced by the SPADs.

2. Measuring the voltage drop across the SPADs.

3. Measuring the current signal across the SPADs.
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Figure 3. Superposition of the approximated signal form described in the text on a real SiPM dark noise
signal. The approximation is shown in red, as a smooth solid line; the real signal is instead shown in blue,
and is recognizable from the random noise oscillations.

Measuring the total charge displaced by the SPADs through a time gated charge to digital converter
is the most common method of analysis, and is based on equation (2.2). The advantage of this
method lies in it being less sensitive than the others to higher frequency electrical noise, as the gate
time for charge integration needs be in the order of tens of nanoseconds to achieve acceptable signal
to noise ratios (SNR), thus providing an in-built time averaging low pass noise filter. However, it
does present the shortcoming that any charge fluctuations inthe gate time due to phenomena other
than the signal to be measured are erroneously added up. In particular, the timescale of tens of ns
is compatible with large afterpulsing contributions in commonly used SiPM devices [22], marking
this readout method as particularly susceptible to afterpulsing noise errors.

From the point of view of the applications, problems arise both when the SiPM are operated
in presence of medium to intense light pulses and when less intense light or dark noise alone is
measured. Indeed, in the first case, intense light pulses will cause several cells to fire at once,
linearly increasing the probability of registering afterpulsing effects within the gate time. On the
other hand the gate time also becomes very relevant when darknoise is measured: in this case, such
error effectively prevents the technique from being applied in the high overvoltage regime, when
the probability of a second dark count happening within the gate time becomes not negligible (dark
count rate> 10 MHz).

Measuring the voltage drop across the SPAD is usually not chosen as a read-out method, as it
shares all the pros and contras of measuring the current signal, but the equivalent circuit analysis
reported in [23] shows it to be intrinsically slower and hence less precise.

Monitoring of the current signal across the SPAD, based on equation (2.1), is instead also
used, although more seldom, due to it being more sensitive toelectric noise and requiring more
involved data processing if signals overlap: therefore, itonly becomes interesting as an easier to
implement alternative to charge integration when large SNRis present, e.g. in the case of medium
to high brightness light pulses, and avalanche events are well spaced. However, not requiring a
gate time for integration, the method is intrinsically faster than charge integration and thus couples
significant advantages on afterpulsing noise reduction with better performance in presence of high
frequency dark counts such as those registered in the high overvoltage regime.

– 6 –
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Application of current signal monitoring to lower SNR and high event rate is withheld by the
need of developing a suitable data processing algorithm allowing filtering of electrical noise, fast
response, and high precision. The following sections present a novel such algorithm, allowing
extension of current signal monitoring to low SNR and high event rate experiments.

3 Algorithm description

3.1 Challenges posed by the SiPM signal

To effectively use the peak height readout option, an algorithm optimized for high precision in
measuring peak heights and rise times is needed. The algorithm described in this paper is designed
to analyze a continuous signal from a SiPM, composed of several different avalanche events occur-
ring at random times. This signal will be referred to in the following astrace. The difficulties in
achieving the goals listed above with existing algorithms lie in the following issues:

• Changing baseline of the signal: for high overvoltages, when the dark count rate increases
substantially, peaks are often superimposed on each other with a time delay, so that the
algorithm needs to identify and measure peaks starting at different heights.

• Electrical noise: when mainly first order peaks are measured, the signal to noise ratio can
be as low as 5 in the worst cases (low overvoltages and high electronic noise), giving an
uncertainty of 20% on the peak height if it is measured directly, leading to the need of a
filtering and fitting algorithm.

• Very different peak heights and widths: these features change drastically with overvoltage
and SiPM model, hence the code has to be able to adapt itself tomeasuring different features
without the user having to vary and optimize the parameters for every measurement.

• Random event distribution: which presents problems if a filtering fully based on the fre-
quency domain is used.

To identify the peaks starting and end points, a standard first derivative threshold method such
as the one described in section3.2 can be used, insofar as a suitable filtering algorithm is used
beforehand to decrease the signal to noise ratio to a level low enough for no peaks to be either lost
or mistakenly counted. However, ordinary linear filters andanalysis codes, based either on the time
or frequency domain, have serious difficulties in meeting the requirements listed above, therefore
the algorithm we developed uses instead a non-linear approach.

3.2 Linear fitting algorithm

The non-linear algorithm presented in this paper and described in detail in the next section was
compared with a standard linear filtering and peak finding algorithm based on a moving average
routine, which is the optimal solution for linear filtering of time encoded, discrete events signals,
such as SiPM peaks [24].

This linear code first filters the trace by calculating for each point the average value ofN points
around it, and assigning to it this value:N is thus known as the averaging window width. This fil-
tering ensures, if it is done with a large enough value ofN, that noise spikes are flattened and not
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mistaken for peaks. Then, the derivative of the filtered trace is calculated by the ratio between the
vertical and horizontal distance of two pointsNd points apart in the filtered trace, whereNd is the
derivative window width: the derivative trace shows at thispoint spikes in correspondence of every
peak. Finally, any derivative spike that overcomes a certain thresholdDth identifies a peak. The sta-
tionary points of this filtered trace for each identified peaks are taken as its starting and end points.

In this work, in order to choose optimized values for the parametersN, Nd andDth, we gen-
erated artificial SiPM signals following eq. (2.4), with white noise being simulated with a 20 GHz
bandwidth. The artificial signal homogeneously spanned through the range of event frequencies
and SNR commonly met in the regions of interests of SiPM: the SNR, defined as the ratio between
the rms amplitudes of signal and noise, was varied in the interval 2÷ 20 and the frequency, ex-
pressed as the expected number of events happening in one detector recovery time, varied in the
interval 3÷ 0.1. The values ofN, Nd andDth have been varied and the optimum set which opti-
mizes peak detection efficiency (i.e. the number of peaks detected / total number of peaks) has been
chosen for use in the optimized linear filtering algorithm.

An example of the results of the application of such procedure to an actual experimental trace
are shown in figure11.

3.3 Non-linear fitting algorithm

The non-linear algorithm reported in this work is based on a piecewise linear fitting approach [25–
27], i.e. on the idea of approximating the investigated curve with straight lines of different lengths
and gradients and optimized endpoint locations, dependingon the features of the analyzed signal.
The algorithm leading to the choice of each segment endpoints, referred to asbreakpoints, is what
differentiates different piecewise linear fitting approaches. To do this, our program uses 3 peculiar
features:

1. Preliminary analysis for problem scaling

2. Tapered limit condition for insertion of breakpoints

3. Back-tracing optimization

The preliminary analysis allows the program to tune the parameters needed, listed later in this sec-
tion, to the particular trace which is analyzed. It is performed only on a smaller sample of the trace,
and is carried out before the actual trace is analyzed. This step calculates an estimate for signal
qualities such as SNR and expected peak height, hence fulfilling the requirements detailed at the
point “very different peak heights and widths” in section3.1.

In this phase, the code makes use of an efficiency optimized, existing time-domain filtering al-
gorithm (based on a moving average routine with large averaging width compared to the expected
peak rise time) to obtain a first estimate of the peak characteristics (estimating the average peak
height and rise time with a< 30% error), and to set the needed thresholds, which we will refer to
aspreliminary parameters.

These consist in the average peak height and rise time,hµ andtr−µ , and in the standard devia-
tion of their distributions,hσ andtr−σ . From these numbers, it is possible for the program to have
a scale of the peak heights, and also an estimate of the average value of derivative to be expected
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in presence of a peak (from the ratio between peak height and rise time). A third preliminary pa-
rameterεlim is taken from the maximum deviation of the oscilloscope trace from the filtered trace,
and represents an estimate of the maximum noise amplitude. Finally, σlim is computed as the av-
erage standard deviation of the experimental points aroundthe filtered line in the regions of higher
derivative values (corresponding to the peaks). This is needed as the noise contribution to the signal
is usually much lower in the regions of the peaks as compared to the flat regions in between them,
due to the rise time of the avalanche event being much smallerthan the amplifier rise time, thus
saturating its frequency domain response in those regions.

Preliminary parameters are only computed for a smaller partof the full trace, through a fully
automatic routine not requiring any input from the user, andtake a computing time per analyzed
point slightly longer (on average about 35% more) than the computing time taken by the analysis
of the trace itself. The influence of the preliminary analysis on the overall computing time is thus
chiefly regulated by the percentage of the trace which is included in it, and can thus be made
negligible if the experimental conditions do not vary significantly during the experiment and only
a small portion of the trace can be used in the preliminary analysis.

For applications where small signals are expected, resulting in only a few cells firing, the
preliminary analysis can be performed on a rather short timescale: it is only required that a few
dark noise peaks fall into the part of the trace included in the preliminary analysis. For applica-
tions where large signals are expected, it is still possibleto perform the preliminary analysis on
dark noise peaks alone: events resulting in taller peaks will still be discerned. A simple amplitude
threshold can then be used to discriminate dark noise peaks from the sought signal. As an alterna-
tive, this threshold procedure can be directly built into the code by requiring that at least one large
signal peak is included in the preliminary analysis; this will result in dark noise peaks being classed
as noise and ignored by the fitting routine.

Once the preliminary parameters have been computed, the code analyses the trace from the
beginning and draws a best fit line through the first two points. It then iteratively includes the
following point in the fit, and accordingly updates the two parameters of the best fit line together
with the new point deviation from the best fitε and the overall goodness of fitσ (measured as the
standard deviation of the data distribution around the bestfit). A quality test is then carried out to
see if the new point assigned to the line is likely to actuallybelong to it. This test can be failed by
failing any of the following two conditions:

1. ε exceeds the preliminary parameterεlim measuring the average noise amplitude.

2. σ exceeds the parameterσ ′
lim measuring the expected goodness of fit.

Point1 improves the definition of the peak start point, avoiding that the initial points of the peaks
are mistakenly accounted for noise; moreover, the peak start point location is sharpened in a later
stage of analysis described in the following.

Point2 serves instead to obtain precise measurement of the peak toppoint, and is where the
second feature of the non-linear algorithm, i.e. the tapered limit condition for insertion of break-
points, plays its role. Settingσ ′

lim = σlim as calculated in the preliminary analysis would be too
stringent a condition in flat regions between peaks, resulting in too many tests to be failed. On the
other hand, as discussed in section2.1, peaks develop on a very short timescale, only limited in
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practical applications by the amplifier risetime, hence white noise oscillations are not critical on the
leading edge of a peak, and the error condition onσ ′

lim can be more stringent. Therefore,σ ′
lim is a

limit condition tapered fromεlim to σlim as a function of the vertical length of the line under analysis.

In particular,σ ′
lim = εlim for null vertical distance of the first point assigned to the line to the

last one assigned;σ ′
lim increases then linearly untilσ ′

lim = σlim when the vertical distance equals
the average peak height measured in the preliminary analysis. This solution guarantees very strin-
gent breakpoint condition in the final region of the peaks, when additional points are likely to be
erroneously included in the peak as the derivative only gradually flattens, and results thus in very
sharp definition of the peaks.

When any of the above two tests is failed, the new point is not included in the fit and a break-
point is inserted. This is the point when two different best fit lines merge: i.e. the starting point of
a new best fit line. When this happens, the code performs the back-tracing optimization mentioned
above, in order to obtain a sharper definition of peak start points. The line just ended is traced back
again with the same procedure used to fit forward: the point just before the first which was assigned
to the current line (and belongs, therefore, to the previousline) is considered for inclusion in the
current line by being tested against the conditions ofε < εlim andσ < σ ′

lim . If the tests are passed,
the best fit errorσ calculated for this back-traced line is then compared with the best fit errorσ of
the previous line and the configuration which minimizes the error is chosen. If this results in the
starting point of the current line being changed, the same isrepeated for another point backwards,
until the tests for inclusion are failed and the program can move on to the next line. The addition of
this backward tracing process to the algorithm significantly increases the precision in localizing the
breakpoints. The presented algorithm as a whole produces then results well compatible with the
much longer procedure of finding the optimum breakpoint positions in the whole trace by making
a standard piecewise linear fitting, e.g. by trying all possible breakpoints, calculating the goodness
of fit σ and then choosing the breakpoint position which minimizesσ .

Once this filtering procedure has been carried out, peaks areidentified with a standard deriva-
tive threshold procedure, analogue to the one described forthe linear code used for comparison,
with the difference that the derivative value is not taken bydifference of points across a derivative
window width, but is simply the gradient of each segment found.

An example of the results of the application of such procedure to an actual experimental trace
are shown in figure10.

4 Performance measurement

A full characterization of linear digital filters, useful for comparing different solutions, can be usu-
ally given by quoting their kernel: i.e. the response to an ideal Dirac’s Delta pulse. However, when
this procedure is applied to the non linear filter discussed in this paper, the filters follows the signal
perfectly, and the kernel turns out to be ideal. Therefore, to provide a quantitative statement on the
increase in peak determination performance obtained when using the non-linear filter against the
optimal linear technique, both techniques have been applied to a set of test traces with different
characteristics, and the results compared.
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4.1 Characteristics of the test signal

The most challenging scenario for a filter intended to identify peaks from a SiPM signal is the
detection of randomly occurring single cell peaks, as random time distribution implies that no ex-
ternal trigger can be used, and single cell peaks are the smallest signals produced by a SiPM, and
are hence associated with the smallest SNR. A suitable such measurement is hence the measure-
ment of dark noise alone, for which the event time distribution is random, and mostly single cell
peaks appear, due to dark noise being dominated by a Poisson statistics [28].

The test signal used for algorithm comparison consists thusof a continuous trace filled with
randomly placed, unit height peaks (PH = 1), as described by equation (2.4). When analyzing such
trace to identify and characterize its peaks, two parameters of the signal have been tested and iden-
tified to have the most influence: the SNR and the peak frequency. As mentioned in section3.2,
the peak frequency is defined as the average number of peaks occurring in one recovery timetrec,
as this gives a direct measure of how many peaks are likely to superimpose.

The remaining peak characteristics are set to resemble common experimental values (see
e.g. [29–31]. The peak rise timetR is thus set to 1 ns,Rc is set toe to simplify equation (2.4),
and the recovery time constanttrec is set to 30 ns.

The performance of the algorithms is measured by determining the distributions of the errors
in the determination of peak height and width. The results ofthe algorithms are compared with the
true values, known for each generated trace, and an histogram of the difference between true and
measured peak height and width for a sample of 100k peaks for any given SNR and frequency con-
figuration is plotted. This procedure results in the establishment of a bell shaped curve, described
by a mean and standard deviation.

The percent difference between the true value and the mean ofeach distribution gives an indi-
cation of the systematic error introduced by the algorithm,such as e.g. the decrease in peak height
due to smoothing of the peaks for the linear algorithm. The standard deviation of the distribution
is instead linked to the algorithm precision, and is due to statistical error, which increases with de-
creasing SNR, and expresses the uncertainty in the measurement. It is also expressed as a percent
of the true value.

To complement these two observables, the probabilities of measuring a non-existent peak (ar-
tifact counts) or missing an existent one (undetected peaks) are also measured as respectively the
number of peaks mistakenly detected and the number of non detected peaks over the total num-
ber of true peaks present in the sample, i.e. 100k. These probabilities provide information on the
reliability of the algorithm at the given SNR and frequency regimes.

4.2 Results

Figure4 shows the mean percentage error on peak heights determination of both the linear and
non-linear algorithms as a function of SNR (x axis) and frequency (curves parameter).

The expected peak height underestimation of the linear algorithm, due to smoothing, is re-
flected in the negative values of the corresponding curves inthe figure. On the other hand, the non
linear algorithm is instead characterized by a systematic peak height overestimation, reflected in
the positive values of the corresponding curves. This is dueto noise being included in the peak
line until the error control is flagged: as it is confirmed by the effect getting less severe for smaller
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Figure 4. Mean percentage error on peak heights determination of both the linear and non-linear algorithms
as a function of SNR (x axis) and frequency (curve parameter). Frequency defined as the average number of
peaks occurring in one recovery timetrec.

SNR. However, in the range of SNR and frequency spanned, the absolute value of the non-linear
algorithm overestimation,≈ 0.2÷0.5%, is smaller than the absolute value of the linear algorithm
underestimation by a factor of≈ 25, confirming the better performance of the non-linear algorithm.

The response to variation in SNR and frequency is similar in both cases: increasing frequency
or decreasing SNR leads to larger errors. In particular, varying the frequency by a factor of 3,
between 3 and 1, leads to the peak height errors decreasing bya factor of about 40% in the case of
the linear code and 30% in the case of the non-linear code, when averaged over all the SNR values.

Similarly, decreasing SNR leads to increasing errors, however only moderate differences,
within a factor of 2, correspond to variations in SNR between2 and 20. Whilst the trend in fig-
ure4 seems to suggest a sharp increase in mean error for lower values of SNR, it should be noted
that in practical applications it is unlikely to have a SNR<2, hence this part of the curve has no
consequences in practical applications.

Figure5 shows instead the spread of the peak heights around the mean values, i.e. the precision
of the corresponding algorithm.

The non-linear algorithm performs sensibly better than thelinear alternative, especially for
SNR larger than 5, relevant for most applications: with an improvement in precision of about 1
order of magnitude. However, the non linear algorithm is more affected by increased frequency,
and the precision improvement factor moves from an average over SNR of 12 to an average of only
8 when moving from frequency 1 to 3.

Figure6 and7 illustrate the same analysis shown above applied to the determination of the
peak rise time.

With reference to figure6, differently from the case of peak height determination, the mean
error contribution to the linear algorithm is strongly dominated by the averaging window chosen
for the moving average routine, of 25 ns for the data presented. Accordingly, the non linear al-
gorithm features a much greater accuracy, achieving sub ns values for SNR larger than 5. In both
cases, the dependence on frequency is not critical, and onlybecomes relevant in the case of the
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Figure 5. Standard deviation of the peak height distribution of boththe linear and non-linear algorithms as
a function of SNR (x axis) and frequency (curve parameter). Frequency defined as the average number of
peaks occurring in one recovery timetrec.

Figure 6. Mean percentage error on peak rise time determination of both the linear and non-linear algorithms
as a function of SNR (x axis) and frequency (curve parameter). Frequency defined as the average number of
peaks occurring in one recovery timetrec.

non-linear algorithm at high SNR. In these conditions, increasing frequency corresponds to lower
and lower values of the peak rise time, leading eventually tounderestimation of it. This is due to
the increasing superpositions of signals for higher frequencies, resulting in the leading edge of the
rise being shadowed by the previous peak.

Figure7 shows instead that, for high SNR, the precision of the non-linear algorithm is in fact
worse than the linear alternative. This is again due to the averaging window dominating the process
in the linear case: for high SNR this effect is even more pronounced, and hence the measured peak
width varies only slightly from the value of 25 ns, leading tobetter precision.
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Figure 7. Standard deviation of the peak rise time distribution of both the linear and non-linear algorithms
as a function of SNR (x axis) and frequency (curve parameter). Frequency defined as the average number of
peaks occurring in one recovery timetrec.

Figure 8. Percentage of undetected peaks for both the linear and non-linear algorithms as a function of SNR
(x axis) and frequency (curve parameter). Frequency definedas the average number of peaks occurring in
one recovery timetrec.

Finally, the information on peak height and rise time errorsis complemented by the data re-
ported in figure8 and 9, showing respectively the percentage of undetected and artifact peaks
(where noise spikes have been wrongly classified as peaks), and hence characterize the reliability
of each algorithm. As expected, both algorithms improve their performance dramatically depend-
ing on the level of noise, for low SNR, whilst leveling off at higher values to a plateau representing
the maximum reliability of each algorithm. The results concerning the frequency dependence are
also immediately understandable, as higher frequencies correspond to more undetected, and less
artifact peaks. However, the impact of frequency is only significant for the undetected peaks, whilst
it has a smaller impact, of about 50% the average value, for artifact peak detection at high SNR.
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Figure 9. Percentage of artifact peaks for both the linear and non-linear algorithms as a function of SNR (x
axis) and frequency (curve parameter). Frequency defined asthe average number of peaks occurring in one
recovery timetrec.

As it was the case for the analysis of the precision and accuracy, the qualitative behaviors of
the two algorithms are remarkably similar, only differing in minor details, such as e.g. the more
gradual dependence on SNR of the non-linear algorithm and, similarly to the previous analysis,
a slightly reduced dependence on frequency. However the absolute values show a considerable
performance increase for the non-linear algorithm in excess of 1 order of magnitude.

4.3 Comparison with experimental data

Figure10 and11 present an example of both the standard linear procedure andthe proposed non-
linear procedure applied to an actual experimental trace obtained from a SiPM dark noise signal in
the high overvoltage regime. It is seen how the non-linear analysis results in a series of points along
the curve, representing the breakpoints of the piecewise linear fit. Drawing a straight line between
each pair of points would result in the curve as fitted by the code. The linear analysis results instead
in a continuous, smooth curve. The results of the post-processing, which identifies the peak start
and end points are also shown in each graph, in the form of peakstart and end points. It is easily
seen from the peak height points how the linear code consistently underestimates the peak height,
especially for very sharp peaks. It is noted that the parameters of the linear analysis shown in
figure 11, and in particular the averaging window width, have been optimized for the particular
experimental signal shown, and would therefore perform very poorly in different conditions, e.g. in
low overvoltage regime. Nevertheless, it is still possibleto see how the linear analysis consistently
overestimates the peak rise time as well, as the start pointsalways precedes the real peak onset and
the end point always follows in time the point correspondingto maximum peak height.

Finally, inspection of the tall, second order peaks at time approximately 750 and 1100 ns,
shows how the linear analysis, differently from the non-linear algorithm, fails to identify these
peaks as coming from the superposition of two different, closely spaced signals and counts them
instead as higher single peaks. That this is not the case is visible from the sharp gradient sign
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Figure 10. Filtering and fitting analysis of an experimental waveformcarried out with the non linear al-
gorithm presented. The waveform has been acquired from a SiPM in the high overvoltage regime without
any impinging light signal (dark noise only). Start and end points of each peak shown as calculated by the
post-processing, threshold based process described in section 3.2.

Figure 11. Same waveform shown in figure10, but analyzed with the linear algorithm.

inversion happening at about half height in both cases, and is clearly identified by the non linear
algorithm.

It should be also added that it would be erroneous to considerthese peaks as second order
peaks, which would indicate quasi-simultaneous firing of more cells together due to, e.g. cross talk
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or a light signal. Indeed, the distance between them can be measured on an oscilloscope to be in
the order of few ns: about 2 orders of magnitude longer than required for the avalanche forming
process, and even longer in fact than the amplifier rise time.Therefore, the peaks are instead best
interpreted as randomly occurring closely spaced peak as correctly analysed with the non-linear
algorithm.

Such improvements in performance prove can prove crucial, especially in applications where
dark noise alone or small amplitude signals are analyzed. Anexample of the use of this algorithm
can be found in [32]. In this paper, the improvement in performance allows a more precise dark
noise analysis also for high overvoltages, and leads to the possibility of explaining the Gaussian
spread observed in SiPM peak height spectra and assessing the manufacturing quality of SiPM.

5 Conclusions

In this paper, we have presented a novel non-linear algorithm optimized for current peak detection
and measurement in SiPM signals. The algorithm is based on a custom piecewise linear fitting
approach, and allows noise filtering in high noise signals typical of low light levels and dark noise
measurements.

Empirical comparison of this algorithm with an optimal linear algorithm, based on a moving
average routine, shows a considerable improvement in performance. In particular, when it comes
to peak height determination, the non-linear alternative improves accuracy by a factor of 25 and
precision by a factor of 8÷12. Similar results are obtained for determination of peak widths, where
the non-linear algorithm improves accuracy by a factor of 50÷100, even though it features a pre-
cision comparable, and in some cases worse by a factor of up to2 when compared to the linear
algorithm. However, the advantage of higher precision for the linear algorithm is shadowed by the
dramatic poorer performance in terms of accuracy.

Finally, the detection efficiency was assessed in terms of probability of undetected and artifact
peaks. The tests show that also in this case the non-linear algorithm performs significantly bet-
ter, demonstrating improvement factors in excess of 1 orderof magnitude for both undetected and
artifact peaks.

These improvements in filtering and peak detection algorithm performance pave the way for a
more efficient read-out technique for SiPM, based on the analysis of the current signal, rather than
the charge. Such read-out technique, as described in section 2.3, is intrinsically faster than charge
integration, and can be used to reduce the effects of after-pulsing noise, for which to date there is
no significant measure of control at the manufacturing stage, such as in the case of cross-talk noise.
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