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ABSTRACT. Read-out of Silicon Photomultipliers is commonly achi@g\wsy means of charge in-
tegration, a method particularly susceptible to aftesimg noise and not efficient for low level
light signals. Current signal monitoring, characterizgcehsier electronic implementation and in-
trinsically faster than charge integration, is also moritable for low level light signals and can
potentially result in much decreased after-pulsing noffeces. However, its use is to date limited
by the need of developing a suitable read-out algorithm ifigmad analysis and filtering able to
achieve current peak detection and measurement with tltkedg®ecision and accuracy.

In this paper we present an original algorithm, based on@epiese linear-fitting approach, to
filter the noise of the current signal and hence efficientgnidfying and measuring current peaks.
The proposed algorithm is then compared with the optimaddinfiltering algorithm for time-
encoded peak detection, based on a moving average routideassessed in terms of accuracy,
precision, and peak detection efficiency, demonstratiqgavements of 2 orders of magnitude
in all these quality factors.
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1 Introduction

1.1 Silicon Photomultipliers

Sensors capable of detecting single photons have fouretdliff applications in diverse fields such
as astronomyl], 2], laser ranging 3], biomedical imaging 4], Positron Emission Tomography
(PET) B—7], optical time domain reflectometng] and beam loss detection in particle accelera-
tors [9] to name a few, replacing in such applications the formerafiggnotomultiplier tubes0].

These developments call for low cost, small dimensions dgtd &amplification photon count-
ing detectors, and have triggered a growing interest inntegears on the development of solid
state technologies, in particular related teadanche_Roto Diodes (APDs). Amongst these de-
tectors, the highest amplification, sufficient to discriat@n single photons, is achieved by APDs
operated well above the breakdown voltage, in the so c@lkider modeknown as $hgle Photon
Avalanche [ibdes (SPADs)11]] .

In a SPAD, a single impinging photon which creates an elaectrale pair in the depletion
region initiates a self sustaining avalanche process fethéylarge reverse voltage, creating a
signal large enough to be detected. The avalanche is théohgdioff, orquenchedby suitable
circuitry, until no current is flowing anymore, the junctiocapacitance recharges, and the device



Figure 1. Photograph of a SiPM. The individual cells forming the gsrare visible.

is ready for another detection. However, SPADs are intdalli digital devices, as the number
of photons creating electron-holes pairs within the sanataache event does not influence the
amplitude of the signal, thus preventing their use for sirgfiot light flux measurements.
Increase in the dynamic range of these sensors has been stesexh by replicating the SPAD
structure into many cells connected in parallel to a singkpat channel, resulting in the so called
Silicon Photo Multiplier (SiPM). Bi-dimensional, closely packed arrayfsup to 500 independent
SPADs per square millimeter are now available commergcially example of a SPAD array is
shown in figurel. Such arrays provide an output signal proportional to th&ent light, respond-
ing with macroscopic currents of some mA to each photon tided he SiPM retains the photon
counting ability of the SPAD while outperforming it dran@lily for dynamic range and recovery
time, hence allowing use of this technology in the fields néog single shot light flux measure-
ments. Nowadays SiPMs are widely used in diverse applizatiocluding fluorescence analy-
sis [12, 13, fluorescence lifetime measuremehd], single molecule detectiorlp] and PET [L6].
Furthermore, due to their small dimensions and rather Idvingic radioactivity, SiPM are also
considered to be promising candidates for light detectorarie event searches applications.

1.2 SiPM noise

One important limit to the successful application of SiPMwever, is constituted by noise. Use
of high-quality materials and state of the art device faiian techniqgues minimize the number
of impurities and defects that contribute to noise; howeitestill stays significant, especially in
low light conditions, making noise an important branch cfe@rch in the fieldl[7, 18]. Indeed,
high levels of noise make it impossible, when light levels arodest or measurement precision
is a priority, to reliably measure light fluxes, and limit $IRipplicability in these cases to on-off
photon detectionl9].

Noise which significantly contributes to counting error§iBMs is caused by three phenom-
ena:

e electron-hole pairs created in the depletion layer by remtteermal ionizationdark counj.

e parasitic avalanche triggering by photons created duripgraary avalanche and migrated
to a neighboring celldptical cross-tall. Optical cross talk has been reported to be sensibly



reduced for SiPM featuring optical trenches: strips of maktevith different refraction index
placed between neighboring cells, which deflect photony drean the active arealf).

¢ time delayed release of a hot carrier by a trap level due teifaptions in the lattice, leading
to a time delayed second avalanche phenomeafber{pulsing.

One important effect of these noise sources is that darleramd afterpulsing signals in par-
ticular are indistinguishable fromraal event, and can therefore lead to erroneous counting. This is
not immediately applicable to cross-talk noise, whoserdaution is to overestimate a given event
amplitude, rather than creating spurious counts. Howdyevjrtue of their high dynamic range,
SiPMs are virtually insensitive to dark noise when used espnce of medium to high intensity
short light pulses of a few ns duration, as the combined &igmraing from several cells firing at
once due to inbound photons easily overshadows the sigmal dlark noise random firing cells.
The other two noise sources however cannot be ignored, anbleceorrected, by adjusting the ex-
pected signal distribution of the SiPM, only within the &ttal effects of shot noiselB, 20-22].

Reduction of cross-talk noise can be obtained by modifyirgdtructure of the SiPM at the
manufacturing stage with the inclusion of optical trenchagter-pulsing is instead more difficult
to deal with, and it also increases when lowering the tentperan the junction, which results
otherwise in the positive effect of reducing the dark noikevertheless, the error associated to
after-pulsing is mainly due to the readout procedure comynosed for SiPM, which relies on
charge integration over a defined gate time: all events mapgavithin this gate time are hence
superimposed, so that afterpulsing and signal are no mstiagliishable.

An alternative read-out procedure, based on direct detecii the signal peak current in the
time domain, would instead allow discrimination of aftendging noise from signal, and ultimately
more reliable operation of SiPM for light flux measuremenbwsver, such procedure faces the
challenge of reliably extracting the signal informatioorfr the complex waveform constituting a
SiPM current signal (see e.g. the signal shown in figlile Standard linear noise filtering algo-
rithms, indeed, fail to provide accurate results espaciallthe high sensitivity operation mode,
characterized by high overvoltage, in which dark noise peak more closely packed and super-
impose severely.

In this paper, after a basic description of SiPMs and thgiicgl output signal, we analyze
more in depth the noise reduction advantages linked to teeotipeak height monitoring over
charge integration and describe the difficulties met by comignused analysis procedures. We
then describe an original, non-linear algorithm for noiteriing and SiPM current signal analysis,
which overcomes the limitations of standard linear altivea, and extracts current peak height
and rise time accurately even in presence of high intentsidy) frequency noise. Finally, we em-
pirically compare the two approaches, showing a signiflgdigtter performance of the non-linear
analysis proposed.

2 SiPM structure and working principle

2.1 Individual SPAD cells

The SiPM signal results from the superposition of the sigdaie to the individual SPAD cells in
the array; thus, analysis of the SiPM signal rests on theadiparprinciple of the individual SPADs.



Figure 2. Equivalent circuit of a SPAD in the current-mode outputfeguration R3].

If individual SPAD cells are biased above the breakdownagmV,, the avalanches triggered
are self sustaining, and need a suitable control circuitigrdler not to persist indefinitely. The pro-
cess of turning off the avalanche, readying the device fothar detection, is known agienching
and can be achieved in two different ways: actively and pabsi

Passive quenching is the most elementary way of quenchimtythee one still used in SiPM.

It makes use of a large resistance, of about 1Q0Qik series to the SPAD: when the current rises
due to an avalanche event, a large voltage drop developssattre resistance, which reduces the
external voltage across the SPAD belgyy quenching the avalanche. Passively quenched SPAD
cells are well described and reduced to an equivalent &eitcuit in the work of Cova23]. When

the avalanche is triggered and the voltage drop developBeoguenching resistd®_, the voltage
across the diode is kept above breakdown by the charge stoted capacitances in parallel with
the diode: the junction capacitance and the capacitandeeadibde with respect to ground, with
total effective capacitand@. As the capacitances discharge with a time con®a@f with Ry being

the internal resistance of the diode, the voltage acrosditite drops, together with the current,
until the latter eventually falls below thiatching currenf at which level the probability of the
avalanche turning off out of pure statistical effects ismegligible, and the avalanche is quenched.

The leading and restoring edges of the current peak are lierec® two different phenomena
and present timescales which differ by several orders ofnihaade: the rise time of the peak is
driven by the velocity of the charge carriers avalanche iplidation process and the immediate
effects of opening the switch in the equivalent circuit shawfigure2. This results in a theoretical
rise time of the order of tens of picoseconds, and is thus rfastkr than the restoring time, which
is instead linked to the time constaRiC, and is about 3 orders of magnitude longer.

From the discussion presented 28], it is shown that the current passing through the diode
shows a peak whose maximum value is given by:

lp = AV/Rg = (Vext—Vb)/Ra (2.1)

whereAV, also known as “overvoltage”, is the difference betweenahplied bias voltage and
Vext the breakdown voltage, ar) ranges from a few hundred for wide area devices with thick
depletion layers up to several thousaltifor small area devices with thin depletion layers, which



is the case for most SiPMs. Equatidh]) is thus relevant insofar as the current peak signal is
monitored, as suggested in this paper. On the other handyech@egration is usually preferred
instead, and the relevant quantity becomes the total charie pulseQp.. Qpc can be obtained
by integrating the current signal or, from the equivalentui analysis, estimate as the total charge
stored in the total capacitance in parallel with the dioddlie given overvoltage:

Qpc = AV -C (2.2)

2.2 Signal form model

Full analysis of the equivalent circuit shows that the aoirecross the diode after an avalanche has
been triggered is described by a sum of two exponentials difittring time constants:

lg = o (e<—at> _ e(—Bt)) (2.3)

As mentioned above, the time constant of the rising expdaaleist of the order of tens of
picoseconds, whilst the restoring edge time constant ie Bwtder of magnitude larger. Therefore,
the fine structure of the peak rise time is inevitably losthia 410 GHz bandwidth commonly
available for the electronic read-out. However, the peagttiés correctly sensed, as the decrease
in current due to the falling exponential is usually neggigiin the time scale of electronic signal
acquisition. Therefore the SPAD signal, and hence, by saséion, the SiPM signal, can be
approximated by a rising straight line and a falling expdiatn

Py - e th<t<tp
I(t) = (2.4)
Pi-exp( — 2 In(Re))  tp St tptres

trec

whereRy is the peak heightp the time when the avalanche is triggergglis the rise timetec the
recovery time defined as the time which the current takesdp delow ¥/ R; of its peak value and
t, is the time when the peak occurs, equébt® tr. The time constants andIn(R.) /tec are found
empirically and are related to the amplifier rise time andgrasluctRyC of diode resistance and
total capacitance respectively.

Figure 3 shows the superposition of the approximation describedjiraton @.4) on a real
SiPM dark noise signal. As expected from the analysis of thuvalent circuit shown in figurg,
the approximation follows the signal very closely, apaohirrandom deviations due to noise. In
this work, the signal form shown in equatiop.4) has thus been used to approximate the SPAD
signal.

2.3 Read-out techniques

It is established since early literature in the subjd& R3], that there exist 3 main ways to read
the output signal of a SiPM following an avalanche:

1. Measuring the total charge displaced by the SPADs.
2. Measuring the voltage drop across the SPADs.

3. Measuring the current signal across the SPADs.
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Figure 3. Superposition of the approximated signal form descrilmethé text on a real SiPM dark noise
signal. The approximation is shown in red, as a smooth sile] the real signal is instead shown in blue,
and is recognizable from the random noise oscillations.

Measuring the total charge displaced by the SPADs througheagated charge to digital converter
is the most common method of analysis, and is based on egu@ti?). The advantage of this
method lies in it being less sensitive than the others todriflequency electrical noise, as the gate
time for charge integration needs be in the order of tensdseconds to achieve acceptable signal
to noise ratios (SNR), thus providing an in-built time aging low pass noise filter. However, it
does present the shortcoming that any charge fluctuatiaihe igate time due to phenomena other
than the signal to be measured are erroneously added uprticuts, the timescale of tens of ns
is compatible with large afterpulsing contributions in caonly used SiPM device2p], marking
this readout method as particularly susceptible to aftsipg noise errors.

From the point of view of the applications, problems ariséhbwhen the SiPM are operated
in presence of medium to intense light pulses and when lésasa light or dark noise alone is
measured. Indeed, in the first case, intense light pulsdscatikse several cells to fire at once,
linearly increasing the probability of registering afteiging effects within the gate time. On the
other hand the gate time also becomes very relevant whemda is measured: in this case, such
error effectively prevents the technique from being agpliethe high overvoltage regime, when
the probability of a second dark count happening within thie gime becomes not negligible (dark
count rate> 10 MHz).

Measuring the voltage drop across the SPAD is usually naternas a read-out method, as it
shares all the pros and contras of measuring the currerdlsigut the equivalent circuit analysis
reported in R3] shows it to be intrinsically slower and hence less precise.

Monitoring of the current signal across the SPAD, based araton @.1), is instead also
used, although more seldom, due to it being more sensitiedetdiric noise and requiring more
involved data processing if signals overlap: thereforenlyy becomes interesting as an easier to
implement alternative to charge integration when large $\iesent, e.g. in the case of medium
to high brightness light pulses, and avalanche events altespaced. However, not requiring a
gate time for integration, the method is intrinsically &ashan charge integration and thus couples
significant advantages on afterpulsing noise reductioh hatter performance in presence of high
frequency dark counts such as those registered in the higivaltage regime.



Application of current signal monitoring to lower SNR andgjlhievent rate is withheld by the
need of developing a suitable data processing algorithmvad filtering of electrical noise, fast
response, and high precision. The following sections pteaenovel such algorithm, allowing
extension of current signal monitoring to low SNR and highrevate experiments.

3 Algorithm description

3.1 Challenges posed by the SiPM signal

To effectively use the peak height readout option, an algarioptimized for high precision in
measuring peak heights and rise times is needed. The algodiescribed in this paper is designed
to analyze a continuous signal from a SiPM, composed of akglgferent avalanche events occur-
ring at random times. This signal will be referred to in thédi@ing astrace The difficulties in
achieving the goals listed above with existing algorithiasr the following issues:

e Changing baseline of the signdior high overvoltages, when the dark count rate increases
substantially, peaks are often superimposed on each ofitierawtime delay, so that the
algorithm needs to identify and measure peaks startindfatelit heights.

e Electrical noise when mainly first order peaks are measured, the signal &emaitio can
be as low as 5 in the worst cases (low overvoltages and higlr@héc noise), giving an
uncertainty of 20% on the peak height if it is measured diyettading to the need of a
filtering and fitting algorithm.

o Very different peak heights and widththese features change drastically with overvoltage
and SiPM model, hence the code has to be able to adapt itsedsuring different features
without the user having to vary and optimize the parametarevery measurement.

e Random event distributionwhich presents problems if a filtering fully based on the fre
guency domain is used.

To identify the peaks starting and end points, a standatddrévative threshold method such
as the one described in secti8® can be used, insofar as a suitable filtering algorithm is used
beforehand to decrease the signal to noise ratio to a lewetfmugh for no peaks to be either lost
or mistakenly counted. However, ordinary linear filters andlysis codes, based either on the time
or frequency domain, have serious difficulties in meetirgrguirements listed above, therefore
the algorithm we developed uses instead a non-linear agiproa

3.2 Linear fitting algorithm

The non-linear algorithm presented in this paper and desgrin detail in the next section was
compared with a standard linear filtering and peak findingritlym based on a moving average
routine, which is the optimal solution for linear filterind time encoded, discrete events signals,
such as SiPM peak24].

This linear code first filters the trace by calculating fortepoint the average value bfpoints
around it, and assigning to it this valud:is thus known as the averaging window width. This fil-
tering ensures, if it is done with a large enough valu&lpthat noise spikes are flattened and not



mistaken for peaks. Then, the derivative of the filtereddliaccalculated by the ratio between the
vertical and horizontal distance of two poirig points apart in the filtered trace, whe¥g is the
derivative window width: the derivative trace shows at fhant spikes in correspondence of every
peak. Finally, any derivative spike that overcomes a aettaesholdy, identifies a peak. The sta-
tionary points of this filtered trace for each identified peake taken as its starting and end points.

In this work, in order to choose optimized values for the patersN, Ny and Dy, we gen-
erated artificial SiPM signals following ecR.@), with white noise being simulated with a 20 GHz
bandwidth. The artificial signal homogeneously spannedutin the range of event frequencies
and SNR commonly met in the regions of interests of SiPM: tN& Slefined as the ratio between
the rms amplitudes of signal and noise, was varied in thevate - 20 and the frequency, ex-
pressed as the expected number of events happening in ewadaecovery time, varied in the
interval 3+ 0.1. The values oN, Ny and Dy, have been varied and the optimum set which opti-
mizes peak detection efficiency (i.e. the number of pealextid / total number of peaks) has been
chosen for use in the optimized linear filtering algorithm.

An example of the results of the application of such procedaran actual experimental trace
are shown in figurd.1.

3.3 Non-linear fitting algorithm

The non-linear algorithm reported in this work is based oreagwise linear fitting approac%-
27), i.e. on the idea of approximating the investigated curith wtraight lines of different lengths
and gradients and optimized endpoint locations, deperainipe features of the analyzed signal.
The algorithm leading to the choice of each segment endpaieferred to abreakpointsis what
differentiates different piecewise linear fitting approas. To do this, our program uses 3 peculiar
features:

1. Preliminary analysis for problem scaling
2. Tapered limit condition for insertion of breakpoints
3. Back-tracing optimization

The preliminary analysis allows the program to tune thepatars needed, listed later in this sec-
tion, to the particular trace which is analyzed. It is paried only on a smaller sample of the trace,
and is carried out before the actual trace is analyzed. Tescalculates an estimate for signal
gualities such as SNR and expected peak height, henceirfiglfihe requirements detailed at the
point “very different peak heights and widths section3.1

In this phase, the code makes use of an efficiency optimizéstjrey time-domain filtering al-
gorithm (based on a moving average routine with large auegagidth compared to the expected
peak rise time) to obtain a first estimate of the peak chaiatits (estimating the average peak
height and rise time with & 30% error), and to set the needed thresholds, which we Vgt te
aspreliminary parameters

These consist in the average peak height and rise tignandt,_,, and in the standard devia-
tion of their distributionsh, andt, 5. From these numbers, it is possible for the program to have
a scale of the peak heights, and also an estimate of the aveafige of derivative to be expected



in presence of a peak (from the ratio between peak heightisadime). A third preliminary pa-
rametergin, is taken from the maximum deviation of the oscilloscopedriom the filtered trace,
and represents an estimate of the maximum noise amplitudally gji, is computed as the av-
erage standard deviation of the experimental points arthmélitered line in the regions of higher
derivative values (corresponding to the peaks). This ide@@s the noise contribution to the signal
is usually much lower in the regions of the peaks as compar#uktflat regions in between them,
due to the rise time of the avalanche event being much snthberthe amplifier rise time, thus
saturating its frequency domain response in those regions.

Preliminary parameters are only computed for a smallergfatte full trace, through a fully
automatic routine not requiring any input from the user, k& a computing time per analyzed
point slightly longer (on average about 35% more) than thepding time taken by the analysis
of the trace itself. The influence of the preliminary analy@n the overall computing time is thus
chiefly regulated by the percentage of the trace which isuded in it, and can thus be made
negligible if the experimental conditions do not vary sfguantly during the experiment and only
a small portion of the trace can be used in the preliminaryyaiza

For applications where small signals are expected, raguiti only a few cells firing, the
preliminary analysis can be performed on a rather short soade: it is only required that a few
dark noise peaks fall into the part of the trace included sgheliminary analysis. For applica-
tions where large signals are expected, it is still posdiblperform the preliminary analysis on
dark noise peaks alone: events resulting in taller peaksstitilbe discerned. A simple amplitude
threshold can then be used to discriminate dark noise peaksthe sought signal. As an alterna-
tive, this threshold procedure can be directly built inte tode by requiring that at least one large
signal peak is included in the preliminary analysis; thi# seisult in dark noise peaks being classed
as noise and ignored by the fitting routine.

Once the preliminary parameters have been computed, treammalyses the trace from the
beginning and draws a best fit line through the first two poiritsthen iteratively includes the
following point in the fit, and accordingly updates the twoagmaeters of the best fit line together
with the new point deviation from the best §itand the overall goodness of &t (measured as the
standard deviation of the data distribution around the fi@stA quality test is then carried out to
see if the new point assigned to the line is likely to actubyong to it. This test can be failed by
failing any of the following two conditions:

1. € exceeds the preliminary parametgf, measuring the average noise amplitude.
2. o0 exceeds the parametef,, measuring the expected goodness of fit.

Point1 improves the definition of the peak start point, avoiding tha initial points of the peaks
are mistakenly accounted for noise; moreover, the peakstart location is sharpened in a later
stage of analysis described in the following.

Point 2 serves instead to obtain precise measurement of the pegdotiolp and is where the
second feature of the non-linear algorithm, i.e. the tappdireit condition for insertion of break-
points, plays its role. Settingj,, = 0im as calculated in the preliminary analysis would be too
stringent a condition in flat regions between peaks, regyiti too many tests to be failed. On the
other hand, as discussed in sectibfy, peaks develop on a very short timescale, only limited in



practical applications by the amplifier risetime, hencetehbise oscillations are not critical on the
leading edge of a peak, and the error conditiorogp can be more stringent. Therefor,, is a
limit condition tapered frongji, to gjim as a function of the vertical length of the line under analysi

In particular,oj,, = &im for null vertical distance of the first point assigned to time Ito the
last one assignedy;,,, increases then linearly untti = oiim when the vertical distance equals
the average peak height measured in the preliminary asalyhis solution guarantees very strin-
gent breakpoint condition in the final region of the peaksemwhdditional points are likely to be
erroneously included in the peak as the derivative only gl flattens, and results thus in very
sharp definition of the peaks.

When any of the above two tests is failed, the new point ismduded in the fit and a break-
point is inserted. This is the point when two different besliies merge: i.e. the starting point of
a new best fit line. When this happens, the code performs ttietbacing optimization mentioned
above, in order to obtain a sharper definition of peak starntpoThe line just ended is traced back
again with the same procedure used to fit forward: the pogttjafore the first which was assigned
to the current line (and belongs, therefore, to the previma is considered for inclusion in the
current line by being tested against the conditions ef &im ando < gy, If the tests are passed,
the best fit erroo calculated for this back-traced line is then compared viightest fit erroo of
the previous line and the configuration which minimizes ttrereis chosen. If this results in the
starting point of the current line being changed, the samepisated for another point backwards,
until the tests for inclusion are failed and the program cameron to the next line. The addition of
this backward tracing process to the algorithm signifigainitreases the precision in localizing the
breakpoints. The presented algorithm as a whole produessrésults well compatible with the
much longer procedure of finding the optimum breakpointtimss in the whole trace by making
a standard piecewise linear fitting, e.g. by trying all polesbreakpoints, calculating the goodness
of fit o and then choosing the breakpoint position which minimizes

Once this filtering procedure has been carried out, peakisianéfied with a standard deriva-
tive threshold procedure, analogue to the one describethéolinear code used for comparison,
with the difference that the derivative value is not takerdifference of points across a derivative
window width, but is simply the gradient of each segment thun

An example of the results of the application of such procedaran actual experimental trace
are shown in figurd0.

4 Performance measurement

A full characterization of linear digital filters, usefulffoomparing different solutions, can be usu-
ally given by quoting their kernel: i.e. the response to aaidirac’s Delta pulse. However, when

this procedure is applied to the non linear filter discusaddis paper, the filters follows the signal

perfectly, and the kernel turns out to be ideal. Therefar@rovide a quantitative statement on the
increase in peak determination performance obtained whimg the non-linear filter against the

optimal linear technique, both techniques have been appliea set of test traces with different

characteristics, and the results compared.

—10 -



4.1 Characteristics of the test signal

The most challenging scenario for a filter intended to idgrgeaks from a SiPM signal is the
detection of randomly occurring single cell peaks, as ramtime distribution implies that no ex-
ternal trigger can be used, and single cell peaks are thdesnsignals produced by a SiPM, and
are hence associated with the smallest SNR. A suitable seesurement is hence the measure-
ment of dark noise alone, for which the event time distrimutis random, and mostly single cell
peaks appear, due to dark noise being dominated by a Poisdmtics R8].

The test signal used for algorithm comparison consists dfiascontinuous trace filled with
randomly placed, unit height peakd,(= 1), as described by equatio?.4). When analyzing such
trace to identify and characterize its peaks, two paramseticthe signal have been tested and iden-
tified to have the most influence: the SNR and the peak frequel® mentioned in sectioB.2,
the peak frequency is defined as the average number of pealiging in one recovery timgec,
as this gives a direct measure of how many peaks are likelygeranpose.

The remaining peak characteristics are set to resemble oomexperimental values (see
e.g. R9-31]. The peak rise timég is thus set to 1 ndR. is set toe to simplify equation 2.4),
and the recovery time constapf; is set to 30 ns.

The performance of the algorithms is measured by detergitfie distributions of the errors
in the determination of peak height and width. The resulthefalgorithms are compared with the
true values, known for each generated trace, and an higtogfshe difference between true and
measured peak height and width for a sample of 100k peaksiyagimen SNR and frequency con-
figuration is plotted. This procedure results in the essabfient of a bell shaped curve, described
by a mean and standard deviation.

The percent difference between the true value and the mesacbfdistribution gives an indi-
cation of the systematic error introduced by the algoriteath as e.g. the decrease in peak height
due to smoothing of the peaks for the linear algorithm. Thedard deviation of the distribution
is instead linked to the algorithm precision, and is due atistical error, which increases with de-
creasing SNR, and expresses the uncertainty in the measuiretnis also expressed as a percent
of the true value.

To complement these two observables, the probabilitieseafsuring a non-existent peak (ar-
tifact counts) or missing an existent one (undetected peaksalso measured as respectively the
number of peaks mistakenly detected and the number of n@ttdet peaks over the total num-
ber of true peaks present in the sample, i.e. 100k. Thesalpitities provide information on the
reliability of the algorithm at the given SNR and frequenegimes.

4.2 Results

Figure 4 shows the mean percentage error on peak heights detemniratboth the linear and
non-linear algorithms as a function of SNR (x axis) and fezgpy (curves parameter).

The expected peak height underestimation of the linearrigthge, due to smoothing, is re-
flected in the negative values of the corresponding curvéseifigure. On the other hand, the non
linear algorithm is instead characterized by a systemaak fheight overestimation, reflected in
the positive values of the corresponding curves. This istdugise being included in the peak
line until the error control is flagged: as it is confirmed bg #ffect getting less severe for smaller

—-11-—



Linear Algorithm Non-linear Algorithm

= 4 ; :
= = f e * 05
= -6 /’
% 2 ./g,s.ﬂ—-«-ﬂ"“‘ - &
o o= B .70/ &\\
x _g \
3 of 041 A B —_— Frequency
a 94 / A\A
= -104 . ® ® o \‘EA —a—0.1
S ~ A —— —s—05
S -11{ 0.31 \A\A - _A_1'
— r ] \
- T 55
o V] 3
= -14 T T T T 0.2 T T T T

0 5 10 15 20 0 5 10 15 20

SNR SNR

Figure 4. Mean percentage error on peak heights determination fthetlinear and non-linear algorithms
as a function of SNR (x axis) and frequency (curve paramefeequency defined as the average number of
peaks occurring in one recovery timg..

SNR. However, in the range of SNR and frequency spanned bg@lge value of the non-linear
algorithm overestimatiors 0.2+ 0.5%, is smaller than the absolute value of the linear algarith
underestimation by a factor ef 25, confirming the better performance of the non-linear ritiggm.

The response to variation in SNR and frequency is similaoth lcases: increasing frequency
or decreasing SNR leads to larger errors. In particulalyingrthe frequency by a factor of 3,
between 3 and 1, leads to the peak height errors decreasimdglotor of about 40% in the case of
the linear code and 30% in the case of the non-linear coden aWweraged over all the SNR values.

Similarly, decreasing SNR leads to increasing errors, kewenly moderate differences,
within a factor of 2, correspond to variations in SNR betw@esnd 20. Whilst the trend in fig-
ure4 seems to suggest a sharp increase in mean error for lowersvaftENR, it should be noted
that in practical applications it is unlikely to have a SNR hence this part of the curve has no
consequences in practical applications.

Figure5 shows instead the spread of the peak heights around the rale@s vi.e. the precision
of the corresponding algorithm.

The non-linear algorithm performs sensibly better thanlithear alternative, especially for
SNR larger than 5, relevant for most applications: with apriovement in precision of about 1
order of magnitude. However, the non linear algorithm is enaffected by increased frequency,
and the precision improvement factor moves from an averageSNR of 12 to an average of only
8 when moving from frequency 1 to 3.

Figure 6 and 7 illustrate the same analysis shown above applied to therdigtation of the
peak rise time.

With reference to figuré, differently from the case of peak height determinatior ithean
error contribution to the linear algorithm is strongly domied by the averaging window chosen
for the moving average routine, of 25 ns for the data presengecordingly, the non linear al-
gorithm features a much greater accuracy, achieving sullnosvfor SNR larger than 5. In both
cases, the dependence on frequency is not critical, andbmdgmes relevant in the case of the
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Figure 6. Mean percentage error on peak rise time determinationtbfthe linear and non-linear algorithms
as a function of SNR (x axis) and frequency (curve paramefeequency defined as the average number of
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non-linear algorithm at high SNR. In these conditions, éasing frequency corresponds to lower
and lower values of the peak rise time, leading eventuallynierestimation of it. This is due to
the increasing superpositions of signals for higher fragies, resulting in the leading edge of the
rise being shadowed by the previous peak.

Figure7 shows instead that, for high SNR, the precision of the noeali algorithm is in fact
worse than the linear alternative. This is again due to tleeaing window dominating the process
in the linear case: for high SNR this effect is even more pumeed, and hence the measured peak
width varies only slightly from the value of 25 ns, leadingotetter precision.

— 13—



Linear Algorithm Non-linear Algorithm

X 91 i Frequency

. l —a—(0.1 ——0.5

S i K a1 —a—2

LLl 4

5 d ’

E 4

: 6- A

a) ] N

2 5-

= ] :

3 41

U) ] L] T T
0 5 10 15 20

SNR

Figure 7. Standard deviation of the peak rise time distribution ahltbe linear and non-linear algorithms
as a function of SNR (x axis) and frequency (curve paramefeequency defined as the average number of
peaks occurring in one recovery timg..

Linear Algorithm Non-linear Algorithm

0.7 1
0.6

-
o
1

Undetected peaks [ % ]

A ]
6 0.4
° Frequency

4 i o 03 / e —+—01
7 02y ¥ 7 —e—0.5
24 A Je ° ° 2 o e 1
/%. Ly /“ — . o —e—2
N “ 0'," (
° - 0.0 if; 3
0 5 10 15 20 5 10 15 20
SNR SNR
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(x axis) and frequency (curve parameter). Frequency defisdtie average number of peaks occurring in
one recovery timgec.

Finally, the information on peak height and rise time erisrsomplemented by the data re-
ported in figure8 and 9, showing respectively the percentage of undetected aifdcarpeaks
(where noise spikes have been wrongly classified as pealghence characterize the reliability
of each algorithm. As expected, both algorithms improvér therformance dramatically depend-
ing on the level of noise, for low SNR, whilst leveling off agher values to a plateau representing
the maximum reliability of each algorithm. The results canming the frequency dependence are
also immediately understandable, as higher frequenciesspgond to more undetected, and less
artifact peaks. However, the impact of frequency is onlyigigant for the undetected peaks, whilst
it has a smaller impact, of about 50% the average value, fifacrpeak detection at high SNR.
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As it was the case for the analysis of the precision and acgutiae qualitative behaviors of
the two algorithms are remarkably similar, only differingrminor details, such as e.g. the more
gradual dependence on SNR of the non-linear algorithm dmdlasgly to the previous analysis,
a slightly reduced dependence on frequency. However thellabsvalues show a considerable
performance increase for the non-linear algorithm in exoé4 order of magnitude.

4.3 Comparison with experimental data

Figure10and11 present an example of both the standard linear proceduréhargoposed non-
linear procedure applied to an actual experimental tratairdd from a SiPM dark noise signal in
the high overvoltage regime. Itis seen how the non-linealysis results in a series of points along
the curve, representing the breakpoints of the piecewigaltifit. Drawing a straight line between
each pair of points would result in the curve as fitted by ttaecd he linear analysis results instead
in a continuous, smooth curve. The results of the post-gsicg, which identifies the peak start
and end points are also shown in each graph, in the form of gtaakand end points. It is easily
seen from the peak height points how the linear code consligtenderestimates the peak height,
especially for very sharp peaks. It is noted that the pararsaif the linear analysis shown in
figure 11, and in particular the averaging window width, have beernuped for the particular
experimental signal shown, and would therefore perforng peorly in different conditions, e.g. in
low overvoltage regime. Nevertheless, it is still possioleee how the linear analysis consistently
overestimates the peak rise time as well, as the start palings/s precedes the real peak onset and
the end point always follows in time the point correspondimghaximum peak height.

Finally, inspection of the tall, second order peaks at tipppreximately 750 and 1100 ns,
shows how the linear analysis, differently from the noretin algorithm, fails to identify these
peaks as coming from the superposition of two differentselyp spaced signals and counts them
instead as higher single peaks. That this is not the casesildevifrom the sharp gradient sign
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Figure 10. Filtering and fitting analysis of an experimental wavefararried out with the non linear al-
gorithm presented. The waveform has been acquired from M BiRhe high overvoltage regime without
any impinging light signal (dark noise only). Start and emihjs of each peak shown as calculated by the
post-processing, threshold based process describedtiors&c2
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Figure 11. Same waveform shown in figur&0, but analyzed with the linear algorithm.

inversion happening at about half height in both cases, swctearly identified by the non linear

algorithm.

It should be also added that it would be erroneous to consigese peaks as second order
peaks, which would indicate quasi-simultaneous firing oferaells together due to, e.g. cross talk
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or a light signal. Indeed, the distance between them can lasuned on an oscilloscope to be in
the order of few ns: about 2 orders of magnitude longer thguired for the avalanche forming
process, and even longer in fact than the amplifier rise tifterefore, the peaks are instead best
interpreted as randomly occurring closely spaced peak msatly analysed with the non-linear
algorithm.

Such improvements in performance prove can prove crucpkaally in applications where
dark noise alone or small amplitude signals are analyzedexample of the use of this algorithm
can be found in32]. In this paper, the improvement in performance allows aeyecise dark
noise analysis also for high overvoltages, and leads to dsilpility of explaining the Gaussian
spread observed in SiPM peak height spectra and assessintatiufacturing quality of SiPM.

5 Conclusions

In this paper, we have presented a novel non-linear algorittimized for current peak detection
and measurement in SiPM signals. The algorithm is based wstaro piecewise linear fitting
approach, and allows noise filtering in high noise signgtécgl of low light levels and dark noise
measurements.

Empirical comparison of this algorithm with an optimal larealgorithm, based on a moving
average routine, shows a considerable improvement inpeafuce. In particular, when it comes
to peak height determination, the non-linear alternatmproves accuracy by a factor of 25 and
precision by a factor of 8 12. Similar results are obtained for determination of peakivg, where
the non-linear algorithm improves accuracy by a factor o£3®0, even though it features a pre-
cision comparable, and in some cases worse by a factor of Bpmieen compared to the linear
algorithm. However, the advantage of higher precisiontierlinear algorithm is shadowed by the
dramatic poorer performance in terms of accuracy.

Finally, the detection efficiency was assessed in termsaffgiility of undetected and artifact
peaks. The tests show that also in this case the non-lingarithin performs significantly bet-
ter, demonstrating improvement factors in excess of 1 asflaragnitude for both undetected and
artifact peaks.

These improvements in filtering and peak detection algoriperformance pave the way for a
more efficient read-out technique for SiPM, based on theyaizabf the current signal, rather than
the charge. Such read-out technique, as described ins@c8ais intrinsically faster than charge
integration, and can be used to reduce the effects of afilerg noise, for which to date there is
no significant measure of control at the manufacturing stageh as in the case of cross-talk noise.
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