

### A Multi-preconditioned GMRES Algorithm

#### Tyrone Rees

Rutherford Appleton Laboratory

IMA Conference on Numerical Linear Algebra and Optimisation September 2012

Joint work with:

Chen Greif(UBC), Daniel Szyld (Temple University)

#### The specific problem we are interested in:

Consider solving

$$Ax = b$$

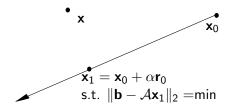
where  ${\cal A}$  is a large, sparse matrix, using a Krylov subspace method.

Suppose we have two (or more!) possible preconditioners,

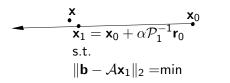
$$\mathcal{P}_1$$
 and  $\mathcal{P}_2$ ,

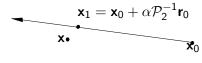
Can we (optimally) combine information from more than one preconditioner?













# Multi-preconditioning



#### Two relevant methods

# Multi-preconditioned conjugate gradients (MPCG): Bridson & Greif (2006)

- Combines multiple preconditioners automatically in a (locally) optimal way
- ▶ Requires A and  $\{P_i\}$  to be symmetric positive definite
- We lose the short-term-recurrence of PCG

#### Flexible GMRES (FGMRES): Saad (1993)

- ▶ Allows variable preconditioners e.g.  $\mathcal{P}_1$  on odd iterations,  $\mathcal{P}_2$  on even iterations
- Uses all preconditioners, but nontrivial subspace is being constructed and optimality properties are not fully understood



# Complete Multi-preconditioned Arnoldi

```
Pick \mathbf{x}_0, let V_1 = \mathbf{r}_0 / ||\mathbf{r}_0||.
Let Z_1 = [\mathcal{P}_1^{-1}V_1 \cdots \mathcal{P}_t^{-1}V_1] \in \mathbb{R}^{n \times t}
for i = 1 \dots \max its
       Q = AZ
       for i = 1 \dots i
              H_{i,i} = V_i^T W
               W = W - V_i H_{i,i}
       end
       W = V_{i+1}H_{i+1,i} (skinny QR factorization)
       Z_{i+1} = [\mathcal{P}_1^{-1} V_{i+1} \cdots \mathcal{P}_t^{-1} V_{i+1}]
end
```

# Complete Multi-preconditioned Arnoldi

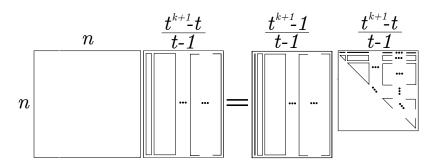
```
Pick \mathbf{x}_0, let V_1 = \mathbf{r}_0 / ||\mathbf{r}_0||.
Let Z_1 = [\mathcal{P}_1^{-1}V_1 \cdots \mathcal{P}_t^{-1}V_1] \in \mathbb{R}^{n \times t}
for i = 1 \dots \max its
       Q = AZ
       for i = 1 \dots i
              H_{i,i} = V_i^T W
               W = W - V_i H_{i,i}
       end
       W = V_{i+1}H_{i+1,i} (skinny QR factorization)
       Z_{i+1} = [\mathcal{P}_1^{-1} V_{i+1} \cdots \mathcal{P}_t^{-1} V_{i+1}]
end
```

$$\mathcal{A}[Z_1 \cdots Z_k] = [V_1 \dots V_{k+1}]\widetilde{H}_k$$



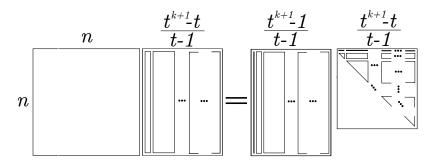
#### Complete Multipreconditioned Arnoldi

$$A[Z_1 \cdots Z_k] = [V_1 \dots V_{k+1}]\widetilde{H}_k$$



#### Complete Multipreconditioned Arnoldi

$$\mathcal{A}[Z_1 \cdots Z_k] = [V_1 \dots V_{k+1}]\widetilde{H}_k$$



#### Impractical!

#### Selective Multi-preconditioned Arnoldi

```
Pick \mathbf{x}_0, let V_1 = \mathbf{r}_0 / \|\mathbf{r}_0\|.
Let Z_1 = [\mathcal{P}_1^{-1}V_1 \cdots \mathcal{P}_t^{-1}V_1] \in \mathbb{R}^{n \times t}
for i = 1...
       Q = AZ_i
       for i = 1 \dots i
               H_{j,i} = V_j^T W
               W = W - V_i H_{ii}
       end
        W = V_{i+1}H_{i+1,i} (skinny QR factorization)
       Z_{i+1} = [\mathcal{P}_1^{-1} V_{i+1}^{(1)} \cdots \mathcal{P}_t^{-1} V_{i+1}^{(t)}]
end
```

### Selective Multi-preconditioned Arnoldi

```
Pick \mathbf{x}_0, let V_1 = \mathbf{r}_0 / \|\mathbf{r}_0\|.
Let Z_1 = [\mathcal{P}_1^{-1}V_1 \cdots \mathcal{P}_t^{-1}V_1] \in \mathbb{R}^{n \times t}
for i = 1...
       Q = AZ_i
       for i = 1 \dots i
               H_{j,i} = V_j^T W
               W = W - V_i H_{i,i}
       end
        W = V_{i+1}H_{i+1,i} (skinny QR factorization)
       Z_{i+1} = [\mathcal{P}_1^{-1} V_{i+1}^{(1)} \cdots \mathcal{P}_t^{-1} V_{i+1}^{(t)}]
end
```

$$\mathcal{A}[Z_1 \cdots Z_k] = [V_1 \dots V_{k+1}]\widetilde{H}_k$$



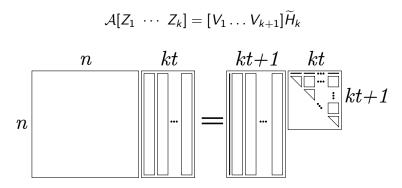
### Various possibilities for generating the search directions

Could replace  $Z_{i+1} = [\mathcal{P}_1^{-1}V_{i+1}^{(1)}\cdots\mathcal{P}_t^{-1}V_{i+1}^{(t)}]$  by taking a mix of all columns, say:  $Z_{i+1} = [\mathcal{P}_1^{-1}V_{i+1}\mathbf{1}\cdots\mathcal{P}_t^{-1}V_{i+1}\mathbf{1}],$  where  $\mathbf{1}$  is a vector of all ones.

Practical evidence shows "mixing" is typically more effective; no analytical observations to support this.



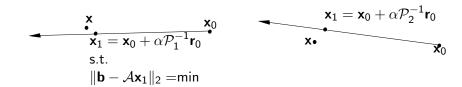
#### Selective Multi-preconditioned Arnoldi



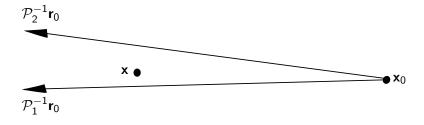
# Multi-preconditioned GMRES

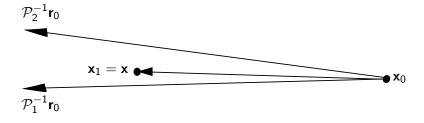
Find vector  $\mathbf{y}_k$  s.t.  $\mathbf{x}_k = \mathbf{x}_0 + Z_k \mathbf{y}_k$  i.e., find  $\mathbf{y}_k$  which minimizes

$$\begin{aligned} \|\mathbf{b} - \mathcal{A}\mathbf{x}_{k}\|_{2} &= \|\mathbf{b} - \mathcal{A}(\mathbf{x}_{0} + [Z_{1} \cdots Z_{k}]\mathbf{y}_{k})\|_{2} \\ &= \|\mathbf{r}_{0} - \mathcal{A}[Z_{1} \cdots Z_{k}]\mathbf{y}_{k}\|_{2} \\ &= \|\mathbf{r}_{0} - [V_{1} \cdots V_{k+1}]\widetilde{H}_{k}\mathbf{y}_{k}\|_{2} \\ &= \|V_{1}\|\mathbf{r}_{0}\|_{2} - [V_{1} \cdots V_{k+1}]\widetilde{H}_{k}\mathbf{y}_{k}\|_{2} \\ &= \|[V_{1} \cdots V_{k+1}](\|\mathbf{r}_{0}\|_{2}\mathbf{e}_{1} - \widetilde{H}_{k}\mathbf{y}_{k})\|_{2} \\ &= \|\|\mathbf{r}_{0}\|_{2}\mathbf{e}_{1} - \widetilde{H}_{k}\mathbf{y}_{k}\|_{2} \end{aligned}$$









## Comparison of costs

#### Costs at the kth iteration:

|          | Matvec. prods  | inner products                                | pre. solves    |
|----------|----------------|-----------------------------------------------|----------------|
| MPGMRES  | t <sup>k</sup> | $\frac{t^{2k+1}+t^{2k}+t^{k+1}-3t^k}{2(t-1)}$ | t <sup>k</sup> |
| tMPGMRES | t              | $(k-\frac{1}{2})t^{2'}+\frac{3}{2}t$          | t              |
| GMRES    | 1              | $\bar{k}{+}1$                                 | 1              |



## Comparison of costs

#### Costs at the kth iteration:

|          | Matvec. prods  | inner products                                | pre. solves    |
|----------|----------------|-----------------------------------------------|----------------|
| MPGMRES  | t <sup>k</sup> | $\frac{t^{2k+1}+t^{2k}+t^{k+1}-3t^k}{2(t-1)}$ | t <sup>k</sup> |
| tMPGMRES | t              | $(k-\frac{1}{2})t^{2'}+\frac{3}{2}t$          | t              |
| GMRES    | 1              | k+1                                           | 1              |

Easily parallelized



### Characterizing the search space

GMRES preconditioned with a right-preconditioner  $\mathcal{P}$  finds the vector that minimizes the 2-norm of the residual over all vectors of the form

$$\mathbf{x}^{(k)} = \mathbf{x}^{(0)} + \mathcal{P}^{-1}\mathbf{y}_k,$$

where  $\mathbf{y}_k$  is a member of the Krylov subspace

$$\mathcal{K}_k(\mathcal{AP}^{-1}, \mathbf{r}^{(0)}) = \operatorname{span}(\mathbf{r}^{(0)}, \mathcal{AP}^{-1}\mathbf{r}^{(0)}, \dots, (\mathcal{AP}^{-1})^{k-1}\mathbf{r}^{(0)}).$$



### Characterizing the search space

The extension for (complete) MPGMRES: the first two iterates satisfy

$$\textbf{x}^{(1)} - \textbf{x}^{(0)} \in \mathrm{span}\{\mathcal{P}_1^{-1}\textbf{r}^{(0)}, \mathcal{P}_2^{-1}\textbf{r}^{(0)}\}$$

$$\begin{split} \textbf{x}^{(2)} - \textbf{x}^{(0)} &\in \operatorname{span}\{\mathcal{P}_{1}^{-1}\textbf{r}^{(0)}, \mathcal{P}_{2}^{-1}\textbf{r}^{(0)}, \mathcal{P}_{1}^{-1}\mathcal{A}\mathcal{P}_{1}^{-1}\textbf{r}^{(0)}, \mathcal{P}_{1}^{-1}\mathcal{A}\mathcal{P}_{2}^{-1}\textbf{r}^{(0)}, \\ \mathcal{P}_{2}^{-1}\mathcal{A}\mathcal{P}_{1}^{-1}\textbf{r}^{(0)}, \mathcal{P}_{2}^{-1}\mathcal{A}\mathcal{P}_{2}^{-1}\textbf{r}^{(0)}\}, \end{split}$$

and the rest follow the same pattern.



### Characterizing the search space

The extension for (complete) MPGMRES: the first two iterates satisfy

$$\begin{split} \mathbf{x}^{(1)} - \mathbf{x}^{(0)} &\in \operatorname{span}\{\mathcal{P}_{1}^{-1}\mathbf{r}^{(0)}, \mathcal{P}_{2}^{-1}\mathbf{r}^{(0)}\} \\ &= \operatorname{span}\{\boldsymbol{X}\mathbf{e}^{(0)}, \boldsymbol{Y}\mathbf{e}^{(0)}\} \\ \mathbf{x}^{(2)} - \mathbf{x}^{(0)} &\in \operatorname{span}\{\mathcal{P}_{1}^{-1}\mathbf{r}^{(0)}, \mathcal{P}_{2}^{-1}\mathbf{r}^{(0)}, \mathcal{P}_{1}^{-1}\mathcal{A}\mathcal{P}_{1}^{-1}\mathbf{r}^{(0)}, \mathcal{P}_{1}^{-1}\mathcal{A}\mathcal{P}_{2}^{-1}\mathbf{r}^{(0)}, \\ &\qquad \qquad \mathcal{P}_{2}^{-1}\mathcal{A}\mathcal{P}_{1}^{-1}\mathbf{r}^{(0)}, \mathcal{P}_{2}^{-1}\mathcal{A}\mathcal{P}_{2}^{-1}\mathbf{r}^{(0)}\}, \\ &= \operatorname{span}\{\boldsymbol{X}\mathbf{e}^{(0)}, \boldsymbol{Y}\mathbf{e}^{(0)}, \boldsymbol{X}^{2}\mathbf{e}^{(0)}, \boldsymbol{X}\boldsymbol{Y}\mathbf{e}^{(0)}\boldsymbol{Y}\boldsymbol{X}\mathbf{e}^{(0)}, \boldsymbol{Y}^{2}\mathbf{e}^{(0)}\} \\ &\qquad \qquad \boldsymbol{X} = \mathcal{P}_{1}^{-1}\mathcal{A}, \ \boldsymbol{Y} = \mathcal{P}_{2}^{-1}\mathcal{A} \end{split}$$

and the rest follow the same pattern.

#### Demonstration of the relative richness of the search space

Given  $\mathcal{P}_1$  and  $\mathcal{P}_2$ , take  $\mathbf{x}^{(0)} = \mathbf{0}$ . Then

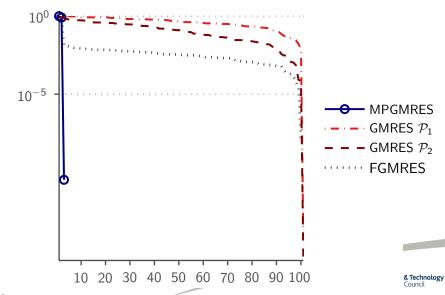
$$\mathcal{P}_1^{-1}\mathcal{A}\mathcal{P}_2^{-1}\mathbf{b}$$

lies in the search space after two iterations.

Therefore if **b** is an eigenvector of  $\mathcal{AP}_1^{-1}\mathcal{AP}_2^{-1}$ , MPGMRES will converge after two iterations.



#### Two iterations



#### **Breakdowns**

All breakdowns in standard GMRES are 'lucky'.

This is not the case with MPGMRES....

e.g. if  $\mathcal{P}_1 = \mathcal{P}_2$ , the matrix  $Z_1 = [\mathcal{P}_1^{-1} \mathbf{r}^{(0)} \ \mathcal{P}_2^{-1} \mathbf{r}^{(0)}]$  will be of rank one

#### **Breakdowns**

All breakdowns in standard GMRES are 'lucky'.

This is not the case with MPGMRES....

e.g. if  $\mathcal{P}_1 = \mathcal{P}_2$ , the matrix  $Z_1 = [\mathcal{P}_1^{-1} \mathbf{r}^{(0)} \ \mathcal{P}_2^{-1} \mathbf{r}^{(0)}]$  will be of rank one

...but not a problem in general – we can monitor the subdiagonal entries of the upper Hessenberg matrix:

- if 0 on subdiagonal, and not converged must be a linearly dependent vector: discard and all is fine
- ▶ if 0 on the subdiagonal, and residual small enough lucky breakdown!
- ▶ if no zero on subdiagonal, no problem!



# Examples



#### Domain decomposition

Consider the advection-diffusion equation on  $\Omega = [0,1]^2$ :

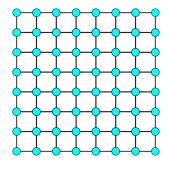
$$-\nabla^2 u + \omega \cdot \nabla u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega.$$

Upon discretization by finite differences we get the matrix equation

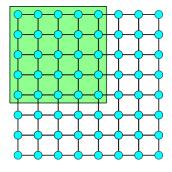
$$A\mathbf{u} = \mathbf{b},$$

where A is a real positive, but nonsymmetric, matrix.

# Domain decomposition (cont.)

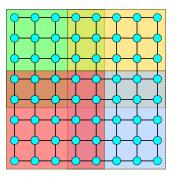


# Domain decomposition (cont.)





## Domain decomposition (cont.)



$$A^{(i)} = R_{i,\delta} A R_{i,\delta}^T, i = 1, ..., 4,$$

where  $R_{i,\delta}$  is a restriction matrix, and  $\delta$  denotes the number of nodes overlapping ( $\delta = 1$  here).



### Additive Schwarz preconditioner

The additive Schwarz preconditioner has its inverse defined as

$$M^{-1} = \sum_{i=1}^{t} R_{i,\delta}^{T} (A^{(i)})^{-1} R_{i,\delta}.$$



## Additive Schwarz preconditioner

The additive Schwarz preconditioner has its inverse defined as

$$M^{-1} = \sum_{i=1}^t R_{i,\delta}^T (A^{(i)})^{-1} R_{i,\delta}.$$

Well suited to a multi-preconditioned approach: take each solve on a subdomain as a preconditioner.



#### Restricted Additive Schwarz

The restricted Additive Schwarz preconditioner is defined as

$$M^{-1} = \sum_{i=1}^{t} R_{i,0}^{T} (R_{i,\delta} A R_{i,\delta}^{T})^{-1} R_{i,\delta}.$$

This has the effect of removing the overlap in the preconditioner, hence improving convergence.

Also an ideal candidate for multi-preconditioning.

#### Two subdomains

In the special case where we have two subdomains without overlap, we can show that complete and selective MPGMRES are equivalent.



#### Two subdomains

In the special case where we have two subdomains without overlap, we can show that complete and selective MPGMRES are equivalent.

| Ν       | sMPGMRES                   | GMRES                      | Ratio |
|---------|----------------------------|----------------------------|-------|
| $2^{2}$ | $6.59 \times 10^{-3} (5)$  | $9.79 \times 10^{-3} (9)$  | 0.67  |
| $2^3$   | $1.86 \times 10^{-2}$ (8)  | $1.36 \times 10^{-2}$ (12) | 1.37  |
| $2^{4}$ | $2.79 \times 10^{-2}$ (11) | $4.14 \times 10^{-2}$ (17) | 0.67  |
| $2^{5}$ | $1.08 \times 10^{-1}$ (16) | $1.50 \times 10^{-1}$ (24) | 0.72  |
| $2^{6}$ | $4.66 \times 10^{-1}$ (19) | $7.37 \times 10^{-1}$ (33) | 0.63  |
| $2^{7}$ | 2.78 (25)                  | 4.85 (46)                  | 0.57  |
| $2^{8}$ | 17.1 (30)                  | 34.2 (65)                  | 0.50  |

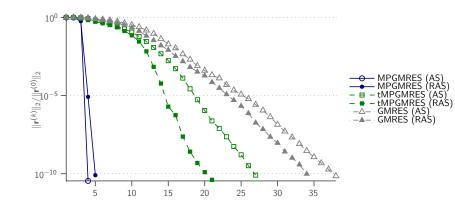


#### Two subdomains

In the special case where we have two subdomains without overlap, we can show that complete and selective MPGMRES are equivalent.

| Ν       | sMPGMRES                   | GMRES                      | Ratio |
|---------|----------------------------|----------------------------|-------|
| $2^{2}$ | $6.59 \times 10^{-3} (5)$  | $9.79 \times 10^{-3} (9)$  | 0.67  |
| $2^3$   | $1.86 \times 10^{-2}$ (8)  | $1.36 \times 10^{-2}$ (12) | 1.37  |
| $2^4$   | $2.79 \times 10^{-2}$ (11) | $4.14 \times 10^{-2}$ (17) | 0.67  |
| $2^{5}$ | $1.08 \times 10^{-1}$ (16) | $1.50 \times 10^{-1}$ (24) | 0.72  |
| $2^{6}$ | $4.66 \times 10^{-1}$ (19) | $7.37 \times 10^{-1}$ (33) | 0.63  |
| $2^{7}$ | 2.78 (25)                  | 4.85 (46)                  | 0.57  |
| $2^{8}$ | 17.1 (30)                  | 34.2 (65)                  | 0.50  |





#### A PDE constrained optimization problem

$$\min_{y,u} \frac{1}{2} ||y - \hat{y}||_2^2 + \frac{\beta}{2} ||u||_2^2$$

s.t. 
$$-\nabla^2 y = u \text{ in } \Omega$$
  
 $y = f \text{ on } \partial \Omega$ 



#### Two preconditioners

$$\begin{bmatrix} \beta Q & 0 & -Q \\ 0 & Q & K \\ -Q & K & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{b} \\ \mathbf{d} \end{bmatrix}$$
a choice of preconditioner

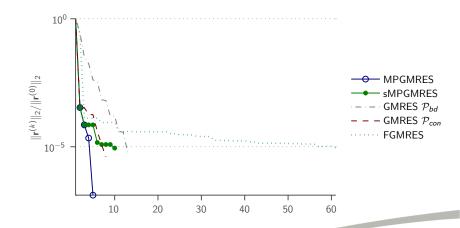
$$\mathcal{P}_1 = \left[egin{array}{cccc} eta Q & 0 & 0 \ 0 & Q & 0 \ 0 & 0 & KQ^{-1}K \end{array}
ight]$$
block diagonal

$$\mathcal{P}_1 = \begin{bmatrix} \beta Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & KQ^{-1}K \end{bmatrix} \qquad \mathcal{P}_2 = \begin{bmatrix} 0 & 0 & -Q \\ 0 & \beta KQ^{-1}K & K \\ -Q & K & 0 \end{bmatrix}$$
block diagonal constraint

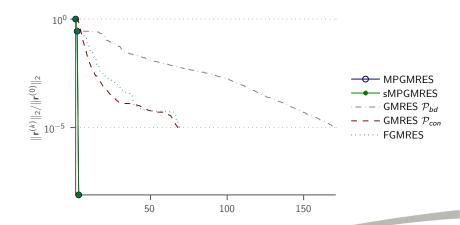
[Rees, Dollar & Wathen (2010)]



 $\beta = 10^{-4}$ 



$$\beta = 10^{-8}$$



# **Timings**

|                            | $\beta = 10^{-4}$ | $\beta = 10^{-8}$ |
|----------------------------|-------------------|-------------------|
| complete MPGMRES           | 10.8              | 2.1               |
| selective MPGMRES          | 12.3              | 1.4               |
| GMRES, $\mathcal{P}_{bd}$  | 3.5               | 53.5              |
| GMRES, $\mathcal{P}_{con}$ | 3.1               | 28.4              |
| FGMRES                     | 26.4              | 33.7              |



# **Timings**

|                            | $\beta = 10^{-4}$ | $\beta = 10^{-8}$ |
|----------------------------|-------------------|-------------------|
| complete MPGMRES           | 10.8              | 2.1               |
| selective MPGMRES          | 12.3              | 1.4               |
| GMRES, $\mathcal{P}_{bd}$  | 3.5               | 53.5              |
| GMRES, $\mathcal{P}_{con}$ | 3.1               | 28.4              |
| FGMRES                     | 26.4              | 33.7              |





MPGMRES is an extension of the standard preconditioned GMRES which allows us to use more than one preconditioner.

#### The method:

- seems to work well when we have non-ideal preconditioners which complement each other
- can handle any number of candidate preconditioners
- can be parallelized, obtaining potential computational gains

Paper and MATLAB code available at

www.numerical.rl.ac.uk/people/rees/

Fortran 95 code (HSL\_MI28) under development