
Improving the performance of direct solvers for
sparse symmetric indefinite linear systems

Jonathan Hogg and Jennifer Scott
STFC Rutherford Appleton Laboratory

IMA NLAO Birmingham, 11th September 2012

Sparse indefinite system

Solve
Ax = b

with A large, sparse, symmetric and indefinite.

For example, systems arise in a number of important applications(
H BT

B δI

)(
x
y

)
=

(
b
c

)
(see next talk).

Direct method

I Compute explicit factorization

A = LDLT

where L (unit) is lower triangular, D (block) diagonal.

I Complete solution by performing triangular solves.

Test examples

In this talk, we focus on tough indefinite systems only.

Examples from University of Florida Sparse Matrix Collection.

Identifier n nz(A) nz(L) flops

1. GHS indef/ncvxqp1 12 111 73 963 1.68 × 106 7.28 × 108

2. GHS indef/bratu3d 27 792 173 796 6.28 × 106 4.42 × 109

3. GHS indef/cont-300 180 895 988 195 1.17 × 107 2.96 × 109

4. GHS indef/d pretok 182 730 1 641 672 1.46 × 107 5.06 × 109

5. TSOPF/TSOPF FS b300 c2 56 814 8 767 466 2.14 × 107 8.96 × 109

6. TSOPF/TSOPF FS b300 c3 84 414 13 135 930 3.31 × 107 1.43 × 1010

∗ nz(L) and flops are for positive definite equivalent with nested dissection ordering

Let’s look at the problem ...

I Run indefinite solver.

I Put large entries on diagonal and run positive definite solver.

I Compare the performance.

Positive definite versus indefinite nz(L)

1 2 3 4 5 6
0

1

2

3

4

5

6

7
x 107

Positive definite versus indefinite flops

1 2 3 4 5 6
0

1

2

3

4

5

6

7

8
x 1010

Positive definite versus indefinite time (serial)

1 2 3 4 5 6
0

5

10

15

20

25

30

Positive definite versus indefinite time (8 cores)

1 2 3 4 5 6
0

5

10

15

20

25

30

Why the differences?

I May not be able to use pivot sequence in supplied order.

I Rejected pivots ⇒ more flops and denser factors.

I Extra data movement.

I Less scope for parallelism.

Our aim: improve indefinite performance without compromising
stability or the computation of the inertia.

Note: indefinite solver designed on assumption of few rejected
pivots so we need to reduce rejected pivots.

The heart of a direct solver

Elimination (pivot) order pre-selected to reduce fill in.

At each stage of factorization, the solver works with dense m ×m
submatrix (m� n) (

F1 FT
2

F2 E

)
.

Only rows/columns of F1 are ready for elimination.

I Factorization: F1 = L1DL
T
1

I Solve: L2 = F2L
−1
1 . (L1, L2) are computed columns of L.

I Update: E ← E − L2(L2D)T (BLAS 3).

Achieving good solver performance

Key is efficiency of partial dense factorizations.

In positive-definite case:

I Pivots can be selected from diagonal of F1 in turn ... allows
data structures to be fixed before factorization commences
(simplifies code and reduces data movement).

I Factorization of F1 can begin before all updates to F2 have
been made (improves scope for parallelism ... work with block
tasks).

Indefinite case

For good performance want to use the supplied pivot sequence.

But

I Zero (or small) diagonal entries cannot be used as pivots.

I Necessary to incorporate numerical pivoting.

I 1× 1 and 2× 2 pivots needed to retain symmetry.

I Standard approach: threshold partial pivoting.

Threshold partial pivoting

Involves checking that the candidate pivot is ‘large’ compared to
the other entries in its column(s).

Test for 1× 1 pivot:

|aq+1,q+1| > u max
q+1<i≤n

|ai ,q+1|.

Corresponding test for 2× 2 pivot:∣∣∣∣∣
(
aq+1,q+1 aq+1,q+2

aq+1,q+2 aq+2,q+2

)−1
∣∣∣∣∣
(

maxq+2<i≤n |ai ,q+1|
maxq+2<i≤n |ai ,q+2|

)
<

(
u−1

u−1

)
.

Threshold partial pivoting

I u is threshold parameter, typical default value 0.01.
This was used in our earlier tests.

I Larger u favours stability; smaller u means fewer rejects.

I If a pivot fails test, may have to be delayed until later in
factorization. This is what we want to avoid.

How can we reduce delays?

First remedy: scaling

I In particular, use symmetrized version of MC64 (Duff and
Koster, Duff and Pralet), which is based on maximum
weighted matchings.

I Entries in scaled matrix SAS that are in the matching have
absolute value 1 while rest have absolute value ≤ 1.

Effect of scaling on delayed pivots

1 2 3 4 5 6
0

4*10^4

8*10^4

12*10^4

16*10^4

20*10^4

No scaling

With scaling

Effect of scaling on flops

1 2 3 4 5 6
0

1*10^9

2*10^9

3*10^9

4*10^9

5*10^9

6*10^9

7*10^9

8*10^9

9*10^9

Predicted

No scaling

With scaling

Next remedy: small u

I Use a smaller threshold u to weaken stability test.

I If necessary, use iterative refinement or FGMRES to recover
accuracy.

I If u too small, entries of L can become unbounded.

I Here we use u = 10−8.

Note: in this and all other experiments, we prescale.

Effect of small u on delayed pivots

1 2 3 4 5 6
0

0.5*10^4

1.0*10^4

1.5*10^4

u = 0.01

u = 10−8

Effect of small u on flops

1 2 3 4 5 6
0

0.5*10^9

1.0*10^9

1.5*10^9

2.0*10^9

2.5*10^9

3.0*10^9

3.5*10^9

Predicted

Scaling with u = 0.01

Scaling with u = 10−8

Story so far:

I Good scaling can really help.

I Small u may also help ... but may need additional solves.

So what else?

Try preselecting 2× 2 pivots?

An approach that does this is MA47 (Duff and Reid):
sparse indefinite solver that uses structured 2× 2 pivots.

Experiments show can work really well for matrices of form(
0 BT

B 0

)
but more generally leads to much denser factors
(without eliminating delayed pivots).

What else? Constraint ordering
Proposed (Bridson) for systems of form(

H BT

B C

)
with H symmetric positive definite, B rectangular, and
C symmetric positive semi-definite.

Only order a C -node after its H-node neighbours have been
ordered.

Advantages: able to use modified Cholesky code with no delays
(although stability not guaranteed, works in practice).

But: too restrictive so that generally much denser factors and
more flops (can require order of magnitude more flops).

So what else? Matching orderings

Aim: permute large off-diagonal entries aij close to diagonal so
that 2× 2 block (

aii aij

aij ajj

)
is potentially good 2× 2 candidate pivot.

Use cycle structure of permutation associated with unsymmetric
maximum weighted matching M to obtain such a permutation

(Duff and Gilbert, also Duff and Pralet, Schenk et. al.).

Combines scaling with ordering in single step.

Effect of matching ordering on flops

1 2 3 4 5 6
0

1

2

3

x 104

Predicted

mc64

matching

Effect of matching ordering

I Predicted values in last plot were for default ordering.

I Predicted values for matching ordering are typically 50 to
100% greater.

But for the matching ordering, (almost) no delays and, most
importantly,

predicted flops (and nz(L)) ≈ actual flops (and nz(L))

I Also, matching ordering stable (single step of refinement
sufficient with u = 0.01 and 10−8).

Positive definite versus indefinite time (matching ordering)

1 2 3 4 5 6
0

0.4

0.8

1.2

1.6

2

Difference now is down to pivot searches that restrict parallelism.

Restricted pivoting

I Partial pivoting — when factorizing
blue part, takes into account green
part.

I Reduces scope for parallelism.

I Restricted pivoting: just pivot within
blue part.

Restricted pivoting

I Found that used just with scaling can lead to numerical
instability (accuracy not recovered by refinement).

I If combined with matching ordering, works well for many
problems

I But does not give stable factorization in all cases so not
recommended for black box solver (note: it is used within
PARDISO).

Concluding remarks

I Strategies explored to reduce delayed pivots and hence
improve performance of direct solvers for tough (non-singular)
indefinite problems.

I Robust approach: matching ordering (used with scaling),
combined with threshold partial pivoting.

I But matching is expensive so only use on tough problems.

I Still requires access to whole pivot column and so scope for
parallelism less than in positive-definite case.

I For many problems can get away with cheaper strategies but
for a robust solver, matching is a good fall back strategy.

More details, further suggestions and lots of results available in
technical report RAL-TR-2012-009.

Thank you!

Work supported ESPRC grant EP/I013067/1

