
Development of components for the user interface for the

spectrometers of the IBR-2 reactor
Veleshki Stoyan1,2 , Kirilov A.S. 1 , Myrashkevich S.M. 1 , Petykhova T.B. 1

1 Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR), Dubna, Russia

2 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract

References

The future plans

Conclusions

Built program

 At FLNP (JINR, Russia) there is a pulse reactor IBR-

2 with multiple spectrometers included thereto,

controlled with the help of the instrumental software

complex Sonix+.

Figure 1. Sonix+ structure

Past programs for adjusting

spectrometers

 The Sonix+ complex includes controlling modules

and programs with a universal user interface.

 Although these programs perform the whole set of

necessary functions (review of the measurement,

script control, visualization and etc.) , they cannot be

used for the development of the programs for

adjustment or of new specialized programs. At the

same time FLNP’s need of new programs is

considerable.

 Program for the Epsilon spectrometer. The

program:

structure was formulated well;

was not completed.

 Program for the Remur spectrometer. The

program:

has a friendly user interface;

has all necessary tools that are available;

was developed under the Remur spectrometer;

adaptation for other spectrometer is impossible.

Development of new user

programs
The suggested method lies in the following:

• presentation of each task in the form of a

separate independent component;

• development of interface to the component for

interaction with other components;

• combination of the components under the

principle of «Mediator» pattern in the form of

large-scale components or programs.

Main software tools:

• Python 2.6 – program language;

• PyQt – creation of the GUI;

• Matplotlib – Visualization;

• Numpy,Scipy – mathematical computations.

Additional software tools:

• Eclipse - integrated development environment;

• Utility pyinstall - combination of the Python

files in the form of an exe-file.

How do you create the

components?

Modeled using the case diagram (UML)

Modeled with the class diagram (UML)

The diagram created in Step 3 is

programmed

(use Python, PyQt, Matplotlib)

The diagram created in step 2 is

programmed

(use Python, module ABC)

Modeled with the class diagram (UML)

Created components

Developed architecture

Measurement planning, performance and control

Navigation

Visualization

IVisualization

IScanProject

Dependency visualization
IDependencePanel

Scanning and spectra

Spectrum
XML file

Mediator

Sonix+

IControlPanel

INavigation

Configuration IConfXML

Configure
XML file

Mathematics
algorithm

comm_dllremote_control

Varman

Figure 4. Architecture of the program for adjustment of

the spectrometers «Remur», «YuMO» and «Reflex»

 “Measurement planning, performance and

control” component– a list of measurements is

created and performed;

 “Dependency visualization” component–

represents the dependencies calculated on the

basis of the spectra obtained;

 “Navigation” component – shows the created

scans and the relevant spectra obtained in the

course of measurement;

 Components for data visualization:

 With point detectors;

 With one-dimensional PSD;

 With two-dimensional PSD;

 “Scanning and spectra” component – does not

have a user interface. It is a database based on

XML files;

 “Configuration” component – does not have a

user interface. It obtains information from a

XML file which contains the specification of the

spectrometer. This file is created for each

spectrometer

Created components used for the development of

a program for:

• adjustment of the spectrometers «Remur»,

«YuMO» and «Reflex»;

• visualization of the spectra with all

spectrometers of the IBR-2 reactor;

• experiment control for the DN6

spectrometer;

• experiment control for the NPD

spectrometer established on the GEK-5

reactor, town of Obninsk, Russian

Federation.

• Shortening of the time for development of

specialized programs;

• Fast creation of graphic visualization

applications;

• Creation of new functionally independent

components with GUI on the basis of «PyQt»;

• Simple combination of the created

components into one program;

• Developing cross-platform programs.

1. Sonix+ - www.sonix.jinr.ru

2. Astahova N.V., et al. Software complex for optimum adjustment

of the diffractometer detector Epsilon: Preprint P13-2002-94.

JINR, 2002. – p.11

3. Yudin V.Е. Program for adjustment of the spectrometer REMUR

in MS WINDOWS: Preprint P13-2003-12. JINR, 2003 – p. 10

4. Erich Gamma, et al. Patterns: Elements of Reusable Object-

Oriented Software: Addison-Wesley 2001. – p.352.

5. Bogdzel A.A. et al. Experement Automation System for a

Neutron Powder Diffractometer: Preprint P13-2012-46. JINR,

2012. – p.11

• Create a library with components;

• Improving the method for combination of

the components;

• Create development environment for

combination of the components.

Use software tools

 After analysis of the created adjustment

programs2,3 the main components necessary for the

adjustment programs were differentiated. These are:

Figure 2. Algorithm for creation of components

Figure 3. Ready components with user interface

 Using the idea of the “Mediator” pattern and

created components I developed architecture of a

universal program for adjustment of the

spectrometers «Remur», «YuMO» and «Reflex».

 «Medator» component – accepts the inquiries

between independent, not related objects and

implements the set logic of interaction between

them. All components don’t know anything about

each other. This creates weak connectivity of the

system and enabling independent modification of the

logics of interaction between them.

Figure 5. Example – program for adjustment for small-

angle scattering YuMO

Figure 6. Build program

2

3

4

5

1

