

The semantic Web: prospects & challenges

Michael Wilson
Manager, W3C Office in UK & Ireland,
CCLRC Rutherford Appleton Laboratory

CCLRC Rutherford Appleton Laboratory

W3C Web Architecture

Comparing Web and semantic Web development

Web

- 1989 proposal
- +2 yrs portable browser
- +5 yrs commercial browser, index, crawler
- +6 yrs 73,500 servers
- +10 yrs 3% US GDP from web

Revolution

Semantic Web

- 1996 proposal
- •+3yrs RDF agreed
- •+8yrs browser, OWL, RDF Schema
- •+9 yrs demonstration applications
- •+10 yrs commercial DB support

Evolution

The semantic Web

- 1996 metadata to describe the data on the Web.
- 1998 query languages, inference rules & proof validation
- 2001 bring structure to the meaningful content of web pages, creating an environment where software agents roaming from page to page can readily carry out sophisticated tasks for users.
- 2006 The "Semantic Web" is an infrastructure extending the current Web for the interchange and the integration of data on the Web.

Semantic Web Architecture & Technologies - 2001

Semantic Web Architecture & Technologies – 2006

- To make data machine processable, we need:
 - unambiguous names for resources (that may also bind data to real world objects): URI
 - a common data model to access, connect, describe the resources: RDF
 - access to that data, join the web: SPARQL
 - common access to XML and RDF: GRDDL
 - define common vocabularies, ontologies: RDFS, OWL, SKOS
 - Hyperlinks and the semantic Web RDF/A
 - Reasoning Rule Interchange Format

GRDDL

- Gleaning Resource Descriptions from Dialects of Languages (GRDDL)
- mechanism to relate other XML syntaxes (especially XHTML dialects) to the RDF abstract syntax via transformations
- Example HTML Snippet:

```
<html>
```

<head><title>Example of an HTML document</title>

```
</head>
```

Translates to RDF assertion:

- <document.html> dc:title "Example of an HTML document".
- Further work in W3C to take GRDDL to a recommendation

SPARQL – RDF Query Language

```
SELECT ?cat ?val # note: not ?x!
WHERE { ?x rdf:value ?val. ?x category ?cat }
Returns: [["Total Members", 100], ["Total Members", 200], ..., ["Full
Members", 10],...]
                                            #Fullslide
                                  data
                       #Data
                                                                  #Data 2
          rdf:value
                                                            rdf:value
                 rdf:value df:value
                          Total Members
           200
                                                        20
                                                                     Full Members
```

•Waiting on XQuery to go to recommendation before SPARQL can.

SPARQL – Application

RDF-A

- RDF/A is a set of attributes used to embed RDF in XHTML.
- Instead of:

```
If you want to contact me at work, you can either <a href="mailto:jo.lambda@example.org">
email me</a>,
or call +1 777 888 9999.
```

Use:

To produce RDF triples:

```
foaf:mbox = "mailto:jo.lambda@example.org"
foaf:phone = "+1 777 888 9999"
```

Layering of the semantic Web

- Each layer should meet a new market need
- Each layer should build on previous ones
- Each layer should provide ROI by itself

Commercial RDF support

- Oracle v10.2
- Native RDF store
- Converters / loaders for existing RDF data
- RDF Query An RDF_MATCH function which can be used in SQL to find graph patterns in RDF (similar to SPARQL)
- Over 100 Partners Thoroughly Test and Support Oracle Database 10g Release 2

Small Applications

Small apps in RDF provide ROI:

RSS/Podcast

Dublin Core

XFN: bloggers

Calendar

Geo URL

FOAF

Thesaurus

XML & RDF

DMOZ is an open directory project represents the directory an its contents in RDF.

Applications: Data Integration

- No "one schema" that can be used for describing everything
- No "right way" for describing / organizing anything
- Importance of "Partial Understanding"
- · Things change, plan up front for it
- The value in "as needed" data integration
- Big wins come from many little ones
- The power of links network effect
- · Open-world, open solutions are cost effective

Application: data integration

- Semantic integration of different data sources
- RDF/RDFS (possibly with OWL and/or SKOS) based vocabularies as an "interlingua" among system components
- Many different projects and R&D on this: Boeing, MITRE Corp., Elsevier, EU Projects like Sculpteur and Artiste, national projects like

MuseoSuomi. ...

Applications: Portals

- Vodafone's Live Mobile Portal
- search application (e.g. ringtone, game, picture) using RDF
 - page views per download decreased
 50%
 - ringtone up 20% in 2 months
- Sun's SwordFish: public queries for support, handbooks, etc, go through an internal RDF engine for White Paper Collections and System Handbook collections
- Nokia has a somewhat similar support portal

Common Themes to successful SW applications

- No "one schema" that can be used for describing everything
- No "right way" for describing / organizing anything
- Importance of "Partial Understanding"
- · Things change, plan up front for it
- The value in "as needed" data integration
- Big wins come from many little ones
- The power of links network effect
- · Open-world, open solutions are cost effective

Summary

- Evolution not the revolution of the Web
- Small parts added to the architecture
- Development and adoption are progressing and continuing

But ...

Research Challenges ...

Six research problems for the SW

- Understanding ontological modelling
- Logical basis for inference
- Translating between ontologies
- Reasoning about agent's intentions
- Sociology of agents
- Governance of agents

Understanding ontological modelling

- Guizzardi addressed some of these issues yesterday.
- OWL is an epistemological language for ontologies
- What is the development method for ontologies?
- What are the design languages?
- What are the design trade-offs in ontology development?
- What is the ontological status of objects and relations?

Logical basis for inference

- Are Description Logics insufficient for rule based reasoning?
- Are Horn clause logics required instead?
- The constraints on Horn clause logic and description logics are different.
- What are the consequences of using the two together?

Translating between ontologies

- Today
 - transform to common syntax
 - Take union of concepts & axioms
 - Define bridging axioms through an inference engine.
- Eventually
 - Metaphors are assertions of conceptual identity
 - Translation using metaphoric relations

Reasoning about agent's intentions

- Certified Assertion based confidence
- Transfer/Generalisation of assertions?
- Generalisation as trust common intention
- How do we transfer/generalise intentions?

- Agents operate in networks
- Agents cluster and herd
- What properties of the group behaviour of agents are important?

Governance of agents

- Liability and Governance
- Extending
 - the development method
 - the run time system
 - service quality

Conclusion

- The larger vision of the SW is still valid
- It will take a long time to evolve from the web of today into a full SW
- Much research in more abstract areas is required before we will get there
- The opportunities are there for you to take