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Abstract 

We describe recent development work carried out on the GPU-enabled classical molecular dynamics software package, 
DL_POLY. We describe how we have updated the original GPU port of DL_POLY 3 in order to align the ‘CUDA+OpenMP’-
based code with the recently released MPI-based DL_POLY 4 package. In the process of updating the code we have also fixed 
several bugs which allows us to benchmark the GPU-enabled code on many more GPU-nodes than was previously possible. We 
also describe how we have recently initiated the development of an OpenCL-based implementation of DL_POLY and present a 
performance analysis of the set of DL_POLY modules that have so far been ported to GPUs using the OpenCL framework. 

DL_POLY 

1. Introduction 

The increasing scale of existing and future European tier-0 supercomputers encourages the use of hybrid 
programming models to address issues such as declining memory per core, multiple threads per core and the 
improvement of load-balancing. Currently, the most familiar hybrid model is that combining the use of MPI and 
OpenMP, where the latter API allows developers to take advantage of intra-node shared memory and where the 
former is typically employed for internode communication only. Recently, the need for hybrid programming 
techniques has been further enforced by the adoption of general-purpose Graphics Processing Units (GPUs) within 
Massively Parallel Processing (MPP) systems. GPUs are recognized as having the potential to considerably speedup 
or “accelerate” compute intensive algorithms over their equivalent single CPU core implementation, leading to an 
increase in the utilization of such devices on systems ranging from workstations to small clusters. More recently, 
GPU coprocessors have been incorporated into large-scale tier-0 architectures [1] and may form the basis for more 
tightly integrated hybrid tier-0 systems in the near future [2]. The increased heterogeneity introduced by GPUs 
means that harnessing the capability of large-scale hybrid architectures necessitates the implementation of 
programming models that go beyond the MPI+OpenMP paradigm, by also taking the available GPU cards on a 
compute node into account. In this paper we describe recent work that has been carried out on DL_POLY [3,4], a 
molecular dynamics software package that adopts the hybrid programming model to exploit not only the many-core 
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shared memory nature of CPU compute nodes, but also makes use of GPU programming frameworks to exploit the 
increasing availability of such ‘accelerators’ on state-of-the-art supercomputers. Two separate versions of the GPU-
enabled DL_POLY code are considered here; the first (hereafter referred to as DL_POLY_CUDA) uses NVIDIA’s 
CUDA programming framework to port compute intensive components of the DL_POLY package to NVIDIA GPU 
cards. The second (hereafter referred to as DL_POLY_OpenCL) uses OpenCL, a free open standard framework for 
writing programs that execute across heterogeneous platforms consisting of CPUs, GPUs, and other processors. 
Unlike CUDA, OpenCL has the advantage that it is not tied to any vendor and therefore, applications written using 
OpenCL can be ported to a variety of accelerator-based coprocessors. In this report we consider NVIDIA GPU cards 
for the DL_POLY_CUDA code and both NVIDIA and AMD GPU cards for the DL_POLY_OpenCL code. The 
paper is organized as follows: In section 2 we give a brief overview of the DL_POLY_CUDA code and follow this 
by providing benchmark results for calculations that we have recently performed on the ‘Stoney’ GPU cluster at 
ICHEC. In section 3, we provide a brief description of our recent development work on DL_POLY_OpenCL code 
and follow this up by providing a performance comparison between the OpenCL and CUDA implementations of 
DL_POLY running on two GPU-based systems at the Wroclaw Centre for Networking and Supercomputing 
(WCNS) in Poland. Finally, we conclude with our views on where improvements can be further made to optimize 
DL_POLY for existing and future hybrid MPP systems. 

2. The DL_POLY_CUDA code 

The DL_POLY_CUDA code [5] continues to be developed at the Irish Centre for High End Computing (ICHEC). 
The version of the vanilla DL_POLY code that was first ported to GPUs was DL_POLY 3, which was also the first 
version of DL_POLY to use domain decomposition as a parallelization strategy (DL_POLY is written using Fortran 
90 and MPI). On assessing the original DL_POLY code, the components listed in table 1 were identified as the most 
computationally intensive parts of the application. These components were then ported to GPUs using a single-client 
approach, in which each host MPI process binds to a GPU device and offloads a proportion of its computations to 
the GPU. To avoid GPU oversubscription, only one MPI process is run per attached GPU, thus resulting in idle CPU 
cores. To avoid this problem, most of the DL_POLY functions ported to CUDA have also been parallelized using 
OpenMP. The computational effort is then dynamically distributed between the OpenMP threads and the GPU. The 
dynamic load-balancing is performed for each accelerated component on a per-iteration basis and with the exception 
of the Contraints Shake component, all of the accelerated components listed in table 1 were also ported using 
OpenMP. 

 

                                                              Table 1. CUDA-accelerated DL_POLY components 

                                                                           

 
 
 

  
 
 

 
Between June 2011 and Feb 2012, several significant modifications were made to the DL POLY 3 code resulting in 
the release of DL_POLY 4 by the lead developers at STFC Daresbury (Dr. I Todorov). Where these modifications 
have affected the GPU-enabled components, mirror-like modifications have been implemented within the 
CUDA+OpenMP code. Updated CUDA+OpenMP-enabled modules have been committed to the source code’s main 
‘CCPForge’ trunk repository. On top of the aforementioned mirroring, an error-handling module has been developed 
for the CUDA+OpenMP code and several bugs affecting memory and structure alignment have been fixed. This has 

Component Purpose 

Constraints Shake (CS)  Apply bond constraints between atoms 

Link-cell pairs (LCP) Construct atom neighbor lists 

Two-body forces (TBF) 

Ewald SPME forces 

Compute inter-atomic forces 

Compute Coulombic and force terms in 
periodic systems 
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allowed for the benchmarking of DL_POLY 4 over many more nodes of ICHEC’s ‘Stoney’ GPU cluster than was 
previously feasible. The work described above was carried out as part of the PRACE 1IP-WP7.5 project. 

Figure 1 shows the measured speedup values for two test problems run on ICHEC’s ‘Stoney’ GPU cluster (Both 
tests were obtained from the DL_POLY ftp site). Each of Stoney’s compute nodes has two 2.8 GHz Intel (Nehalem 
EP) Xeon X5560 quad-core processors and 48 GB of RAM. Twenty-four of the nodes have two NVIDIA Tesla 
M2090 cards installed, with each card providing 512 GPU cores and 6 GB of GDDR5 memory. Speedup values are 
shown for each accelerated component and the overall application for three different runtime configurations. The 
first configuration consists of two GPUs with each GPU attached to one of the two quad-core CPU sockets with 4 
OpenMP threads each. In this case a single MPI process is affined to each GPU. The second configuration consists 
of 4 MPI processes being affined to the GPUs (representing an oversubscription of the GPUs) with 2 OpenMP 
threads per socket for the CPU-based computations. The third configuration consists purely of MPI processes being 
affined to the 8 CPU cores available within a node. It can be seen that with each of these configurations the CPU 
nodes of the cluster are fully populated. All speedup figures are reported for the double precision version of the 
application.  

     

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Performance of main GPU-enabled DL_POLY components vs their pure-MPI equivalents. Measurements were performed for TEST4 
(a) and TEST8(b) from the DL_POLY benchmark suite. 
 

The maximum component speedup is observed for TEST4 shown in figure 1(a) for which a speedup of ~22 is 
achieved for the Link-Cell Pairs (LCP) component running on two GPUs with eight OpenMP threads for the host 
computation. Whereas previous benchmarking results for DL_POLY_CUDA included a performance comparison 
with only the single-core implementation of the MPI-vanilla code, we also compare the performance of the GPU-
enabled code with the MPI-vanilla code running on all available compute cores within the 8-way Stoney node (i.e., 
full node population) Figure 1(b) shows the results for TEST8 taken from the DL_POLY benchmark suite which 
represents an increase in the size of calculation, made possible by the recent development work as part of this 
project. 

Figure 2 shows the strong scaling performance of both the vanilla MPI code and the DL_POLY_CUDA code run 
across 16 nodes of the Stoney GPU cluster. The benchmark calculation used to obtain these results was TEST2. The 
only modification made to TEST2 was to the ‘CONTROL’ input file where the nfold parameter was set to (2,2,2) in 
order to increase the size of the calculation for the purpose of scaling. For these measurements we investigated the 
same runtime configurations as were used in figure 1, although we do not show the results for the 4 MPI tasks+ 2 
OpenMP threads+2 GPUs run as we did not see any significant difference with the results of the 2 MPI tasks + 4 
OpenMP threads + 2GPUs run for TEST2. Figure 2 shows that, for the configurations investigated, harnessing the 
additional 2 GPU cards on each node results in a ~30% reduction in wall-clock time for all node counts.  
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As part of our recent work on DL_POLY_CUDA we have also investigated the performance of GPU-enabled third 
party FFT libraries on ICHEC’s Stoney GPU cluster in order to evaluate the possible benefits of replacing 
DL_POLY’s custom developed DAFT FFT library[6] which becomes a bottleneck when scaling to a high number of 
compute nodes. The Parallel Three-Dimensional Fast Fourier Transforms (P3DFFT) is a library [7] currently being 
developed at the San Diego Supercomputer Centre and has recently been ported to GPUs by a group at the Georgia 
Institute of Technology (where the ported library is dubbed DiGPUFFT [8]). While recent investigations point to a 
potential performance benefit of implementing third-party FFT libraries within DL_POLY 4, we have found from 
our investigations that the performance benefit of using a GPU-enabled FFT library over a pure MPI-based FFT 
library is, for the moment, even less clear. While we have found a performance advantage (~10% speedup) in using 
DiGPUFFT over P3DFFT, it should be noted that we have found this improvement only for large datasets (the 
dataset used was 8 -16 times larger than typical datasets used in DL_POLY). It should also be noted that our 
performance results were obtained for a single precision dataset, whereas DL_POLY uses double precision datasets. 
The DiGPUFFT library is currently only enabled for single precision calculations and it is expected that any 
performance advantage currently seen over P3DFFT will diminish further when using double precision.  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
Figure 2. Strong scaling of DL_POLY on ICHEC’s Stoney GPU cluster. Two runtime configurations were used: for the pure MPI-based 
DL_POLY we used 8 MPI tasks per node (full population) and for the DL_POLY_CUDA code we used 2 MPI tasks affined to GPU cards with an 
additional 8 OpenMP threads for the remainder of any work carried out on the CPU.  
 

Finally, we have also implemented a call to NVIDIA’s 3-D cuFFT routine inside DL_POLY.  Currently, NVIDIA 
has no distributed version of its cuFFT library available so any call to the 3-D cuFFT routine must occur on a single 
CPU affined to a single GPU. With this configuration we have found a factor of ~8 speedup over DAFT running on 
a single CPU for a dataset of typical size used in DL_POLY. While such an implementation will obviously not 
scale, the significant speedup may point to the potential benefit of using a ‘gather-scatter’ approach to the FFT 
problem when running DL_POLY on small GPU clusters.  

3. The DL_POLY_OpenCL code 

Stimulated by the success of the CUDA+OpenMP port of DL_POLY to hybrid MPP architectures, we have recently 
initiated the development of a hybrid implementation of DL_POLY using the OpenCL framework. Here, we discuss 
our experience with developing with OpenCL so far and also compare the performance of the OpenCL port with the 
existing CUDA implementation where applicable.  

So far, only the Constraints Shake (CS) DL_POLY component has been successfully ported using OpenCL. Several 
issues were encountered during the porting of this DL_POLY component from CUDA to OpenCL that we consider 
worth highlighting for the consideration of other developers when porting to GPUs. One of the major issues relates 
to the differences between the two programming languages in handling C data structures. In the CUDA version of 
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the CS component, structures are widely implemented both in the host code and GPU kernels (see figure 3 (Top)). 
According to the OpenCL specification structures in the OpenCL framework cannot contain OpenCL objects (e.g., 
buffers, images etc.). Our attempts to use structures with buffers (representing a direct port from the CUDA code) 
failed, as the data inside a buffer was not accessible from the kernel code. This problem forced a change in the way 
data structures were handled in the DL_POLY_OpenCL code by passing individual objects to kernels directly as 
arguments, one by one  as seen in figure 3(Bottom). 

CUDA Implementation: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OpenCL Implementation: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 (Top). CUDA implementation of a kernel associated with the Contraints Shake component of DL_POLY. (Bottom) The equivalent 
OpenCL implementation. 
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Once the CS component was fully GPU-enabled test runs were performed on GPU-enabled systems at the WCNS. 
The first GPU system consisted of an Intel Core i7 CPU with a link to two AMD Radeon HD 6950 GPUs. The 
second system also consisted of an Intel Core i7 CPU but with a link to a NVIDIA Tesla S2050 GPU card. For 
runtime configurations we used 2 MPI processes and 2 OpenMP threads for both DL_POLY_CUDA and 
DL_POLY_OpenCL and used TEST4 for performance measurements (double floating point precision). Figure 4 
shows the average duration time per invocation for CS components including initialization, particular kernel calls, 
and read/write CPU-GPU operations. Performance results show that the OpenCL implementation is slower than the 
CUDA version for almost all CS component algorithms. The largest difference between average duration time per 
invocation on the Tesla S2050 GPU was found to be for the ‘read’ operations (OpenCL code is 21x slower than 
CUDA code) and the kernel ‘gather_dv_scatter_hs’ (OpenCL code is 2x slower than CUDA code).  

 

 

 

 

 

 
 
Figure 4 (a) and (b): Performance comparison between DL_POLY_CUDA and DL_POLY_OpenCL running on different systems. Key for 
Constraints Shake kernels: A=read, B=write, C=gather_dv_scatter_hs, D=gather_hs_scatter_dv, E=k1_th, F=k1_bh, G=correct_positions, 
H=initialize, I=install_red_struct. 

For other kernels OpenCL calls are less than 2x slower than their equivalent CUDA calls. Execution times on AMD 
GPUs are shorter than for TeslaS2050 GPUs for ‘initialization’ and kernel ‘install_red_struct’. For other calls 
execution times on AMD GPUs are longer than for the CUDA equivalent run on the Tesla S2050. The latter 
difference is explained by the fact that the OpenCL code was developed and optimized for NVIDIA GPUs and does 
not take the specificities of the AMD GPU architecture into account. 

4. Conclusion 

We have reported on the benchmarking of the ‘CUDA+OpenMP’ port of the molecular dynamics software package, 
DL_POLY, where our recent software development focus has been on synchronizing the CUDA+OpenMP version 
of DL_POLY with the latest changes that have occurred and which have resulted in the release of version 4 of the 
DL_POLY vanilla MPI code between Dec 2011 and Feb 2012. As a result of updating the CUDA+OpenMP section 
of the code, we have been able to benchmark the GPU-enabled version of DL_POLY4 on ICHEC’s Stoney GPU 
cluster. For a small problem size we have seen a marked performance advantage in using GPU-enablement over the 
vanilla MPI code in cases where the pure MPI code has shown good scaling. We have also investigated the 
possibility of replacing the DAFT FFT library within DL_POLY 4 with the GPU-enabled library, DiGPUFFT, and 
have found that for the grid sizes of interest to DL_POLY there is, for the moment, no benefit of using the GPU 
capability of this library over its pure MPI-based equivalent. While we have found an impressive speedup using the 
single-CPU-core-single-GPU CUFFT library within DL_POLY, we only see this implementation being of benefit 
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within an MPI ‘gather-scatter’ strategy on small-scale GPU clusters and are currently in the process of investigating 
this approach further. 

Inspired by the success of porting DL_POLY to hybrid architectures using the CUDA framework we have also 
described how we have recently initiated the porting of DL_POLY to more general accelerator-based architectures 
using the OpenCL framework At this early stage of development we have found that employing the OpenCL 
framework requires more effort than developing with the CUDA framework. However, it is worth emphasizing that 
OpenCL is not tied to a particular vendor or even to a particular accelerator-based architecture. We have 
demonstrated this flexibility by benchmarking the DL_POLY_OpenCL code on different accelerator-based 
architectures including AMD’s Radeon cards along with more familiar multicore CPUs. Although the performance 
results indicate that the DL_POLY_OpenCL code is slower than DL_POLY_CUDA, it should be noted that there is 
room for further optimization of the DL_POLY_OpenCL code to achieve better performance for particular 
accelerators. We believe that the experience gained during the development of the OpenCL code for the Constraints 
Shake component of DL_POLY will greatly benefit the further translating of other CUDA+OpenMP components to 
OpenCL. This porting will be continued by the WCNS team in PRACE-2IP WP12.2 as the task “Optimization of 
SHAKE and RATTLE algorithms”. The WCNS team also intends to evaluate DL_POLY_OpenCL on PRACE 
prototype AMD APUs installed at the Poznan Supercomputing and Networking Centre (PSNC) in the near future. 
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