FLAME tutorial examples: Cellular
Automata - the Game of Life

LS Chin, C Greenough, D) Worth

November 2012

vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text

©2012 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

RAL Library

STFC Rutherford Appleton Laboratory
R61

Harwell Oxford

Didcot

0OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358- 6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

FLAME Tutorial Examples:
Cellular Automata - the Game of Life

LS Chin, C Greenough, DJ Worth
October 2012

Abstract

FLAME - the Flexible Large-scale Agent Modelling Environment - is a framework
for developing agent-based models. FLAME has been developed in a collaboration
between the Computer Science Department of the University of Sheffield and the
Software Engineering Group of the STFC Rutherford Appleton Laboratory.

This report documents the FLAME implementation of the Cellular Automata pro-
gram known as the the Game of Life. The Game of Life was invented by John Horton
Conway and it has been used extensively in demonstrating and testing complex sys-
tems software.

Keywords: FLAME, agent-based modelling, cellular automata, game of life, tuto-
rial example

Email: {shawn.chin, christopher.greenough, david.worth}@stfc.ac.uk
Reports can be obtained from: http://epubs.stfc.ac.uk

Software Engineering Group

Scientific Computing Department
STFC Rutherford Appleton Laboratory
Harwell Oxford

Didcot

Oxfordshire OX11 0QX

Contents

1 Introduction

2 A brief description of FLAME
3 Problem description

4 FLAME implementation

5 The FLAME model
5.1 FLAME environment
52 FLAME Agents e
5.2.1 Agent memory
5.2.2 Agent functions
5.3 FLAME messages. o o it

6 FLAME provided functions and macros
7 Agent C functions

8 Parsing the FLAME model

9 Input data generation

10 Testing

11 Example results
11.1 The Gosper Glider Gun e
11.2 Random initial distributions

12 Comments on implementation
A FLAME XMML Model

B FLAME C Functions

10

11
11
12

12

16

18

1 Introduction

This report describes the FLAME (The Flexible Large-scale Agent Modelling Environment) [1]
implementation of the cellular automata problem known as the Game of Life. The Game of
Life was invented by John Horton Conway [2, 3]. Most of the work of John Horton Conway, a
mathematician at Gonville and Caius College of the University of Cambridge, has been in pure
mathematics but he also enjoys what we will call recreational mathematics. The Game of Life
is one of these outings into recreational mathematics.

2 A brief description of FLAME

FLAME is what it says - it is an environment for developing agent-based applications. FLAME
is an agent-based applications generator. FLAME is one of the main outputs of a collaboration
between the Computer Science Department at the University of Sheffield and the Software
Engineering Group of the STFC Rutherford Appleton Laboratory. Although FLAME does not
have many of the interactive features of systems such NetLogo [4] it has been design to provide
easy access to the utility of agent-based modelling and to accommodation the simulation of very
large agent populations by using parallel high performance computing.

FLAME develops the ideas of Kefalas et al. [5] which describes a formal basis for the develop-
ment of an agent-based simulation framework using the concept of a communicating X-machine.

FLAME has an agent specification language, XMML (based on the XML standard), a set of
tools to compile the specified agent-based systems into code using a set of standard templates
and the potential to produce optimised code for efficient parallel processing. FLAME allows
modellers to define their agent based systems and automatically generate efficient C code which
can be compiled and executed on both serial and parallel systems. So the main elements of
FLAME are: the XMML model definition, the functions files (containing C code) and the
FLAME xparser with associated templates.

The modeller provides a description of his model and the functions that define to operations,
communications and changes of state of the agent population and FLAME generates the ap-
plications program. Figure 1 shows the structure of the FLAME environment. The modeller
provides two input files: the Model XMML and the agents functions. These are parsed by the
xparser and the results combined with the xparser’s template library to generate the appli-
cation. Full details of the theoretical background to FLAME and the X-Machine approach to
agent-based modelling is given in other various reports and papers [6, 7, 1, 11].

So the basic characteristic of FLAME and its agents are those of activation (state changes) and
communication (agent to agent). This communication between agents is implemented within
FLAME as a set of message boards on which agents post messages (information) and from
which agents can read the messages. There is one message board per message type and FLAME
manages all the interactions with the message boards through a Message Board API. The use
of simple read/write, single-type message boards allows FLAME to divide the agent population
and their associated communications areas. This approach has allowed the implementation of
both serial and parallel versions within the same program generator.

Using this approach the modeller can design a model that can be realised as a serial or
a parallel program. Although for many models this niave approach might achive reasonable
parallel performance there are many pitfalls. To gain reasonable parallel performance in a very
complex model the modeller will need to be aware of the impact of his choices on the performance
of the model.

As mentioned above FLAME takes two forms of modeller input: the XMML description of
the model and the C code implementation of the state change functions. These both have a
straightforward structures. The XMML has a set of predefined tags and the C code has access
to a number of predefined and model specific macros and functions. We will describe these in
the section on the implementation.

—
\
Model XMML — || = C
/ xparser

C T Simulation Code
Agent
Functions
.tmpl

Templates

;; ’ Object Files (*.0)
Executable %

libmboard

Figure 1: The structure of the FLAME Environment

3 Problem description

The Game of Life is an example of a two-dimensional cellular automaton. A cellular automaton
is a computational machine that performs actions based on certain rules. The automaton domain
can be thought of as a board which is divided into cells (such as square cells of a chessboard).

Each cell can be either alive or dead. This is called the ”state” of the cell. According to
specified rules, each cell will be alive or dead at the next time step. The rules of the game are as
follows. Each cell checks the state of itself and its eight surrounding neighbours and then sets
itself to either alive or dead. If there are less than two alive neighbours, then the cell dies. If
there are more than three alive neighbours, the cell dies. If there are 2 alive neighbours, the cell
remains in the state it is in. If there are exactly three alive neighbours, the cell becomes alive.
These rules are applied in parallel and the simulation continues forever.

There are certain recurring shapes in Life, for example, the stable forms, the gliders and the
blinkers. The glider will wiggle across the world, retaining its shape. A blinker is a block of
three cells (either up and down or left and right) that rotates between horizontal and vertical
orientations. These are example of the many shape classifications found in the Game of Life:
Still Lifes, Oscillators and Spaceships are a few.

4 FLAME implementation

There are numerous different ways of implementing the Game of Life and we will explored one
approach using FLAME. Initially one might think that the agents in the simulations should
be the live Cells and the simulations should replicate the process of giving birth and dying
according to Conways’ rules.

However as the Cells do not move and their neighbours do not change, so a more straightfor-
ward approach is to make each Cell in the two-dimensional domain an agent with appropriate
properties. It seems reasonable that each Cell knows its state, its position - (i,j) co-ordinates
or the cell identifier and its 8 neighbours, Within FLAME all communications between agents
is through message boards and not through some share background data structure. So for Cells

to know the state of their neighbours information on cell states will need to be posted and read
from a message board.

5 The FLAME model

We firstly define the various elements of the FLAME model. The model is divided into thee
major groups of information:

environment - defines of global variables and C code file names
agents - all things related to the agents
messages - this things related to the model messages

A full listing the CA.xml model is given in Appendix A. Within each of these sections there are
various tags to define the FLAME model. The overall structure is:

<xmodel>
<environment/>
<agents/>
<messages/>

</xmodel>

Only the elements relate to the CA model will be highlighted below and the user should refer
to the full FLAME User Manual for full details.

5.1 FLAME environment

The environment section contains various user defined constants and other essential system
information. For the CA model only the domain size and the source code file name is required.

<!--FLAME Environment -->
<environment>
<constants>
<variable><type>int</type><name>DOMAINX</name></variable>
<variable><type>int</type><name>DOMAINY</name></variable>
</constants>
<functionFiles>
<file>functions.c</file>
</functionFiles>
</environment>

The names DOMAINX and DOMAINY can be used within the user’s C functions and file is used by
the FLAME parser to locate the function source code.

5.2 FLAME Agents

The start of an agent group is tagged by agents and each agent type definition is tagged by
<xagent>. Within each agent definition are the specifications of its memory and its transition
functions. So the overall structure is:

<agents>
<xagent>
<name>Cell</name>
<memory/>
<functions/>
</xagent>
<agents>

5.2.1 Agent memory

As there are no pre-defined global data elements, apart from some limit global constants, within
FLAME all permanent data must be held in an agent’s memory.
Assuming each Cell is an agent they will need the following internal memory:

<memory>
<variable><type>int</type><name>id</name></variable>
<variable><type>int</type><name>i</name></variable>
<variable><type>int</type><name>j</name></variable>
<variable><type>int</type><name>state</name></variable>
<variable><type>int</type><name>neighbours_state[8]</variable>
</memory>

We have give each agent an id so we can build a table of neighbours and defined a static array
to hold the states of the cell’s neighbours. Its cell position and state are held in 4, j and state.

5.2.2 Agent functions

The number of functions or states the cell has is determined by the approach taken. We have
decided that the agent will have states that perform only one action. So we define three functions
or state transitions: write_state - writing the current cell’s state to message board; read_state -
reading state information from a message board and react - a function to applied the rules of
life. The XMML function definitions follow.

write_state : this function write the current state of a cells to the state message board.

<|--Function write_state-—>

<function><name>write_state</name>
<currentState>start</currentState>
<nextState>read_states</nextState>
<outputs>

<output><messageName>state</messageName></output>

</outputs>

</function>

read_states : this function reads the information on the state message board and locates the
states of the cell’s neighbours.

<!-- Function read_states—->

<function><name>read_states</name>
<currentState>read_states</currentState>
<nextState>react</nextState>
<inputs>

<input><messageName>state</messageName></input>

</inputs>

</function>

react : this functions determines the reaction of the Cell to the neighbour information - to
live or die. The information is stored in the agent local memory so no messages need
considering.

<!-- Function react—-->
<function><name>react</name>
<currentState>react</currentState>
<nextState>end</nextState>
</function>

It would be possible to combine the read_state and react functions into a single function but the
current division serves the purpose. The states of an agent are linked through the currentState
and nextState tags in the XML. These tags, plus the messageNames, define the dependencies
between and the ordering of the transformation functions.

5.3 FLAME messages

As mentioned above all agents communication via message boards. In this problem we define
one message board - state. This provides all the information required by agent during the Game
of Life. All message definitions are contained within the <messages> group.

<message>
<name>state</name>
<variables>
<variable><type>int</type><name>id</name></variable>
<variable><type>int</type><name>i</name></variable>
<variable><type>int</type><name>j</name></variable>
<variable><type>int</type><name>state</name></variable>
</variables>
</message>

The complete XMML model is given in Appendix A

6 FLAME provided functions and macros

Before considering in detail the transitions functions of the CA model we will describe some of
the basic facilities provided by FLAME. Transition functions can perform any operation and it is
down to the modeller what they actually do. It the context of FLAME most agent functions will
either read or write to agent memory or read or write to the model’s message boards. FLAME
provides a number of basic interfaces to help the modeller in these tasks.

Accessing environment data : FLAME provides an environment section in the model def-
inition. This section can be used to define constants that can be used throughout the
simulation code. In our example we have defined DOMAINX and DOMAINY. Once parsed
these constants are defined in the file header.h as C macros and can be use in the same
way.

Accessing agent memory : FLAME generates automatically a pair of memory access rou-
tines for all memory variables defined in the model. These are get_ and set_ in both cases
they are postfixed by the memory variable name. For example for the memory variable id
there will be the two functions get_id and set_id. These functions are context dependent
as it is possible for more than one agent type to have a memory variable id. FLAME man-
ages the use of these inbuilt functions so that the required memory variable is accessed.
This is not an issue in the CA model as there is only one agent type.

Accessing message boards : For each message board type define in the model FLAME gen-
erates two important access mechanisms: one to write to message boards and another to
read a message board. The elements of a message are defined in the model description
and FLAME generates a simple function to write messages from this description. To write
information to the state message board in the CA model FLAME provides the function:

add_state_message(int id, int i, int j, int state);
Generically this will be:
add_message_board_name_message (variable list)
All message boards defined in the model will have similar access functions.

Accesses message data : Accessing message data is a like more complex. In general an agent
will wish to scan a message board looking for information of interest. FLAME provides
a set of C macros that define and control a loop construct that will allow an agent to

search a message board. In our example the only message board is state and it hold the
following data id, i, j and state. For each message board FLAME provide two macros:

START message_board name _LOOP : Starts a loop structure to scan over message
board message board name and sets up points to access the message data elements.
The macro initialise a point - message_board name - the message structure so that

message_board_name -> data_element
can be used to access elements of a message.

END_message_boards_name_LOOP : Terminates the message board loop.

7 Agent C functions

Associated with each agent state is C function that performs the change of state.

write_state : the write_state function writes the current state of a cell on the state message
board. As we only interested in live agents only live agents write messages to the message

board.

int write_state()

{
int my_state, my_id, my_i, my_j;
my_id = get_id();
my_i = get_i();
my_j = get_jO;
my_state = get_state();
if (my_state == 1)

add_state_message(my_id, my_i, my_j, my_state);

return O;

}

The function accesses agent memory and posts a message on the state message board.
(The use of my_ is a personal convention. Any local variable names can be used.)

read _states : the read_states function reads information posted by its neighbours on the mes-
sage board.

int read_states()

{
int my_id, my_i, my_j;
int *my_neighbours;

int mes_i, mes_j, mes_state;
int count;

my_id = get_id();

my_i = get_i();

my_j = get_jO;
my_neighbours = get_neighbours();

for (count = 0; count <= 7; count++)
my_neighbours[count] = 0;

count = 0;

}

The read_states function must scan all the messages on the state message board to select
the agents neighbour state information. In this implement the whole message must be
scanned and the appropriate information selected. The FLAME framework provides a
set of simple macros. read_states need to scan the message boards to collect data from
its neighbours. The macros START_STATE MESSAGE_LOOP and FINISH_STATE MESSAGE_LOOP
provide loop over the message board state. Any information in the message are referenced

START_STATE_MESSAGE_LOOP;

if (state_message->id != my_id) {
mes_i = state_message->i;
mes_j = state_message—>j;

if (((mes_i == my_i - 1) && (mes_j ==

((mes_i == my_i - 1) && (mes_j
((mes_i == my_i - 1) && (mes_j

my_j - 1)) ||
my_j)) ||
my_j + 1)) ||

((mes_i == my_i) && (mes_j == my_j - 1)) ||
((mes_i == my_i) && (mes_j == my_j + 1)) ||

((mes_i == my_i + 1) && (mes_j

((mes_i == my_i + 1) && (mes_j ==

((mes_i == my_i + 1) && (mes_j

mes_state = state_message—->state;

my_neighbours[count] = mes_state;

count++;
¥

X
FINISH_STATE_MESSAGE_LOOP;

return O;

through the state_message--> construct.

my_j - 1)) ||
my_j)) ||
my_j + 1)) {

react : react function applies the current rule set to the agent’s state.

int react()

{

int my_id, my_i, my_j, my_state;
int *my_neighbours;
int i, count;

my_id = get_id();

my_i = get_i();

my_j = get_jO;

my_state = get_state();
my_neighbours = get_neighbours();

count = 0;
for (i = 0; i < 8; i++) {
if (my_neighbours[i] == 1) count++;

}

if (count < 2) my_state = 0;
if (count == 2) my_state = my_state;
if (count == 3) my_state = 1;
if (count > 3) my_state = 0;

set_state(my_state) ;

return O;

8 Parsing the FLAME model

In the above section we have only given a description of the essential parts of the FLAME
model. Appendix A and Appendix B give the complete model files. With the model define in
XMML (CA.xml) and the agent functions written (functions.c) the complete model can now be
parsed with the FLAME parser. The actual command will depend on the implementation and
operating system. On a Linux system the following would be common:

beershebal,

Xparser

xparser (Version 0.16.2)
Usage: xparser [XMML file] [-s | -p] [-f]

-S

Serial mode

-p Parallel mode
-f Final production mode
beershebal,

beershebal,

and the full output of the generation would be:

xparser CA.xml

xparser (Version 0.16.2)
Environment variable FLAME_DIR not set - looking in current directory for Templates

Code type : Serial (DEBUG)
Input XMML file : CA.xml
Model root dir

Template dir

: /home/cg/SANDBOX/FLAME/xparser/

Reading XMML file (CA.xml)

- Model name
- Functions file :

- xagent
- Message

: Game of Life
functions.c
: Cell

: state

End of XMML file

Creating dependency graph

Finished dependency loop check

Total communication sync lengths = 1
Ordering functions in process layers
New communication sync lengths = 1

Writing file :
Writing file :
Writing file :
Writing file :

Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating

Writing header file :

stategraph.dot
stategraph_colour.dot
process_order_graph.dot
latex.tex

Makefile using /home/cg/SANDBOX/FLAME/xparser/Makefile.tmpl

xml.c using /home/cg/SANDBOX/FLAME/xparser/xml.tmpl

main.c using /home/cg/SANDBOX/FLAME/xparser/main.tmpl

header.h using /home/cg/SANDBOX/FLAME/xparser/header.tmpl

memory.c using /home/cg/SANDBOX/FLAME/xparser/memory.tmpl
low_primes.h using /home/cg/SANDBOX/FLAME/xparser/low_primes.tmpl
messageboards.c using /home/cg/SANDBOX/FLAME/xparser/messageboards. tmpl
partitioning.c using /home/cg/SANDBOX/FLAME/xparser/partitioning.tmpl
timing.c using /home/cg/SANDBOX/FLAME/xparser/timing.tmpl

Doxyfile using /home/cg/SANDBOX/FLAME/xparser/Doxyfile.tmpl

rules.c using /home/cg/SANDBOX/FLAME/xparser/rules.tmpl

Cell_agent_header.h

--- xparser finished ---

To compile and run the generated code, you will need:
* libmboard (version 0.2.1 or newer)
beersheba

This provides some error diagnostics should the parser find errors in the model. The FLAME
parser will generate the complete application and various additional files. These include:

Makefile - the Unix make
header.h, low_primes.h - system header files
Cell_agent_header.h - model specific header file

main.c, memory.c messageboards.c partitioning.c, rules.c, timing.c, xml.c - system C
files.

process_order_graph.dot, stategraph_colour.dot, stategraph.dot - various graphical state
diagrams

latex.tex, Doxyfile - documentation templates

The develop should not modify these files as they will be automatically overwritten next time
the FLAME parser is run.

FLAME uses a task dependency graph to schedule the execution of agent functions and
communications. One of the file generated by the FLAME parser is the task dependency graph.
The graph shows all the agent and their functions in the model together with all the defined
message board accesses. Figure 2 shows the dependency graph (stategraph colour.dot) for
the CA model using the Graphviz utility dotty [8].

state

Figure 2: The task dependency graph of the CA model

The dependency graph provides a very good visual check on the structure of the model.

9 Input data generation

The initial data for the CA model is generated using a simple python program. The program
can either generate a random distribution of life agents on a specified domain or generate an
input based on a given live agent pattern.

Usage: init_start_state.py <width> <height>
<agent_count>|{<file_name> [<x-offset> <y-offset>]}
More info:

<width> (int) and <height> (int) will determine the size of cell space in which
life will be randomly placed in.

<agent_count> (int) specifies the number of live cells to initialise.
<file_name> (char) specifies a file of initial data in csv format.

<x-offset> <y-offset> (int - optional) allows the csv embedding to be offset.

The program will generate an 0.xml output file containing the initial data.

10 Testing

There are various ways in which the Game of Life can be tested. It has been the subject of
considerable interest. We will use a number, of the many, Still lifes, Oscillators and Spaceships
to test our implementation.

The pgplot graphics library [10] has been used to generate the graphical outputs.

Block Beehive

Loaf Boat

Table 1: A selection of Still lifes

Table 1 show some basic Still lifes. These are unchanging configurations to which the simu-
lation can move to. They clearly check many of the basic model operations.

The next set of test configurations are some Oscillators. These configurations oscillator two
and from there base state via other configurations in a define period. The Oscillators show in
Tabel 2 have periods of only one, two or three - there being only one, two or three intermediate
states. Figure 3 show the life-cycle of the Pulsar configuration.

Blinker (period 2) Toad (period 2)

Beacon (period 2) Pulsar (period 3)

Table 2: A selection of Oscillators

The final group of test examples are two Spaceships. These configurations travel across the
simulation space through a regular cycle of transformations. Table 3 shows the configuration
of the Glider and LWSS (Lightwieght spaceship). Each of these Spaceships move through the
computational domain through a characteristic set of transformations. Figures 4 and 5 show
the life cycles of the Glider and LWSS spaceships.

10

Figure 3: The Pulsar life-cycle

Glider (period 3) LWSS (period 6)

Table 3: A selection of Spaceships

11 Example results

In this final section we show the results from two larger simulations. The first is one of the so
called Glider Guns - Gosper’s Glider Gun [14]. Guns are configuration that repeatedly shoot
out moving objects such as Gliders. The Gosper’s Glider Gun was the first and is the smallest
glider gun so far discovered.

The second example is a larger random life population of 900 live cells on a 50x50 cell grid.

11.1 The Gosper Glider Gun

In a cellular automaton, a gun is a pattern with a main part that repeats periodically, like an
oscillator, and that also periodically emits spaceships. There are then two periods that may
be considered: the period of the spaceship output, and the period of the gun itself, which is
necessarily a multiple of the spaceship output’s period. A gun whose period is larger than the
period of the output is a pseudoperiod gun.

Since guns continually emit spaceships, the existence of guns in Life means that initial pat-
terns with finite numbers of cells can eventually lead to configurations with limitless numbers of
cells, something that John Conway himself originally did not believe was possible. Bill Gosper
discovered the first glider gun (and, so far, the smallest one found) in 1970, earning $50 from
Conway. Figure6 shows the initial configuration of the gun. The Gosper glider gun shown above
produces its first glider on the 15th generation, and another glider every 30th generation from
then on. Figure7 show the configuration after many iterations. The multiple gliders can be

Figure 4: The Glider life-cycle

Figure 5: The LWSS life-cycle

clearly seen with the main pattern in its initial state.

11.2 Random initial distributions

The final example is a Life simulation started from a random distribution. We have taken a
domain size 100x100 (10000) cells with an population of 3300 live cells. Figure 8 show the
initial population of cells and Figure 9 show the population after 300 iterations after which the
population of live cells has reduced to 857. By this time, as can bee seen in Figure 9 a large
number of still and oscillator patterns have developed.

12 Comments on implementation

There are quite a few ways of implementing cellular automata using FLAME the approach taken
here is one of the simplest. Although only live agents post messages on the state message board
this could lead to quite large numbers in a large simulation. In the current implementation of
FLAME there are no intrinsic functions to return information on the neighbours of an agent.
Consequently all such searching and selection must be performed by the agent functions and
therefore each agent must read all the contents of the message board.

When neighbour based filters are implemented in FLAME in this examples the number of
messages scan could be reduced from many hundreds to a maximum of eight thus significant
improving the performance of the simulation.

12

Figure 6: The initial state of the Gosper Glider Gun

Figure 7: The Gosper Glider Gun after 61literations

References

[1] FLAME web site - http://www.flame.ac.uk

[2] M. Gardner (1970) Mathematical Games - The fantastic combinations of John Conway’s
new solitaire game ”life”. 223. pp. 120123. ISBN 0894540017.

[3] Conways’ Game of Life, Wikipedia web page: http://en.wikipedia.org/wiki/
Conway’s_Game_of_Life

[4] U. Wilensky (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

[5] P Kefalas etal (2003) ”Communicating X-Machines: From Theory to Practice”, chapter
in Advances in Informatics, 8th Panhellenic Conference on Informatics, PCI 2001 Nicosia,
Lecture Notes in Computer Science, Vol 2563, pp 21-33

[6] M Holcombe (1988) ”X-Machines as a basis for dynamic system specification”, Software
Engineering Journal, Vol 3, Issue 2

[7] S Coakley (2005) ”Formal Software Architecture for Agent-Based Modelling in Biology”,
PhD Thesis, University of Sheffield

[8] The home of dot and dotty http://www.graphviz.org/

[9] Stephen Silver’s Life Lexicon, an explanation of over seven hundred terms used in Conway’s
Life: http://www.argentum.freeserve.co.uk/lex_home.htm

[10] PGPLOT web site - http://www.astro.caltech.edu/~tjp/pgplot/
[11] C. Greenough, D.J. Worth, LS Chin, M. Holcome and S Coakley (2009), Exploitation of

High Performance Computing in the FLAME Agent-Based Simulation Framework, Ruther-
ford Appleton Laboratory Technical Report RAL-TR-2009-022, Jul 2009

13

Figure 8: The initial random distribution of live cells

[12] R.J. Allen (2009) Survey of Agent Based Modelling and Simulation Tools, STFC Daresbury
Laboratory Technical Report

[13] S. Coakley (2005) "Formal Software Architecture for Agent-Based Modelling in Biology”,
PhD Thesis, University of Sheffield

[14] S.A. Silver (2009) ”Gosper glider gun” - The Life Lexicon -
http://www.argentum.freeserve.co.uk

14

Figure 9: The distribution of live cells after 300 iterations

15

A FLAME XMML Model

Below is the full XMML definition of the Game of Life.

<xmodel version="2">

<name>Game of Life</name>
<version>01</version>

<!-- FLAME Environment -->
<environment>
<constants>

<variable><type>int</type><name>DOMAINX</name></variable>
<variable><type>int</type><name>DOMAINY</name></variable>
</constants>
<functionFiles>
<file>functions.c</file>
</functionFiles>
</environment>

<!-- FLAME agents -—>
<agents>
<xagent>
<name>Cell</name>
<memory>
<variable><type>int</type><name>id</name></variable>
<variable><type>int</type><name>i</name></variable>
<variable><type>int</type><name>j</name></variable>
<variable><type>int</type><name>state</name></variable>
<variable><type>int</type><name>neighbours[8]</name></variable>
</memory>
<functions>
<function>
<name>write_state</name>
<currentState>start</currentState>
<nextState>read_states</nextState>
<outputs>
<output><messageName>state</messageName></output>
</outputs>
</function>
<function>
<name>read_states</name>
<currentState>read_states</currentState>
<nextState>react</nextState>
<inputs>
<input>
<messageName>state</messageName>
</input>
</inputs>
</function>
<function>
<name>react</name>
<currentState>react</currentState>
<nextState>end</nextState>

</function>
</functions>
</xagent>
</agents>
<!-- FLAME messages -—>

16

<messages>
<message>
<name>state</name>
<variables>
<variable><type>int</type><name>id</name></variable>
<variable><type>int</type><name>i</name></variable>
<variable><type>int</type><name>j</name></variable>
<variable><type>int</type><name>state</name></variable>
</variables>
</message>
</messages>
</xmodel>

17

B FLAME C Functions

add_state_message(my_id, my_i, my_j, my_state);

mes_state;

int write_state()
{
int my_state, my_id, my_i, my_j;
my_state = get_state();
my_id = get_id();
my_i = get_i();
my_j = get_jO;
if (my_state == 1) {
}
return O;
}
int read_states()
{
int my_id, my_i, my_j;
int *my_neighbours;
int mes_id, mes_i, mes_j, mes_state;
int count;
my_id = get_id();
my_i = get_iQ);
my_j = get_jO;
my_neighbours = get_neighbours();
for (count = 0; count <= 7; count++)
my_neighbours[count] = 0;
count = 0;
START_STATE_MESSAGE_LOOP;
if (state_message->id != my_id) {
mes_id = state_message—->id;
mes_i = state_message->i;
mes_j = state_message—>j;
if (((mes_i == my_i - 1) && (mes_j
((mes_i == my_i - 1) && (mes_j
((mes_i == my_i - 1) && (mes_j
((mes_i == my_i) && (mes_j
((mes_i == my_i) && (mes_j
((mes_i == my_i + 1) && (mes_j
((mes_i == my_i + 1) && (mes_j
((mes_i == my_i + 1) && (mes_j
mes_state = state_message—->state;
my_neighbours[count] =
count++;
}
}
FINISH_STATE_MESSAGE_LOOP;
return O;
}

int react()

18

my_j - 1)) ||
my_j)) ||
my_j + 1)) ||

my_j - 1)) ||
my_j + 1)) ||

my_j - 1)) ||
my_j)) ||
my_j + 1))) {

int my_id, my_i, my_j, my_state;
int *my_neighbours;
int i, count;

my_id = get_id();

my_i = get_i();

my_j = get_jO;

my_state = get_state();
my_neighbours = get_neighbours();

count = 0;
for (i = 0; 1 < 8; i++) {
if (my_neighbours[i] == 1) count++;
}
if (count < 2) my_state = 0;
if (count == 2) my_state = my_state;
if (count == 3) my_state = 1;
if (count > 3) my_state 0;

set_state(my_state);

return 0;

19

	RAL-TR-2012-018-cover.pdf
	RAL-TR-2012-018-report

