
FLAME-II: a redesign of the Flexible
Large-scale Agent-based Modelling
Environment

LS Chin, DJ Worth, C Greenough, S Coakley,
M Holcombe, M Gheorghe

November 2012

 Technical Report
RAL-TR-2012-019

vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text

©2012 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358- 6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

FLAME-II: A redesign of the Flexible Large-scale

Agent-based Modelling Environment

L.S. Chin†, D.J. Worth†, C. Greenough†

S. Coakley‡, M. Holcombe‡ and M. Gheorghe‡

November 16, 2012

Abstract

This report reviews the current design of FLAME and highlights its limitations. This
is followed by the description of a proposed re-design which will overcome the current
limitations and enable the exploration of various optimisation and parallelisation
strategies. Some of these strategies are briefly discussed, along with other concerns
such as backward compatibility and agent topology management.

† Software Engineering Group, STFC Rutherford Appleton Laboratory

‡ Computer Science Department, University of Sheffield

Keywords: agent-based modelling, parallelisation, optimisation, flame framework

Email: {shawn.chin, christopher.greenough, david.worth}@stfc.ac.uk
{s.coakley, m.holcombe, m.gheorghe}@sheffield.ac.uk

Reports can be obtained from: http://epubs.stfc.ac.uk

Software Engineering Group
Scientific Computing Department
STFC Rutherford Appleton Laboratory
Harwell Oxford
Didcot
Oxfordshire OX11 0QX

Contents

1 Introduction 1

2 Overview of the design of FLAME-I 1

3 Limitations of the Current Design 3
3.1 Data Granularity . 3
3.2 Execution Path Bound by Model Definition . 4
3.3 Thread Safety . 4

4 The Proposed Design 4
4.1 Discovering More Parallelism Through Data Dependency Analysis 5
4.2 Decomposing Agents into Independent Vector Operations 10
4.3 Dynamic Task Scheduling . 11

4.3.1 Using Task Priority to Optimise Resource Utilisation 12
4.3.2 Using Multiple Queues to Manage Different Resources 12
4.3.3 Using Slots to Control the Number of Concurrent Tasks Running on Each

Resource . 12
4.4 Adaptive Parallelism . 13
4.5 Multi-Level Parallelism . 14

4.5.1 Intra-Node Parallelism . 14
4.5.2 Inter-Node Parallelism . 14
4.5.3 Stacked Simulations . 14
4.5.4 Coupled Simulations . 15

5 Design Patterns for Parallel Agent-Based Models 16

6 Handling Agent Topology 17

7 Backward Compatibility 18

8 Conclusion 18

9 Acknowledgement 19

References 19

i

1 Introduction

Over the years, FLAME [1] has evolved based on the requirements of different projects starting
from a position-aware framework used for biological agent modelling [2][3][4] to a position-
agnostic framework driven by a static scheduler and message board library catering to economic
models [5].

Some of the functionality provided by FLAME was introduced as ad hoc features for particular
models, while many of the architectural design and data structures used within the framework
are a direct result of iterative improvements to meet project-specific goals. For the models it was
developed for, FLAME was fit for purpose. However, as a generic framework for agent-based
modelling there is still much room for improvement.

In this report, we briefly describe the current design and its limitations, followed by a discus-
sion on the plans to re-engineer the inner workings of the framework from the ground up. The
key considerations for this re-engineering effort are performance – to extract more parallelism
from the simulation – and extensibility – to support different execution back ends, parallelism
paradigms, and modelling domains.

2 Overview of the design of FLAME-I

In FLAME, modellers define agents using the concept of Communicating Stream X-Machine [6]
(CSXM); each agent is represented by an acyclic state machine that characterises the behaviour
of the agent per iteration.

Each state transition function has access to the internal memory of the agent, as well as
input and output streams of information. In FLAME the input/output streams take the form of
message boards [7]. Since message boards are the only means in which the agent communicates
with the environment and other agents, this makes the agent model inherently parallel. Each
agent can be executed independently as long as the input message board contains the expected
messages.

Figure 1: Agents as Communicating Stream X-Machines

The simulation can therefore be parallelised by distributing agents across disparate process-
ing nodes and synchronising the message boards to ensure that all agents see the same set of
messages.

For efficiency, agents are not allowed to read and write to the same board from the same
transition function. This avoids the need to synchronise the boards on every single write oper-
ation.

The synchronisation of a board is initiated the moment all writes have completed using
the MB SyncStart function. This function is non-blocking and the synchronisation process is
performed in a background thread. The framework is then free to execute other functions
that do not depend on the board in question. It is possible for multiple message boards to be
synchronised concurrently.

Before executing agent functions that reads messages from a board, the MB SyncComplete

function has to be called. This function checks the status of the synchronisation process and

1

Figure 2: Parallelism achieved by distributing agents and synchronising message boards

returns immediately if the synchronisation is complete. However, if synchronisation is still in
progress the function blocks until completion.

An important aspect of attaining good performance is therefore to completely hide the com-
munication cost by scheduling as much computation as possible between functions that write
messages and those that read them.

At present, the scheduling of functions is done statically. This is done by the xparser —
the FLAME model parser which parses the agent definition (written in a dialect of XML called
XMML) and generates the simulation code.

Figure 3: Building a FLAME simulation

Based on the model definition, the xparser produces a directed acyclic graph representing
a dependency graph of transition functions. Each agent model will have its own function de-
pendency graph and they are coupled together by dependencies on message boards. Nodes
representing a message boards are dependents of functions that write to the board, and depen-
dencies of functions that read from the board.

2

Figure 4: Model represented as function dependency graphs coupled together by dependency on
message board

Using the function dependency graph, the xparser can schedule the execution of agent tran-
sition functions such that message producers are scheduled as early as possible and message
consumers as late as possible. This maximises the amount of computation being performed
while the synchronisation process is in flight.

It is possible for transition functions of different agent types to be interleaved as long as the
dependencies are met.

Agent instances are represented as a struct containing the internal memory of the agent.
Agent transition functions read this memory struct and updates its values, effectively transi-
tioning the agent instance to the next state ready to be consumed by the next function. The
execution of a transition function is repeated for all agent instances of the associated type in
the relevant state. Once all functions have been called (in the correct order so as to meet
dependencies) an iteration of the simulation is complete.

3 Limitations of the Current Design

To define an agent, modellers specify a set of state transition functions to transition an agent
from one state to another. When linked together, these transition functions and their associated
states form the acyclic state machine that represents the behaviour of the agent.

These functions have read-write access to all variables within agent memory which seems
sensible at first, but in hindsight is the cause of (or a contributing factor to) some of the
limitations of the design.

3.1 Data Granularity

Because each function can potentially write to all memory variables, the smallest unit of data is
the whole agent instance. Data partitioning for parallel execution has to therefore be done at the
agent level. Because there are computational costs (transition functions) and communication
overheads (message access) tied to each agent, determining an optimum partitioning strategy is
not straight forward.

For example, optimising for a balanced memory utilisation and computational load by equally
distributing agents across nodes can lead to excessive communication overheads due to all-to-
all synchronisation of all message boards; grouping agents by type to reduce communication
load can affect scalability due to uneven load and as well as limit the simulation sizes due to
insufficient memory capacity in a heavily populated node.

3

Figure 5: Independent tasks are scheduled during syncs process to maximise computation-
communication overlap

3.2 Execution Path Bound by Model Definition

In the current framework, the memory access requirements of each transition function are not
known to the framework. The parser therefore cannot make any assumptions about the actual
dependencies between the functions and has to rely solely on the state diagram defined by the
modellers.

More often than not, this leads to false dependencies between functions and an execution
graph that is mostly sequential with very few concurrent paths. Such a graph would be tall and
narrow, and expresses very little parallelism.

3.3 Thread Safety

A huge limitation of the current FLAME implementation is the lack of thread safety. Due
to this short-coming, the framework is unable to safely execute multiple transition functions
concurrently and is therefore less able to efficiently utilise multi-core systems. Users have to
resort to launching multiple MPI task on a node to utilise all cores.

4 The Proposed Design

The following sections discuss some of the approaches we intend to explore in order to maximise
the parallelism potential within the framework.

4

Figure 6: State diagram for model as defined by
a modeller

Figure 7: Function dependency graph based on
states transition graph

4.1 Discovering More Parallelism Through Data Dependency Analysis

To improve the parallel performance of the framework, we need to extract as much concurrency as
possible from a simulation. This involves breaking the simulation down into more parallelisable
units then scheduling their execution in a manner which fully utilises all resources available to
the execution environment.

We believe that the secret ingredient to achieving this is to have the memory access require-
ment of each agent transition function explicitly defined by modellers. With this additional
information, along with the state transition graph of the agent, we can build a more accurate
view of the dependencies between the different transition functions.

Every agent memory variable can then be treated as an independent entity and each write
to the variable is seen as a transformation of the variable to a new version. Keeping track of
memory reads and writes allows us to determine which functions can be run concurrently, and
which ones need to be run in sequence to ensure that the correct versions of memory variables
are accessed.

If a sequence of transition functions all read the same memory variables and never update
the values, they are all reading the same version of data and therefore have no dependencies
on each other. These functions can be executed concurrently (assuming there is no conflicting
access to message boards). The same goes for functions which access different subsets of agent
memory.

However, if a transition function require write access to a memory variable then subsequent
transition functions are considered to depend on the new version of the memory variable and
therefore have to wait till that information is available.

Once a data dependency graph is generated, we remove all data verticies while maintaining
the implied dependencies between their parents and children by adding the children of each data
vertex as a dependent of the parents. This reduces the graph to a directed acyclic graph (DAG)

5

Figure 8: State diagram with
memory access of transition
functions explicitly declared

Figure 9: Data dependency
graph of transition functions

Figure 10: Function depen-
dency graph derived from
data dependency graph can
express more parallelism

which represents the actual dependencies between functions; this graph is no longer bound by
the state diagram produced by the modellers and can potentially express more parallelism.

Naturally, the amount of parallelism depends on the model. Take for example the Circles
test model where each function consumes information produced by the previous function the
resulting function graph is sequential as show in Figure 12 (the folder-shaped nodes in the figure
– labeled [Circle.x] and [Circle.y] – represent potential I/O operations which store data
vectors once they are no longer updated).

In contrast, a more complicated agent model with a richer set of actions and behaviour can
better benefit from this approach. Take for instance the infection model depicted in Figure 13.

6

Figure 11: Data dependency analysis of Circles model

Figure 12: Function dependency graph of Circles model derived from data dependency graph

7

Figure 13: State diagram of Infection model shows little parallelism

8

F
ig

u
re

14
:

D
at

a
d

ep
en

d
en

cy
an

al
y
si

s
of

In
fe

ct
io

n
m

o
d

el

9

Figure 15: Function dependency graph derived from data dependency graph expresses more
parallelism

We can see that the function dependency graph (Figure 15) derived from the data dependency
analysis (Figure 14) is much broader than the state transition diagram. This graph expresses
much more parallelism than one derived from the state diagram alone and will still produce the
same results when used to drive the simulation scheduler.

4.2 Decomposing Agents into Independent Vector Operations

With the changes introduced in the previous section, transition functions can be treated as
operations on a predefined set of independent variables. Since all the agents of the same type
have the same set of transition functions and memory structure, we can effectively treat the
transition function as an operation on long vectors where each vector element corresponds to an
agent instance.

For example, the agent in the circles model which contain four memory variables can be
represented as the following set of vector operations.

Figure 16: The Circles model represented as a set of vector operations

This shift in paradigm brings about many desirable features:

• The granularity of data has been reduced from an agent instance to a single memory

10

variable. This allows us more flexibility in the storage structure and a more fine-grained
approach to data and task decomposition.

• Operations on long vectors are potentially more efficient and can better utilise memory
and caches. They are also more amenable to different parallel programming paradigms,
e.g. SIMD, task farming, stream processing, etc.

• Check-pointing and migration of data can be done more efficiently – the elements in the
long vectors are of equal size and contiguous in memory so data packing and buffering
is no longer required. Furthermore, using information from the data dependency graph,
data can be written to disk in stages as the final version becomes available.

• Transition functions can be treated as independent tasks that can be executed in any order
as long as its inputs are available. This opens up many opportunities for optimisation
including dynamic scheduling of tasks, multiple levels of parallelism, etc. (discussed in the
following sections).

4.3 Dynamic Task Scheduling

The function dependency DAG generated based on the analysis of memory reads/writes would
implicitly encode the data dependencies. Therefore, as long as the function dependencies are
met each function is guaranteed to be accessing the correct versions of memory and messages.
This greatly simplifies the job of managing dependencies and ensuring the correctness of the
simulation.

Instead of converting the DAG into a static sequence of function calls as done in the current
FLAME framework, the DAG can be represented as a list of tasks to be consumed by a dynamic
scheduler at runtime.

The use of a dynamic scheduler will allow the simulation to adapt to different runtime condi-
tions and the variations in computational and communication loads that can occur in agent-based
simulations.

Furthermore, a common runtime code can be used for all models which leads to less code
generation for each model thus improving the testability and maintainability of the framework.

During a simulation, tasks are added to a queue as they become available (dependencies met)
and the scheduler selects tasks for execution based on the priority levels assigned to each task.
Once all tasks have been executed the iteration is complete and the whole process is repeated
for the next iteration.

• func 1 {T:agent, D:[], P:10}

• func 2 {T:agent, D:[func 1], P:4}

• func 3 {T:agent, D:[func 1], P:2}

• sync(msg X) {T:msg, D:[func 1], P:50}

• func 4 {T:agent, D:[func 2, func 3], P:1}

• func 5 {T:agent, D:[func 3, sync(msg X)], P:1}

Figure 17: Task graph represented as a list of tasks

Each entry in the task list contains the following information:

• Task identifier: a unique handle for each task

• Task type: a label to determine which queue the task belongs to (more details later)

11

• Dependency list: list of tasks that must be completed before this task can be executed

• Priority level: the priority of this tasks

4.3.1 Using Task Priority to Optimise Resource Utilisation

The priority level indicates the urgency of each task. It assists the scheduler in determining
which task from the queue should be executed first.

The priority level can be assigned based on many criteria, for example:

• Sub-tree weight – a task that has many dependents should be scheduled as early as
possible.

• Task type – if there is only one queue, then the priority mechanism can be used to ensure
urgent tasks such as message syncs are launched first and non-urgent tasks (such as data
check-pointing) are only slotted in to fill the gaps.

• Estimated run-time – if profiling information is available from previous iterations, we
can predict a task’s runtime and weight it accordingly.

• Vector length – if profiling information is not available, we can use the size of the
input vector length as an initial estimate for weighing the task. The priority levels should
be recalculated periodically based on the runtime statistics collected during the previous
iterations.

The job of recalculating the priority level can itself be wrapped up as a task that is managed
by the scheduler. The same goes for other framework level operations that require significant
use of available resources. This ensures that none of the resources are oversubscribed.

4.3.2 Using Multiple Queues to Manage Different Resources

Assigning a task type allows us the opportunity to support multiple task queues. Each queue
can be assigned to different resources that can be managed independently.

For example, we may choose to have separate queues for disk I/O heavy tasks (for data
check-pointing), communication tasks (message syncs), and computation tasks (execution of
agent functions). In addition, different computation resources that can operate independently
(CPU, GPUs, and other accelerators) can each have their own individual queue and be managed
separately.

4.3.3 Using Slots to Control the Number of Concurrent Tasks Running on Each
Resource

The scheduler queue is designed to ration the use of a particular resource type; there may be
more than one instance of each resource (multiple CPU cores), or the resource may be able
to handle several tasks simultaneously. To take this into account, each queue is assigned one
or more execution slots which it can fulfil. The number of slots assigned to each queue will
determine the number of concurrent task that uses a specific resource.

At runtime, the scheduler will attempt to maximise the use of resources by keeping every slot
filled with running tasks, replacing each completed task with a new task from the associated
queue. The total number of execution threads during a simulation would therefore be the number
of slots plus the execution threads of the framework runtime (may be one or more).

Take for example a simulation running on 8-core nodes with a modest interconnect. A possible
configuration would be to launch the framework with the following queues:

12

• CPU queue (7 slots): Up to seven CPU-bound tasks can be run concurrently at any time.
This can be tasks associated to agent transition functions or framework related tasks such
as the recalculation of task priorities or the indexing of message boards for faster lookups.
One core is set aside (hence 7 slots and not 8) to handle the framework runtime as well as
the processing requirements of other queues.

• SYNC queue (3 slots): Limit the number of concurrent message board syncs to avoid over
subscribing the communication layer. Tasks from this queue perform mainly communica-
tion and require minimal computational resources.

• I/O queue (1 slot): Disk I/O to be done sequentially.

The types of queues and the number of slots for each queue should be user-configurable. In the
absence of user preferences the framework should set sensible defaults based on the capabilities
of the host machine. Tools such as hwloc [8] can be used to probe the capabilities of the host
machine.

4.4 Adaptive Parallelism

When multiple slots are available, the scheduler has several options when mapping tasks to slots.
The most straight forward choice would be to issue one task per slot; this approach will work
reasonably well if there are many pending tasks in the queue. However, when the number of
available slots exceed the number of pending tasks, some of the slots may be left idle while the
remaining tasks get executed. This situation is particularly bad for models with bottlenecks in
the function dependency graph where a huge portion of the execution graph depends on small
number of tasks.

Another approach is to split a task across several slots each executing the same operation on
different sections of the data vector. This method is most effective when the number of elements
in the vectors is sufficiently large and the operation on each vector element takes a consistent
amount of time – this ensures that the workload is evenly distributed across the resource and all
instances of the task complete at the same time. In practice however, concurrent tasks almost
never complete at exactly the same time. Waiting for all instances of the task to complete before
issuing the next tasks makes the scheduler extremely vulnerable to load imbalance issues.

To benefit from both approaches, the scheduler should mix and match different strategies at
runtime to adapt to the workload and available resource. Tasks can be scheduled to a single
slot or scheduled across several (or all) slots. The following are some of the factors than can be
considered when making the choice:

• The total number of slots

• The number of free slots

• The estimated completion time of running tasks

• The number of pending tasks

• The priority of pending tasks

• The estimated runtime of each task

Devising an effective scheduling algorithm that takes into account these factors will not be
trivial and would make an interesting topic for further research.

13

4.5 Multi-Level Parallelism

With the changes proposed in this report, parallelism can be achieved at multiple levels each
working on a different abstraction layer and can therefore be used together. The ideal combi-
nation of these different paradigms would depend on the characteristics of the model and the
computational resource available.

4.5.1 Intra-Node Parallelism

With the introduction of scheduler queues and slots, all cores within a computing node can
be used simultaneously to process tasks. In addition, attached processors/accelerators such as
GPGPUs and FPGAs can potentially be thrown into the mix.

At this level of parallelism, only one instance of the simulation is running – parallelism is
achieved by spawning one worker thread (or process) per slot and assigning tasks to them.

Scheduling tasks onto attached accelerators is trickier and would depend on the device itself.
One approach we may consider is the use of OpenCL and its scheduler for offloading tasks onto
attached devices.

4.5.2 Inter-Node Parallelism

To scale the simulation across nodes with distributes memory we shall take the standard SIMD
approach of running multiple instances of the simulation on every node. Simulation data is
decomposed and distributed across all instances and simulation is executed as usual. The model
is coupled together through the synchronisation of the message boards – as long as agents have
a consistent access to message boards, it shouldn’t make a difference if the simulation is running
as once instance or distributed across the cluster.

Important factors that affect the scalability of this approach are the synchronisation of the
message boards and the decomposition of agent data. An ideal synchronisation strategy for the
message board will hide all communication overheads and replicate as little data as possible;
an ideal decomposition would minimise the need for message synchronisation and maintain a
balance across all instances. Naturally, an ideal solution would be difficult to achieve due to the
complexity and dynamic nature of agent models. Determining a decent strategy to maximise
performance is non-trivial and would be another big part of this research.

4.5.3 Stacked Simulations

In the preceding sections we described how a model can be decomposed into a list of vector
operations that is scheduled for execution based on a task dependency graph. Each vector
operation is fed into a scheduler queue once its dependencies are met. The scheduler can launch
one or more concurrent tasks depending on the number of slots available. Once all tasks have
been executed the iteration is complete and the process is repeated for the next iteration.

To achieve good performance, all slots must be kept busy which means the scheduler queue
must always be populated. For some models where there is a logical bottleneck (multiple oper-
ations depending on the output of a single operation or message) there is a high probability of
the queue being empty when all remaining tasks depend on the task currently being executed
in one slot, leaving other slots idle.

While it is sometimes possible to change the behaviour of the agent to avoid bottlenecks
in the model, a change in model behaviour for the sake of performance is often undesirable or
unacceptable.

To alleviate the problem of logical bottlenecks, we propose the use of stacked simulations i.e.
merging multiple simulations and running them at once while maintaining the independence and
output of each simulation. The multiple simulations can be of the same model with different
input data, or different models, or even a combination of both approaches.

14

Stacking Multiple Instances of the Same Model

It is quite common for modellers to run a simulation multiple times for each experiment.
These ensemble runs are necessary to deal with uncertainties in the system and may be done
using the same input data for all runs or slightly different data for each run.

Instead of running each ensemble member sequentially or as multiple independent simulations,
we propose merging the ensemble into a single FLAME simulation. By concatenating the data
vectors for all runs and isolating the message boards of each simulation, we can simultaneously
process all the runs using the same task dependency graph while maintaining the independence
of each simulation.

While this does not solve the problem of logical bottlenecks in the task dependency graph, it
greatly reduces the effects of it. The concatenated data vectors mean that each operation can be
broken down into many more tasks which will keep the scheduler well populated. Furthermore,
the additional computational load will give FLAME ample opportunity to handle all message
board synchronisations in the background and effectively hide communication latencies.

It should be noted that this is only effective for bottlenecks on computational tasks. The
effects of bottlenecks on communication tasks (message synchronisation) cannot be solved and
may even be made worse by stacking ensemble runs.

Stacking Different Models

To properly mask problems with computation and communication bottlenecks, it is theoret-
ically possible to merge the execution of different models under the same FLAME simulation.

In contrast to stacking simulations of the same model which simply extends the data vector
processed by each task, stacking simulations of different models provides the FLAME runtime
with an additional list of tasks that can be used to keep the scheduler busy. The simulations
are effectively independent simulations with their own message boards and data vectors; they
simply share the computational and communication resources via a common scheduler.

This form of stacking is very similar to the merging of nested models as implemented in the
current version of FLAME with the exception that models should not interact with each other,
and the namespaces of memory variables and message boards are kept separated for each model.

Both forms of stacking, be it of the same or different models, will be most effective when every-
thing fits within the memory of a single shared-memory node. Once the memory requirements
exceed that of one node and inter-node parallelism is required, its effectiveness would be down
to how much additional communication is required and how well it can be masked by com-
putational overlaps. It is therefore down to the model itself, and the decomposition strategy
employed.

4.5.4 Coupled Simulations

Another opportunity which we could consider is the coupling of completely independent but
related simulations, e.g. a flood simulation which provides the input data for an evacuation
model. Instead of having to complete one simulation and then feeding the results as input to
the other model, both (or several) models can be run simultaneously as separate instances.

To couple the models together, a shared message board is used. This message board will
behave as a standard message board but will use an AMQP [9] (Advanced Message Queuing
Protocol) backend for inter-simulation communication.

The same mechanism can be used for multi-scale models – multiple micro-level models can
be running independently all of which interact with a parent model that simulate the model at
a macro level.

In contrast to the nesting of sub-models (available in the current FLAME framework) or the

15

stacking of multiple models (discussed in the previous section), this form of model integration is
very loosely coupled. Each model will have its own timescales and can progress asynchronously;
blocking only happens when a required message from a remote simulation is unavailable and
performance is only affected if the scheduler does not have other tasks to process in the meantime.

Using this scheme, the key to good performance would therefore be to calibrate the resources
assigned to each model such that the production and consumption of inter-model messages
occurs at roughly the same rate.

Other Uses of AMQP-Based Message Boards

Using a messaging protocol such AMQP as a synchronisation back end for the shared message
board, communication is no longer limited to a group of processes started in an SIMD fashion (as
with MPI). Any client connected to the message broker can participate in the communication,
therefore interaction via these boards is not limited to FLAME models.

• Existing applications can be modified to communicate with a FLAME model using a pre-
defined API. This allows the coupling with non-FLAME simulations and external solvers.

• A mock application can be easily written to feed data to boards. This is useful for running
the model in a standalone fashion and is especially useful during the development and
testing of the models.

• Remote visualisation and computational steering can be achieved by simply reading and
writing to the shared message boards from a desktop GUI.

5 Design Patterns for Parallel Agent-Based Models

When moving from an inherently serial agent model to a one designed for parallel execution
such as FLAME, many interaction patterns that occur frequently in agent models take on a
new level of complication. Access to globally shared information such as environment data and
location of all agents can no longer be taken for granted as any update to global information
has to be synchronised across distributed processes before they are accessible by other agents.

Take for instance a simple example where agents move around a grid by randomly selecting
a new location that is not occupied by another agent. In a serial implementation, each agent is
activated in a random sequence and it chooses a free location to move to; every move updates
the global information such that the next agent that is activated is aware of that new location.
To achieve the same behaviour in a parallel model would require lock-stepping the activation
of agents across all processors and synchronise the global information after each move, which
would be a prohibitively expensive approach and defeats the purpose of parallelism.

One possible solution to that problem is for all agents to propose a move (in the case of
FLAME, by posting a message) based on a snapshot of the current global information and
subsequently make the move if there are no conflicts with other proposals. Conflicting proposals
can be dealt with in various ways – by having the agents stay where they are, or assigning
a random number to each move proposal and using it choose who wins, or by going through
another round of proposals, or anything else a modeller can come up with. Each choice of
conflict resolution strategy will have an effect on the outcome of the simulation and possibly the
performance of the model. Complications such as these arise frequently in the models weve come
across and this greatly contributes to the steep learning curve of building an efficient parallel
agent based model.

Quite often, similar solutions to these problems are transferrable to models from different
domains. For instance, the same interaction pattern can be used to model pigeons feeding
on fields with finite amount of food in a population dynamics model, as well as households
purchasing goods from stores in a consumer goods market model. These problems have been

16

solved by modellers using ingeniously crafted interaction patterns between agents; however the
implementation is coded within their models and not readily searchable or transferrable to other
models.

We believe an important step towards improving the usability for FLAME and helping mod-
ellers write efficient models is to identify, categorise, and document reusable solutions for parallel
agent-based modelling (similar to the popular Design Patterns [10] for Object-oriented program
design).

Once a set of reusable solutions is defined, we can proceed to implement framework-level
solutions that modellers can quickly integrate into their models making it easy for new users
to get their models up and running as well as to quickly evaluate different approaches to their
problem.

6 Handling Agent Topology

FLAME currently has no notion of agent topology1 or message semantics. All agent interactions
rely on a generic message board that acts as a medium for all-to-all messaging. Filters were
introduced to emulate one-to-many (broadcast) and one-to-one communication. This allowed for
a reasonably efficient parallel implementation of a general purpose agent modelling framework.

Agent topology (e.g. Euclidean space, grids, agent hierarchies and networks) is currently
implemented within the models themselves. For example, some notion of agents populating a
3D Euclidean space can be implemented by storing positional information in agent memory and
conveying that information to all other agents using a Location message board.

The need for modellers to reinvent the wheel each time raises the barrier to adopting FLAME
especially when a shift in mindset is required to design an inherently parallel model (no direct
access to global space). Models often end up more complicated than is necessary making it
harder to test and more prone to errors.

In this reengineering effort, we will take a serious look at integrating agent topology into
the framework. As with the case of common agent interaction patterns, providing a framework
level solution to agent topology will be much more efficient and will improve the usability of the
framework.

As a starting point, we believe an agent topology manager should provide the following
components:

• Mechanism to initialise a topology (in model definition) and register agent instances to
inhabit that topology (in model definition or initial data).

• Topology-specific message boards which expose relevant filters and routines, e.g. return
only messages from neighbours. Iterators for these boards will be optimised for the relevant
data types and query methods.

• Pre-build solutions for common topology-specific agent interactions, such as establishing
a new link in a graph or avoiding conflicts when moving to a free cell in a grid.

In should be noted that an efficient parallel implementation of an agent topology manager
has to take into account the decomposition of agent data across distributed memory nodes. In
turn, the agent topology can be used to influence the decomposition of agent data in order to
reduce inter-node communication.

Other factors such as the use of multiple topologies in a model, and the memory model of the
execution environment (share memory or distributed memory) also have a huge impact on the
implementation. Providing a canned solution for all potential users is therefore impractical. A
more scalable solution would be to provide a common frontend for the different topologies, and

1Not completely true. The spacial partitioning routine inherited from the previous incarnation of FLAME will
look for specific agent memory variables (x, y, z) to determine its location in a 3D Euclidean space.

17

a modularised backend to allow advanced users to customise the inner workings to suit their
model and execution environment.

Further investigation into different use cases and user requirements is necessary before we
can finalise the design.

7 Backward Compatibility

We acknowledge that backward compatibility is an important issue especially for existing users
who have invested significant effort in their models. However, considering the scope of the
reengineering planned, it is unlikely that direct backward compatibility will be possible. It is
therefore important that the migration from the old to new framework be as easy and painless
as possible for users.

To address this, a backward compatibility analysis is required; this will be an ongoing process
that runs in parallel with the development of the new framework and will include the following
activity:

• List existing features and syntax

• Evaluate each feature and identify those that will be deprecated or changed

• Determine the impact of each deprecation/change and identify a migration path

• Determine the impact of new features/syntax and identify migration path

The following are the possible migrations paths sorted by preference (starting with the pre-
ferred option):

1. Automatic translation by the framework – running the old model in the new frame-
work without change. The intended behaviour of the model should not change and sen-
sible defaults should be selected for information that is not expressed in the old model.
A warning message should be displayed (along with porting information) if a deprecated
functionality is ignored or if a change in the model is needed to improve performance.

2. Tool-driven transformation of model – transformation of an old model to a newer
format using a transformation tool provided by the framework. This should be automated
where possible and require minimal user input. As with the previous approach, users
should be warned of deprecated features or if changes are required to improve performance.

3. Guided migration – fully documented steps and guidelines for users to replace dep-
recated functionality. This document should also include recommendations for users to
optimise their model and better utilise the new framework.

8 Conclusion

In this report, we have described the current design of FLAME and its limitations. We then
proposed an architecture that decomposes the simulation into a list of vector operations that
can be scheduled based on a dependency graph. The dependency graph can be generated by
analysing the memory accesses of each agent function.

The new approach will enable various optimisation opportunities including more efficient
data structures, better resource utilisation using dynamical task scheduling, and multiple levels
of parallelism. Each of these was briefly discussed with varying levels of detail.

Other important considerations such as efficient handling of agent topologies and complex
interactions as well as managing backward compatibility were also discussed.

18

9 Acknowledgement

This work has been funded by EPSRC Grants EP/I030654/1 and EP/I030301/1.

References

[1] FLAME Website - http://www.flame.ac.uk

[2] S. Adra, T. Sun, S. MacNeil, M. Holcombe and R. Smallwood, “Development of a three
dimensional multiscale computational model of the human epidermis”, PLoS ONE 5(1):
e8511. doi:10.1371/journal.pone.0008511

[3] T. Sun, P. McMinn, S. Coakley, M. Holcombe, R. Smallwood and S. MacNeil, “An inte-
grated systems biology approach to understanding the rules of keratinocyte colony forma-
tion”, J. R. Soc. Interface 22 December 2007 vol. 4 no. 17 1077-1092

[4] Holcombe et al., “Modelling complex biological systems using an agent-based approach”,
Integr. Biol., 2012,4, 53-64

[5] C. Deissenberg, S. van der Hoog, and H. Dawid, “EURACE: a massively parallel agent-
based model of the European economy,” Applied Mathematics and Computation, vol. 204,
no. 2, pp. 541552, October 2008.

[6] T. Balanescu, A.J. Cowling, H. Georgescu, M. Gheorghe, M. Holcombe, and C. Vertan
(1999), “Communicating stream X-machines systems are no more than X-machines”, Jour-
nal of Universal Computer Science, vol. 5, pp. 494507, 1999.

[7] L.S. Chin (2009) “libmboard Reference Manual (Version 0.2.1)”, October 2009.

[8] Portable Hardware Locality (hwloc) - http://www.open-mpi.org/projects/hwloc/

[9] Advanced Message Queueing Protocol (AMQP) - http://www.amqp.org

[10] E. Gamma, R. Helm, R. Johnson and J. Vlissides (1995) “Design Patterns: Elements of
Reusable Object-Oriented Software”, Addison-Wesley

19

	RAL-TR-2012-019-cover.pdf
	RAL-TR-2012-019-report.pdf

