Numerical sparse linear algebra and interpolation spaces

Mario Arioli ${ }^{1}$ Daniel Loghin ${ }^{2}$
${ }^{1}$ Rutherford Appleton Laboratory, mario.arioli@stfc.ac.uk
${ }^{2}$ University of Birmingham, d.loghin@bham.ac.uk

Overview of talk

- Norms and duality in finite dimensional Hilbert spaces

Overview of talk

- Norms and duality in finite dimensional Hilbert spaces
- Discrete Interpolation Norms

Overview of talk

- Norms and duality in finite dimensional Hilbert spaces
- Discrete Interpolation Norms
- The continuous case and finite-element approximation

Overview of talk

- Norms and duality in finite dimensional Hilbert spaces
- Discrete Interpolation Norms
- The continuous case and finite-element approximation
- An example: Domain Decomposition

Overview of talk

- Norms and duality in finite dimensional Hilbert spaces
- Discrete Interpolation Norms
- The continuous case and finite-element approximation
- An example: Domain Decomposition
- Other examples

Overview of talk

- Norms and duality in finite dimensional Hilbert spaces
- Discrete Interpolation Norms
- The continuous case and finite-element approximation
- An example: Domain Decomposition
- Other examples
- Summary and open problems

Overview of talk

- Norms and duality in finite dimensional Hilbert spaces
- Discrete Interpolation Norms
- The continuous case and finite-element approximation
- An example: Domain Decomposition
- Other examples
- Summary and open problems
- A. and Loghin SINUM 2009, A., Kourounis, and Loghin IMAJNA 2012.

Overview of talk

- Norms and duality in finite dimensional Hilbert spaces
- Discrete Interpolation Norms
- The continuous case and finite-element approximation
- An example: Domain Decomposition
- Other examples
- Summary and open problems
- A. and Loghin SINUM 2009, A., Kourounis, and Loghin IMAJNA 2012.
- Collaborators Drosos Kourounis, Rodrigue Kammogne

TRUTH may be misleading

In a finite dimensional space all norms are equivalent i.e.

TRUTH may be misleading

In a finite dimensional space all norms are equivalent i.e.

$$
c(N)\|v\|_{1} \leq\|v\|_{2} \leq C(N)\|v\|_{1}
$$

TRUTH may be misleading

In a finite dimensional space all norms are equivalent i.e.

$$
c(N)\|v\|_{1} \leq\|v\|_{2} \leq C(N)\|v\|_{1}
$$

Identify the norms for which we have

$$
C\|v\|_{1} \leq\|v\|_{2} \leq C\|v\|_{1}
$$

TRUTH may be misleading

In a finite dimensional space all norms are equivalent i.e.

$$
c(N)\|v\|_{1} \leq\|v\|_{2} \leq C(N)\|v\|_{1}
$$

Identify the norms for which we have

$$
C\|v\|_{1} \leq\|v\|_{2} \leq C\|v\|_{1} \text { i.e. }\|\cdot\|\left\|_{1} \sim\right\| \cdot\left\|\|_{2}\right.
$$

Finite dimensional Hilbert spaces and R^{N}

- $(\cdot, \cdot): \mathcal{H} \times \mathcal{H} \rightarrow \mathbf{R}$ scalar product and $\|u\|_{\mathcal{H}}=\sqrt{(u, u)} \quad \forall u \in \mathcal{H}$ norm.

Finite dimensional Hilbert spaces and R^{N}

- $(\cdot, \cdot): \mathcal{H} \times \mathcal{H} \rightarrow \mathrm{R}$ scalar product and $\|u\|_{\mathcal{H}}=\sqrt{(u, u)} \quad \forall u \in \mathcal{H}$ norm.
- $\exists\left\{\psi_{i}\right\}_{i=1, \ldots, N}$ a basis for \mathcal{H}

$$
\forall u \in \mathcal{H} \quad u=\sum_{i=1}^{N} u_{i} \psi_{i} \quad u_{i} \in \mathrm{R} \quad i=1, \ldots, N
$$

Finite dimensional Hilbert spaces and R^{N}

- $(\cdot, \cdot): \mathcal{H} \times \mathcal{H} \rightarrow \mathrm{R}$ scalar product and $\|u\|_{\mathcal{H}}=\sqrt{(u, u)} \quad \forall u \in \mathcal{H}$ norm.
- $\exists\left\{\psi_{i}\right\}_{i=1, \ldots, N}$ a basis for \mathcal{H}
$\forall u \in \mathcal{H} \quad u=\sum_{i=1}^{N} u_{i} \psi_{i} \quad u_{i} \in \mathbf{R} \quad i=1, \ldots, N$
- Representation of scalar product in R^{N}.

Let $u=\sum_{i=1}^{N} u_{i} \psi_{i}$ and $v=\sum_{i=1}^{N} v_{i} \psi_{i}$.
Then

$$
(u, v)=\sum_{i=1}^{N} \sum_{j=1}^{N} u_{i} v_{j}\left(\psi_{i}, \psi_{j}\right)=\mathbf{v}^{\top} \mathbf{H} \mathbf{u}
$$

where $\mathbf{H}_{i j}=\mathbf{H}_{j i}=\left(\psi_{i}, \psi_{j}\right)$ and $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{N}$.
Moreover, $\mathbf{u}^{T} \mathbf{H u}>0$ iff $\mathbf{u} \neq 0$ and, thus \mathbf{H} SPD.

Dual space \mathcal{H}^{\star}

- $f \in \mathcal{H}^{\star}: \mathcal{H} \rightarrow \mathbf{R}$ (functional);

Dual space \mathcal{H}^{\star}

- $f \in \mathcal{H}^{\star}: \mathcal{H} \rightarrow \mathrm{R}$ (functional);
- $f(\alpha u+\beta v)=\alpha f(u)+\beta f(v) \quad \forall u, v \in \mathcal{H}$

Dual space \mathcal{H}^{\star}

- $f \in \mathcal{H}^{\star}: \mathcal{H} \rightarrow \mathbf{R}$ (functional);
- $f(\alpha u+\beta v)=\alpha f(u)+\beta f(v) \quad \forall u, v \in \mathcal{H}$
- \mathcal{H}^{\star} is the space of the linear functionals on \mathcal{H}

$$
\|f\|_{\mathcal{H}}^{\star}=\sup _{u \neq 0} \frac{f(u)}{\|u\|_{\mathcal{H}}}
$$

Dual space \mathcal{H}^{\star}

- $f \in \mathcal{H}^{\star}: \mathcal{H} \rightarrow \mathbf{R}$ (functional);
- $f(\alpha u+\beta v)=\alpha f(u)+\beta f(v) \quad \forall u, v \in \mathcal{H}$
- \mathcal{H}^{\star} is the space of the linear functionals on \mathcal{H}

$$
\|f\|_{\mathcal{H}}^{\star}=\sup _{u \neq 0} \frac{f(u)}{\|u\|_{\mathcal{H}}}
$$

- If \mathcal{H} finite dimensional and $u=\sum_{i=1}^{N} u_{i} \psi_{i}$, then $f(u)=\sum_{i=1}^{N} u_{i} f\left(\psi_{i}\right)=\mathbf{f}^{T} \mathbf{u}$

Dual space \mathcal{H}^{\star}

- $f \in \mathcal{H}^{\star}: \mathcal{H} \rightarrow \mathbf{R}$ (functional);
- $f(\alpha u+\beta v)=\alpha f(u)+\beta f(v) \quad \forall u, v \in \mathcal{H}$
- \mathcal{H}^{\star} is the space of the linear functionals on \mathcal{H}

$$
\|f\|_{\mathcal{H}}^{\star}=\sup _{u \neq 0} \frac{f(u)}{\|u\|_{\mathcal{H}}}
$$

- If \mathcal{H} finite dimensional and $u=\sum_{i=1}^{N} u_{i} \psi_{i}$, then $f(u)=\sum_{i=1}^{N} u_{i} f\left(\psi_{i}\right)=\mathbf{f}^{T} \mathbf{u}$
- Dual vector

Let $u \in \mathcal{H}, u \neq 0$, then $\exists f_{u} \in \mathcal{H}^{\star}$ such that

$$
f_{u}(u)=\|u\|_{\mathcal{H}}
$$

(Hahn-Banach).

Dual space \mathcal{H}^{\star}

- Let \mathcal{H} be a Hilbert finite dimensional space and \mathbf{H} the real $N \times N$ matrix identifying the scalar product.

Dual space \mathcal{H}^{\star}

- Let \mathcal{H} be a Hilbert finite dimensional space and \mathbf{H} the real $N \times N$ matrix identifying the scalar product.

$$
f_{u}(u)=\mathbf{f}^{T} \mathbf{u}=\left(\mathbf{u}^{T} \mathbf{H u}\right)^{1 / 2}
$$

The dual vector of \mathbf{u} has the following representation:

Dual space \mathcal{H}^{\star}

- Let \mathcal{H} be a Hilbert finite dimensional space and \mathbf{H} the real $N \times N$ matrix identifying the scalar product.

$$
f_{u}(u)=\mathbf{f}^{T} \mathbf{u}=\left(\mathbf{u}^{T} \mathbf{H u}\right)^{1 / 2}
$$

The dual vector of \mathbf{u} has the following representation:

$$
\mathbf{f}=\frac{\mathrm{Hu}}{\|\mathbf{u}\|_{\mathbf{H}}}
$$

and

$$
\left\|f_{u}\right\|_{\mathcal{H}^{\star}}^{2}=\mathbf{u}^{T} \mathbf{H} \mathbf{u}=\mathbf{f}^{T} \mathbf{H}^{-1} \mathbf{f}
$$

Dual space basis

- The general definitions of a dual basis for \mathcal{H} is

$$
\phi_{j}\left(\psi_{i}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Dual space basis

- The general definitions of a dual basis for \mathcal{H} is

$$
\phi_{j}\left(\psi_{i}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

- The ϕ_{i} are linearly independent:

$$
\sum_{i=1}^{N} \beta_{i} \phi_{i}(u)=0 \quad \forall u \in \mathcal{H} \Longrightarrow \sum_{i=1}^{N} \beta_{i} \phi_{i}\left(\psi_{i}\right)=0 \Longrightarrow \beta_{i}=0
$$

Dual space basis

- The general definitions of a dual basis for \mathcal{H} is

$$
\phi_{j}\left(\psi_{i}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

- The ϕ_{i} are linearly independent:

$$
\begin{gathered}
\sum_{i=1}^{N} \beta_{i} \phi_{i}(u)=0 \forall u \in \mathcal{H} \Longrightarrow \sum_{i=1}^{N} \beta_{i} \phi_{i}\left(\psi_{i}\right)=0 \Longrightarrow \beta_{i}=0 . \\
f\left(\psi_{i}\right)=\gamma_{i} \text { and } f(u)=f\left(\sum_{i=1}^{N} u_{i} \psi_{i}\right)=\sum_{i=1}^{N} \gamma_{i} u_{i} \\
\phi_{i}(u)=\phi\left(\sum_{i=1}^{N} u_{i} \psi_{i}\right)=u_{i} \Longrightarrow f=\sum_{i=1}^{N} \alpha_{i} \phi_{i}
\end{gathered}
$$

Linear operator

- $\mathscr{A}: \mathcal{H} \longrightarrow \mathcal{V}$ where \mathcal{H} and \mathcal{V} finite dimensional Hilbert spaces. \mathbf{H} and \mathbf{V} are the SPD matrices of the scalar products

Linear operator

- $\mathscr{A}: \mathcal{H} \longrightarrow \mathcal{V}$ where \mathcal{H} and \mathcal{V} finite dimensional Hilbert spaces. H and \mathbf{V} are the SPD matrices of the scalar products

$$
\|\mathscr{A}\|_{\mathcal{H}, \mathcal{V}}=\max _{u \neq 0} \frac{\|\mathscr{A} u\|_{\mathcal{V}}}{\|u\|_{\mathcal{H}}}=\left\|\mathbf{V}^{1 / 2} \mathbf{A} \mathbf{H}^{-1 / 2}\right\|_{2}
$$

Linear operator

- $\mathscr{A}: \mathcal{H} \longrightarrow \mathcal{V}$ where \mathcal{H} and \mathcal{V} finite dimensional Hilbert spaces. H and \mathbf{V} are the SPD matrices of the scalar products

$$
\|\mathscr{A}\|_{\mathcal{H}, \mathcal{V}}=\max _{u \neq 0} \frac{\|\mathscr{A} u\|_{\mathcal{V}}}{\|u\|_{\mathcal{H}}}=\left\|\mathbf{V}^{1 / 2} \mathbf{A} \mathbf{H}^{-1 / 2}\right\|_{2}
$$

- The result follows from the generalized eigenvalue problem in R^{N}

$$
\mathbf{A}^{T} \mathbf{V A} \mathbf{u}=\lambda \mathbf{H} \mathbf{u}
$$

Linear operator

- $\mathscr{A}: \mathcal{H} \longrightarrow \mathcal{V}$ where \mathcal{H} and \mathcal{V} finite dimensional Hilbert spaces. H and \mathbf{V} are the SPD matrices of the scalar products

$$
\|\mathscr{A}\|_{\mathcal{H}, \mathcal{V}}=\max _{u \neq 0} \frac{\|\mathscr{A} u\|_{\mathcal{V}}}{\|u\|_{\mathcal{H}}}=\left\|\mathbf{V}^{1 / 2} \mathbf{A} \mathbf{H}^{-1 / 2}\right\|_{2}
$$

- The result follows from the generalized eigenvalue problem in R^{N}

$$
\mathbf{A}^{T} \mathbf{V A} \mathbf{u}=\lambda \mathbf{H} \mathbf{u}
$$

$$
\kappa_{\mathbf{H}}(\mathbf{M})=\|\mathbf{M}\|_{\mathbf{H}, \mathbf{H}^{-1}}\left\|\mathbf{M}^{-1}\right\|_{\mathbf{H}^{-1}, \mathbf{H}}
$$

Linear operator

- $\mathscr{A}: \mathcal{H} \longrightarrow \mathcal{V}$ where \mathcal{H} and \mathcal{V} finite dimensional Hilbert spaces. \mathbf{H} and \mathbf{V} are the SPD matrices of the scalar products

$$
\|\mathscr{A}\|_{\mathcal{H}, \mathcal{V}}=\max _{u \neq 0} \frac{\|\mathscr{A} u\|_{\mathcal{V}}}{\|u\|_{\mathcal{H}}}=\left\|\mathbf{V}^{1 / 2} \mathbf{A} \mathbf{H}^{-1 / 2}\right\|_{2}
$$

- The result follows from the generalized eigenvalue problem in R^{N}

$$
\mathbf{A}^{T} \mathbf{V A} \mathbf{u}=\lambda \mathbf{H} \mathbf{u}
$$

$$
\kappa_{\mathbf{H}}(\mathbf{M})=\|\mathbf{M}\|_{\mathbf{H}, \mathbf{H}^{-1}}\left\|\mathbf{M}^{-1}\right\|_{\mathbf{H}^{-1}, \mathbf{H}}
$$

The interesting case is $\kappa_{\mathbf{H}}(\mathbf{M})$ independent of N

Interpolation spaces

$$
\begin{aligned}
\mathcal{H} & =\left(\mathrm{R}^{N},(u, v)_{\mathcal{H}}=\mathbf{u}^{T} \mathbf{H} \mathbf{v}\right) \\
\mathcal{M} & =\left(\mathrm{R}^{N},(u, v)_{\mathcal{M}}=\mathbf{u}^{T} \mathbf{M v}\right)
\end{aligned}
$$

Then $\exists \mathscr{S}$ self-adjoint such that

$$
(u, v)_{\mathcal{H}}=(u, \mathscr{S} v)_{\mathcal{M}}=(\mathscr{S} u, v)_{\mathcal{M}}
$$

Interpolation spaces

$$
\begin{aligned}
\mathcal{H} & =\left(\mathrm{R}^{N},(u, v)_{\mathcal{H}}=\mathbf{u}^{T} \mathbf{H} \mathbf{v}\right) \\
\mathcal{M} & =\left(\mathrm{R}^{N},(u, v)_{\mathcal{M}}=\mathbf{u}^{T} \mathbf{M} \mathbf{v}\right)
\end{aligned}
$$

Then $\exists \mathscr{S}$ self-adjoint such that

$$
(u, v)_{\mathcal{H}}=(u, \mathscr{S} v)_{\mathcal{M}}=(\mathscr{S} u, v)_{\mathcal{M}}
$$

i.e.

$$
(\mathbf{u}, \mathbf{v})_{\mathbf{H}}=(\mathbf{u}, \mathbf{S} \mathbf{v})_{\mathbf{M}}=(\mathbf{S u}, \mathbf{v})_{\mathbf{M}}
$$

where $\mathbf{S}=\mathbf{M}^{-1} \mathbf{H}$
S (self-adjoint in the good scalar product!)

Interpolation spaces

$$
\begin{aligned}
\mathcal{H} & =\left(\mathrm{R}^{N},(u, v)_{\mathcal{H}}=\mathbf{u}^{T} \mathbf{H} \mathbf{v}\right) \\
\mathcal{M} & =\left(\mathrm{R}^{N},(u, v)_{\mathcal{M}}=\mathbf{u}^{T} \mathbf{M v}\right)
\end{aligned}
$$

Then $\exists \mathscr{S}$ self-adjoint such that

$$
(u, v)_{\mathcal{H}}=(u, \mathscr{S} v)_{\mathcal{M}}=(\mathscr{S} u, v)_{\mathcal{M}}
$$

i.e.

$$
(\mathbf{u}, \mathbf{v})_{\mathbf{H}}=(\mathbf{u}, \mathbf{S} \mathbf{v})_{\mathbf{M}}=(\mathbf{S u}, \mathbf{v})_{\mathbf{M}}
$$

where $\mathbf{S}=\mathbf{M}^{-1} \mathbf{H}$
S (self-adjoint in the good scalar product!)

$$
\{\mathbf{S} \mathbf{x}=\mu \mathbf{x} \quad \Leftrightarrow \quad \mathbf{H} \mathbf{x}=\mu \mathbf{M} \mathbf{x}\} \Rightarrow \mu=\delta^{2}>0
$$

$\exists \mathbf{W}$ s.t. $\quad \mathbf{M}=\mathbf{W}^{T} \mathbf{W}, \quad \mathbf{H}=\mathbf{W}^{T} \boldsymbol{\Delta}^{2} \mathbf{W}, \quad \boldsymbol{\Delta} \quad$ diagonal $\mathbf{\Delta} \geq 0$

Interpolation spaces

$$
\boldsymbol{\Lambda}=\mathbf{W}^{-1} \boldsymbol{\Delta} \mathbf{W} \quad \boldsymbol{\Lambda}^{1 / 2}=\mathbf{W}^{-1} \boldsymbol{\Delta}^{1 / 2} \mathbf{W}
$$

Interpolation spaces

$$
\boldsymbol{\Lambda}=\mathbf{W}^{-1} \boldsymbol{\Delta} \mathbf{W} \quad \boldsymbol{\Lambda}^{1 / 2}=\mathbf{W}^{-1} \boldsymbol{\Delta}^{1 / 2} \mathbf{W}
$$

$$
\begin{aligned}
\mathbf{S}=\mathbf{M}^{-1} \mathbf{H} & =\mathbf{W}^{-1} \mathbf{W}^{-T} \mathbf{W}^{T} \boldsymbol{\Delta}^{2} \mathbf{W} \\
& =\mathbf{W}^{-1} \boldsymbol{\Delta} \mathbf{W} \mathbf{W}^{-1} \boldsymbol{\Delta} \mathbf{W} \\
& =\mathbf{\Lambda}^{2}
\end{aligned}
$$

Interpolation spaces

$$
\begin{aligned}
\boldsymbol{\Lambda}=\mathbf{W}^{-1} \boldsymbol{\Delta W} & \boldsymbol{\Lambda}^{1 / 2}=\mathbf{W}^{-1} \boldsymbol{\Delta}^{1 / 2} \mathbf{W} \\
\mathbf{S}=\mathbf{M}^{-1} \mathbf{H}= & \mathbf{W}^{-1} \mathbf{W}^{-T} \mathbf{W}^{T} \boldsymbol{\Delta}^{2} \mathbf{W} \\
= & \mathbf{W}^{-1} \boldsymbol{\Delta} \mathbf{W} \mathbf{W}^{-1} \boldsymbol{\Delta} \mathbf{W} \\
= & \boldsymbol{\Lambda}^{2}
\end{aligned} \quad \begin{aligned}
& \mathbf{M} \boldsymbol{\Lambda}=\mathbf{W}^{T} \mathbf{W} \mathbf{W}^{-1} \mathbf{\Delta} \mathbf{W}^{-T} \mathbf{W}^{T} \mathbf{W}=\boldsymbol{\Lambda}^{T} \mathbf{M} \Longrightarrow(\mathbf{u}, \boldsymbol{\Lambda} \mathbf{v})_{\mathbf{M}}=(\boldsymbol{\Lambda u}, \mathbf{v})_{\mathbf{M}}
\end{aligned}
$$

Interpolation spaces

$$
\begin{aligned}
& \boldsymbol{\Lambda}=\mathbf{W}^{-1} \boldsymbol{\Delta} \mathbf{W} \\
& \begin{aligned}
& \boldsymbol{\Lambda}^{1 / 2}=\mathbf{W}^{-1} \boldsymbol{\Delta}^{1 / 2} \mathbf{W} \\
\mathbf{S}=\mathbf{M}^{-1} \mathbf{H} & =\mathbf{W}^{-1} \mathbf{W}^{-T} \mathbf{W}^{T} \boldsymbol{\Delta}^{2} \mathbf{W} \\
= & \mathbf{W}^{-1} \boldsymbol{\Delta} \mathbf{W} \mathbf{W}^{-1} \Delta \mathbf{W} \\
& =\mathbf{\Lambda}^{2}
\end{aligned}
\end{aligned}
$$

$$
\mathbf{M} \mathbf{\Lambda}=\mathbf{W}^{T} \mathbf{W} \mathbf{W}^{-1} \mathbf{\Delta} \mathbf{W}^{-T} \mathbf{W}^{T} \mathbf{W}=\boldsymbol{\Lambda}^{T} \mathbf{M} \Longrightarrow(\mathbf{u}, \boldsymbol{\Lambda} \mathbf{v})_{\mathbf{M}}=(\mathbf{\Lambda u}, \mathbf{v})_{\mathbf{M}}
$$

and

$$
\left(\boldsymbol{\Lambda}^{1 / 2} \mathbf{u}, \boldsymbol{\Lambda}^{1 / 2} \mathbf{u}\right)_{\mathbf{M}}=(\mathbf{u}, \boldsymbol{\Lambda} \mathbf{u})_{\mathbf{M}}
$$

Interpolation spaces

$$
[\mathcal{H}, \mathcal{M}]_{\vartheta}=\left\{\mathbf{u} \in \mathbf{R}^{N} ;\left((\mathbf{u}, \mathbf{u})_{\mathcal{M}}+\left(\mathbf{u}, \mathbf{S}^{1-\vartheta} \mathbf{u}\right)_{\mathcal{M}}\right)^{1 / 2}\right\}
$$

Interpolation spaces

$$
\begin{aligned}
& {[\mathcal{H}, \mathcal{M}]_{\vartheta}=\left\{\mathbf{u} \in \mathbf{R}^{N} ;\left((\mathbf{u}, \mathbf{u})_{\mathcal{M}}+\left(\mathbf{u}, \mathbf{S}^{1-\vartheta} \mathbf{u}\right)_{\mathcal{M}}\right)^{1 / 2}\right\}} \\
& {[\mathcal{H}, \mathcal{M}]_{1 / 2}=\left\{\mathbf{u} \in \mathbf{R}^{N} ;\left((\mathbf{u}, \mathbf{u})_{\mathcal{M}}+(\mathbf{u}, \mathbf{\Lambda} \mathbf{u})_{\mathcal{M}}\right)^{1 / 2}\right\}}
\end{aligned}
$$

Interpolation spaces

$$
\begin{gathered}
{[\mathcal{H}, \mathcal{M}]_{\vartheta}=\left\{\mathbf{u} \in \mathbf{R}^{N} ;\left((\mathbf{u}, \mathbf{u})_{\mathcal{M}}+\left(\mathbf{u}, \mathbf{S}^{1-\vartheta} \mathbf{u}\right)_{\mathcal{M}}\right)^{1 / 2}\right\}} \\
\|\mathbf{v}\|_{\vartheta, h}^{2}=\|\mathbf{v}\|_{\mathbf{H}_{\vartheta, h}}^{2}=\mathbf{v}^{T}\left(\mathbf{M}+\mathbf{M S}^{1-\vartheta}\right) \mathbf{v} \\
\mathbf{H}_{\vartheta, h}=\mathbf{M}\left(\mathbf{I}+\mathbf{S}^{1-\vartheta}\right)=\mathbf{W}^{T}\left(\mathbf{I}+\mathbf{\Delta}^{2(1-\vartheta)}\right) \mathbf{W} \quad \text { (Bessel) }
\end{gathered}
$$

Interpolation spaces

$$
\begin{gathered}
{[\mathcal{H}, \mathcal{M}]_{\vartheta}=\left\{\mathbf{u} \in \mathbf{R}^{N} ;\left((\mathbf{u}, \mathbf{u})_{\mathcal{M}}+\left(\mathbf{u}, \mathbf{S}^{1-\vartheta} \mathbf{u}\right)_{\mathcal{M}}\right)^{1 / 2}\right\}} \\
\|\mathbf{v}\|_{\vartheta, h}^{2}=\|\mathbf{v}\|_{\mathbf{H}_{\vartheta, h}}^{2}=\mathbf{v}^{T}\left(\mathbf{M}+\mathbf{M S}^{1-\vartheta}\right) \mathbf{v} \\
\mathbf{H}_{\vartheta, h}=\mathbf{M}\left(\mathbf{I}+\mathbf{S}^{1-\vartheta}\right)=\mathbf{W}^{T}\left(\mathbf{I}+\mathbf{\Delta}^{2(1-\vartheta)}\right) \mathbf{W} \quad \text { (Bessel) }
\end{gathered}
$$

Let us drop one of the \mathbf{M}

$$
\begin{array}{r}
\left\{\mathbf{u} \in \mathbf{R}^{N} ;\left(\mathbf{u}, \mathbf{S}^{1-\vartheta} \mathbf{u}\right)_{\mathcal{M}}^{1 / 2}\right\} \\
\|\mathbf{v}\|_{\vartheta}^{2}=\|\mathbf{v}\|_{\mathbf{H}_{\vartheta}}^{2}=\mathbf{v}^{T}\left(\mathbf{M S}^{1-\vartheta}\right) \mathbf{v} \\
\mathbf{H}_{\vartheta}=\mathbf{M}\left(\mathbf{S}^{1-\vartheta}\right)=\mathbf{W}^{T}\left(\mathbf{\Delta}^{2(1-\vartheta)}\right) \mathbf{W} \tag{Riesz}
\end{array}
$$

Interpolation spaces (duality)

\mathcal{M}^{\star} and \mathcal{H}^{\star} dual spaces of \mathcal{M} and \mathcal{H}

$$
\begin{aligned}
& {[\mathcal{H}, \mathcal{M}]_{\vartheta}^{\star}=\left[\mathcal{M}^{\star}, \mathcal{H}^{\star}\right]_{1-\vartheta}} \\
& \mathbf{H}_{\vartheta, h}^{-1} \sim \mathbf{H}_{1-\vartheta, h}^{\star} \sim \mathbf{H}_{1-\vartheta}^{\star}
\end{aligned}
$$

where

Interpolation spaces (duality)

\mathcal{M}^{\star} and \mathcal{H}^{\star} dual spaces of \mathcal{M} and \mathcal{H}

$$
\begin{aligned}
{[\mathcal{H}, \mathcal{M}]_{\vartheta}^{\star} } & =\left[\mathcal{M}^{\star}, \mathcal{H}^{\star}\right]_{1-\vartheta} \\
\mathbf{H}_{\vartheta, h}^{-1} & \sim \mathbf{H}_{1-\vartheta, h}^{\star} \sim \mathbf{H}_{1-\vartheta}^{\star}
\end{aligned}
$$

where

$$
\mathbf{H}_{1-\vartheta}^{\star}=\mathbf{H}^{-1}\left(\mathbf{H} \mathbf{M}^{-1}\right)^{\vartheta}=\mathbf{W}^{-1} \boldsymbol{\Delta}^{2(\vartheta-1)} \mathbf{W}^{-T}=\mathbf{H}_{\vartheta}^{-1}
$$

Interpolation spaces (∞ dimensional case)

- X, Y two Hilbert spaces with $X \subset Y, X$ dense and continuously embedded in $Y .\langle\cdot, \cdot\rangle_{X},\langle\cdot, \cdot\rangle_{Y}$ scalar product and $\|\cdot\|_{X},\|\cdot\|_{Y}$ the respective norms.
- (Riesz representation theory) $\exists \mathscr{S}: X \rightarrow Y$ positive and self-adjoint with respect to $\langle\cdot, \cdot\rangle_{Y}$ such that $\langle u, v\rangle_{X}=\langle u, \mathscr{S} v\rangle_{Y} \cdot \mathscr{E}=\mathscr{S}^{1 / 2}: X \rightarrow Y$,
- $X=D(\mathscr{E})$ with $\|u\|_{X} \sim\|u\|_{\mathscr{E}}:=\left(\|u\|_{Y}^{2}+\|\mathscr{E} u\|_{Y}^{2}\right)^{1 / 2}$.
- $\|u\|_{\theta}:=\left(\|u\|_{Y}^{2}+\left\|\mathscr{E}^{1-\theta} u\right\|_{Y}^{2}\right)^{1 / 2}$.
- The interpolation space of index θ
$[X, Y]_{\theta}:=D\left(\mathscr{E}^{1-\theta}\right), \quad 0 \leq \theta \leq 1$, with the inner-product $\langle u, v\rangle_{\theta}=\langle u, v\rangle_{Y}+\left\langle u, \mathscr{E}^{1-\theta} v\right\rangle_{Y}$ is a Hilbert space
(Lions Magenes 1968).
- $[X, Y]_{0}=X$ and $[X, Y]_{1}=Y$. If $0<\theta_{1}<\theta_{2}<1$ then

$$
X \subset[X, Y]_{\theta_{1}} \subset[X, Y]_{\theta_{2}} \subset Y
$$

Interpolation Theorem

Let \mathfrak{X}, Y Hilbert spaces $\mathfrak{X} \subset \mathfrak{Y}$ with \mathfrak{X} dense in \mathfrak{Y}, and with inclusion compact and continuous. Let \mathcal{X}, \mathcal{Y} satisfy similar properties. Let $\pi \in \mathcal{L}(\mathfrak{X} ; \mathcal{X}) \cap \mathcal{L}(\mathfrak{Y} ; \mathcal{Y})$. Then for all $\theta \in(0,1)$,

$$
\pi \in \mathcal{L}\left([\mathfrak{X}, \mathfrak{Y}]_{\theta} ;[\mathcal{X}, \mathcal{Y}]_{\theta}\right) .
$$

Interpolation Theorem

Let \mathfrak{X}, Y Hilbert spaces $\mathfrak{X} \subset \mathfrak{Y}$ with \mathfrak{X} dense in \mathfrak{Y}, and with inclusion compact and continuous. Let \mathcal{X}, \mathcal{Y} satisfy similar properties. Let $\pi \in \mathcal{L}(\mathfrak{X} ; \mathcal{X}) \cap \mathcal{L}(\mathfrak{Y} ; \mathcal{Y})$. Then for all $\theta \in(0,1)$,

$$
\pi \in \mathcal{L}\left([\mathfrak{X}, \mathfrak{Y}]_{\theta} ;[\mathcal{X}, \mathcal{Y}]_{\theta}\right) .
$$

Let $\mathfrak{X} \supset \mathcal{X}_{h}$ and $\mathfrak{Y} \supset \mathcal{Y}_{h}\left(\mathcal{X}_{h}\right.$ and \mathcal{Y}_{h} finite-dimensional spaces $)$ $i_{h}: \mathscr{L}\left(\mathcal{X}_{h} ; \mathfrak{X}\right) \cap \mathcal{L}\left(\mathcal{Y}_{h} ; \mathfrak{Y}\right)$ the continuous injection operator

$$
i_{h} \in \mathcal{L}\left(\left[\mathcal{X}_{h}, \mathcal{Y}_{h}\right]_{\theta} ;[\mathfrak{X}, \mathfrak{Y}]_{\theta}\right) .
$$

Interpolation Theorem

Let \mathfrak{X}, Y Hilbert spaces $\mathfrak{X} \subset \mathfrak{Y}$ with \mathfrak{X} dense in \mathfrak{Y}, and with inclusion compact and continuous. Let \mathcal{X}, \mathcal{Y} satisfy similar properties. Let $\pi \in \mathcal{L}(\mathfrak{X} ; \mathcal{X}) \cap \mathcal{L}(\mathfrak{Y} ; \mathcal{Y})$. Then for all $\theta \in(0,1)$,

$$
\pi \in \mathcal{L}\left([\mathfrak{X}, \mathfrak{Y}]_{\theta} ;[\mathcal{X}, \mathcal{Y}]_{\theta}\right) .
$$

$$
\forall u_{h} \in\left[\mathcal{X}_{h}, \mathcal{Y}_{h}\right]_{\theta},\left\|i_{h} u_{h}\right\|_{\theta}=\left\|u_{h}\right\|_{\theta} \leq C_{1}\left\|u_{h}\right\|_{\theta, h}
$$

Interpolation Theorem

Let \mathfrak{X}, Y Hilbert spaces $\mathfrak{X} \subset \mathfrak{Y}$ with \mathfrak{X} dense in \mathfrak{Y}, and with inclusion compact and continuous. Let \mathcal{X}, \mathcal{Y} satisfy similar properties. Let $\pi \in \mathcal{L}(\mathfrak{X} ; \mathcal{X}) \cap \mathcal{L}(\mathfrak{Y} ; \mathcal{Y})$. Then for all $\theta \in(0,1)$,

$$
\pi \in \mathcal{L}\left([\mathfrak{X}, \mathfrak{Y}]_{\theta} ;[\mathcal{X}, \mathcal{Y}]_{\theta}\right) .
$$

$$
\forall u_{h} \in\left[\mathcal{X}_{h}, \mathcal{Y}_{h}\right]_{\theta},\left\|i_{h} u_{h}\right\|_{\theta}=\left\|u_{h}\right\|_{\theta} \leq C_{1}\left\|u_{h}\right\|_{\theta, h} .
$$

Assume now that there exists an interpolation operator $\exists I_{h}$ such that $I_{h}: \mathcal{L}\left(\mathfrak{X} ; \mathcal{X}_{h}\right) \cap \mathcal{L}\left(\mathfrak{Y} ; \mathcal{Y}_{h}\right)$ and $I_{h} u=u_{h}$ for all $u_{h} \in \mathcal{X}_{h}$.

$$
I_{h} \in \mathcal{L}\left([\mathfrak{X}, \mathfrak{Y}]_{\theta} ;\left[\mathcal{X}_{h}, \mathcal{Y}_{h}\right]_{\theta}\right)
$$

Interpolation Theorem

Let \mathfrak{X}, Y Hilbert spaces $\mathfrak{X} \subset \mathfrak{Y}$ with \mathfrak{X} dense in \mathfrak{Y}, and with inclusion compact and continuous. Let \mathcal{X}, \mathcal{Y} satisfy similar properties. Let $\pi \in \mathcal{L}(\mathfrak{X} ; \mathcal{X}) \cap \mathcal{L}(\mathfrak{Y} ; \mathcal{Y})$. Then for all $\theta \in(0,1)$,

$$
\pi \in \mathcal{L}\left([\mathfrak{X}, \mathfrak{Y}]_{\theta} ;[\mathcal{X}, \mathcal{Y}]_{\theta}\right) .
$$

$$
\begin{gathered}
\forall u_{h} \in\left[\mathcal{X}_{h}, \mathcal{Y}_{h}\right]_{\theta},\left\|i_{h} u_{h}\right\|_{\theta}=\left\|u_{h}\right\|_{\theta} \leq C_{1}\left\|u_{h}\right\|_{\theta, h} . \\
\forall u \in[\mathfrak{X}, \mathfrak{Y}]_{\theta},\left\|I_{h} u\right\|_{\theta, h} \leq C_{2}\|u\|_{\theta} .
\end{gathered}
$$

Interpolation Theorem

Let \mathfrak{X}, Y Hilbert spaces $\mathfrak{X} \subset \mathfrak{Y}$ with \mathfrak{X} dense in \mathfrak{Y}, and with inclusion compact and continuous. Let \mathcal{X}, \mathcal{Y} satisfy similar properties. Let $\pi \in \mathcal{L}(\mathfrak{X} ; \mathcal{X}) \cap \mathcal{L}(\mathfrak{Y} ; \mathcal{Y})$. Then for all $\theta \in(0,1)$,

$$
\pi \in \mathcal{L}\left([\mathfrak{X}, \mathfrak{Y}]_{\theta} ;[\mathcal{X}, \mathcal{Y}]_{\theta}\right)
$$

$$
\begin{gathered}
\forall u_{h} \in\left[\mathcal{X}_{h}, \mathcal{Y}_{h}\right]_{\theta},\left\|i_{h} u_{h}\right\|_{\theta}=\left\|u_{h}\right\|_{\theta} \leq C_{1}\left\|u_{h}\right\|_{\theta, h} . \\
\forall u \in[\mathfrak{X}, \mathfrak{Y}]_{\theta},\left\|I_{h} u\right\|_{\theta, h} \leq C_{2}\|u\|_{\theta} .
\end{gathered}
$$

Since $\left[\mathcal{X}_{h}, \mathcal{Y}_{h}\right]_{\theta} \subset[\mathfrak{X}, \mathfrak{Y}]_{\theta}$ then $\frac{1}{C_{1}}\left\|u_{h}\right\|_{\theta} \leq\left\|u_{h}\right\|_{\theta, h} \leq C_{2}\left\|u_{h}\right\|_{\theta}$.

$$
\text { i.e. } \quad\left\|u_{h}\right\|_{\theta} \sim\left\|u_{h}\right\|_{\theta, h}
$$

Interpolation spaces (∞ dimensional case)

$\Omega \subset \mathbf{R}^{n}$ open bounded with smooth boundary Γ and let $\boldsymbol{\alpha}$ denote a multi-index of order m where m is a positive integer

$$
\begin{gathered}
H^{m}(\Omega)=\left\{u: D^{\alpha} u \in L^{2}(\Omega), \quad|\boldsymbol{\alpha}| \leq m\right\} \quad\left(H^{0}(\Omega)=L^{2}(\Omega)\right) \\
H^{s}(\Omega):=\left[H^{m}(\Omega), H^{0}(\Omega)\right]_{1-s / m}
\end{gathered}
$$

Interpolation spaces (∞ dimensional case)

$\Omega \subset \mathbf{R}^{n}$ open bounded with smooth boundary Γ and let $\boldsymbol{\alpha}$ denote a multi-index of order m where m is a positive integer

$$
\begin{gathered}
H^{m}(\Omega)=\left\{u: D^{\alpha} u \in L^{2}(\Omega), \quad|\boldsymbol{\alpha}| \leq m\right\} \quad\left(H^{0}(\Omega)=L^{2}(\Omega)\right) \\
H^{s}(\Omega):=\left[H^{m}(\Omega), H^{0}(\Omega)\right]_{1-s / m}
\end{gathered}
$$

$H_{0}^{s}(\Omega)$ completion of $C_{0}^{\infty}(\Omega)$ in $H^{m}(\Omega)$, where $s>0$.

Interpolation spaces (∞ dimensional case)

$\Omega \subset \mathbf{R}^{n}$ open bounded with smooth boundary Γ and let α denote a multi-index of order m where m is a positive integer

$$
\begin{gathered}
H^{m}(\Omega)=\left\{u: D^{\alpha} u \in L^{2}(\Omega), \quad|\boldsymbol{\alpha}| \leq m\right\} \quad\left(H^{0}(\Omega)=L^{2}(\Omega)\right) \\
H^{s}(\Omega):=\left[H^{m}(\Omega), H^{0}(\Omega)\right]_{1-s / m}
\end{gathered}
$$

For $0 \leq s_{2}<s_{1}$ and k integer

$$
\begin{aligned}
{\left[H_{0}^{s_{1}}(\Omega), H_{0}^{s_{2}}(\Omega)\right]_{\theta} } & =H_{0}^{(1-\theta) s_{1}+\theta s_{2}}(\Omega) \\
& \text { if }(1-\theta) s_{1}+\theta s_{2} \neq k+1 / 2 \\
{\left[H_{0}^{s_{1}}(\Omega), H_{0}^{s_{2}}(\Omega)\right]_{\theta} } & =H_{00}^{k+1 / 2}(\Omega) \subset H_{0}^{k+1 / 2} \\
& \text { if }(1-\theta) s_{1}+\theta s_{2}=k+1 / 2 \\
H^{-s}(\Omega) & =\left(H_{0}^{s}(\Omega)\right)^{\star} s>0
\end{aligned}
$$

$$
\text { If }(1-\theta) s_{1}+\theta s_{2}=1 / 2
$$

$$
\left[H^{-s_{1}}(\Omega), H^{-s_{2}}(\Omega)\right]_{\theta}=\left(H_{00}^{1 / 2}(\Omega)\right)^{\star}
$$

Finite-element example

$$
H_{00}^{1 / 2}(\Omega)=\left[H_{0}^{1}(\Omega), L^{2}(\Omega)\right]_{1 / 2} .
$$

Let $\mathcal{X}_{h} \subset H_{0}^{1}(\Omega), \mathcal{Y}_{h} \subset L^{2}(\Omega)$. Let $\left\{\phi_{i}\right\}_{1 \leq i \leq n} \in \mathcal{X}_{h}$ be a spanning set for \mathcal{Y}_{h} and let $\mathbf{L}_{k} \in \mathrm{R}^{n \times n}$ denote the Grammian matrices corresponding to the $\langle\cdot, \cdot\rangle_{H_{0}^{k}(\Omega)}$-inner product $\left(H^{0}(\Omega)=L^{2}(\Omega)\right)$:

$$
\left(\mathbf{L}_{k}\right)_{i j}=\left\langle\phi_{i}, \phi_{j}\right\rangle_{H_{0}^{k}(\Omega)} .
$$

$\mathbf{H}=\mathbf{L}_{1}, \quad \mathbf{M}=\mathbf{L}_{0}$ and $\mathbf{H}_{1 / 2, h}=\mathbf{L}_{0}\left(\mathbf{I}+\left(\mathbf{L}_{0}^{-1} \mathbf{L}_{1}\right)^{1 / 2}\right)$ (Bessel)
Moreover, we have
$\mathbf{H}_{1 / 2, h} \sim \mathbf{H}_{1 / 2}=\mathbf{L}_{0}\left(\mathbf{L}_{0}^{-1} \mathbf{L}_{1}\right)^{1 / 2}($ Riesz $)$

Interpolation theorem for FEM

Let the assumptions of Interpolation Theorem hold with $(\mathcal{X}, \mathcal{Y})$ replaced by $\left(\mathcal{X}_{h}, \mathcal{Y}_{h}\right)$ defined above. Let $\mathbf{H}_{\theta, h}=\mathbf{L}_{0}\left(\mathbf{I}+\left(\mathbf{L}_{0}^{-1} \mathbf{L}_{1}\right)^{1-\theta}\right), \mathbf{H}_{\theta}=\mathbf{L}_{0}\left(\mathbf{L}_{0}^{-1} \mathbf{L}_{1}\right)^{1-\theta}$. Then there exist constants c, C independent of n such that

$$
\begin{aligned}
& c\left\|u_{h}\right\|_{[\mathfrak{X}, \mathfrak{P}]_{\theta}} \leq\|\mathbf{u}\|_{\mathbf{H}_{\theta, h}} \leq C\left\|u_{h}\right\|_{[\mathfrak{x}, \mathfrak{Y}]_{\theta}}, \\
& c\left\|u_{h}\right\|_{[\mathfrak{X}, \mathfrak{Y}]_{\theta}} \leq\|\mathbf{u}\|_{\mathbf{H}_{\theta}} \leq C\left\|u_{h}\right\|_{[\mathfrak{X}, \mathfrak{Y}]_{\theta}},
\end{aligned}
$$

for all $u_{h} \in\left[\mathcal{X}_{h}, \mathcal{Y}_{h}\right]_{\theta}$ and with $\theta \in(0,1), \mathfrak{X}=L^{2}(\Omega)$, and $\mathfrak{Y}=H_{0}^{1}(\Omega)$

Few examples

Few examples

Few examples

Evaluation of $\mathbf{H}_{\theta} \mathbf{z}$

- Generalised Lanczos $\mathbf{H} \mathbf{V}_{k}=\mathbf{M} \mathbf{V}_{k} \mathbf{T}_{k}+\beta_{k+1} \mathbf{M} \mathbf{v}_{k+1} \mathbf{e}_{k}^{T}, \quad \mathbf{V}_{k}^{T} \mathbf{M} \mathbf{V}_{k}=\mathbf{I}_{k}$ (\mathbf{T}_{k} tridiagonal).

Evaluation of $\mathbf{H}_{\theta} \mathbf{z}$

- Generalised Lanczos
$\mathbf{H} \mathbf{V}_{k}=\mathbf{M} \mathbf{V}_{k} \mathbf{T}_{k}+\beta_{k+1} \mathbf{M} \mathbf{v}_{k+1} \mathbf{e}_{k}^{T}, \quad \mathbf{V}_{k}^{T} \mathbf{M} \mathbf{V}_{k}=\mathbf{I}_{k}$
(\mathbf{T}_{k} tridiagonal).
- $\mathbf{v}_{0}=\mathbf{z}$
$\mathbf{H}_{\theta} \mathbf{z} \approx \mathbf{M V}_{k} \mathbf{T}_{k}^{1-\theta} \mathbf{e}_{1}\|\mathbf{z}\|_{\mathbf{M}}$ and
$\mathbf{H}_{\theta, h} \mathbf{z} \approx \mathbf{M V}_{k}\left(\mathbf{I}_{k}+\mathbf{T}_{k}^{1-\theta}\right) \mathbf{e}_{1}\|\mathbf{z}\|_{\mathbf{M}}$.

Evaluation of $\mathbf{H}_{\theta} \mathbf{z}$

- Generalised Lanczos
$\mathbf{H} \mathbf{V}_{k}=\mathbf{M} \mathbf{V}_{k} \mathbf{T}_{k}+\beta_{k+1} \mathbf{M} \mathbf{v}_{k+1} \mathbf{e}_{k}^{T}, \quad \mathbf{V}_{k}^{T} \mathbf{M} \mathbf{V}_{k}=\mathbf{I}_{k}$
(\mathbf{T}_{k} tridiagonal).
- $\mathbf{v}_{0}=\mathbf{z}$
$\mathbf{H}_{\theta} \mathbf{z} \approx \mathbf{M V}_{k} \mathbf{T}_{k}^{1-\theta} \mathbf{e}_{1}\|\mathbf{z}\|_{\mathbf{M}}$ and
$\mathbf{H}_{\theta, h} \mathbf{z} \approx \mathbf{M V}_{k}\left(\mathbf{I}_{k}+\mathbf{T}_{k}^{1-\theta}\right) \mathbf{e}_{1}\|\mathbf{z}\|_{\mathbf{M}}$.

Evaluation of $\mathbf{H}_{\theta} \mathbf{z}$

- Generalised Lanczos
$\mathbf{H} \mathbf{V}_{k}=\mathbf{M} \mathbf{V}_{k} \mathbf{T}_{k}+\beta_{k+1} \mathbf{M} \mathbf{v}_{k+1} \mathbf{e}_{k}^{T}, \quad \mathbf{V}_{k}^{T} \mathbf{M} \mathbf{V}_{k}=\mathbf{I}_{k}$
(\mathbf{T}_{k} tridiagonal).
- $\mathbf{v}_{0}=\mathbf{z}$
$\mathbf{H}_{\theta} \mathbf{z} \approx \mathbf{M V}_{k} \mathbf{T}_{k}^{1-\theta} \mathbf{e}_{1}\|\mathbf{z}\|_{\mathbf{M}}$ and
$\mathbf{H}_{\theta, h} \mathbf{z} \approx \mathbf{M V}_{k}\left(\mathbf{I}_{k}+\mathbf{T}_{k}^{1-\theta}\right) \mathbf{e}_{1}\|\mathbf{z}\|_{\mathbf{M}}$.
- $\mathbf{v}_{0}=\mathbf{M}^{-1} \mathbf{z}$
$\mathbf{H}_{\theta}^{-1} \mathbf{z} \approx \mathbf{V}_{k} \mathbf{T}_{k}^{\theta-1} \mathbf{e}_{1}\|\mathbf{z}\|_{\mathbf{M}^{-1}}$ and
$\mathbf{H}_{\theta, h}^{-1} \mathbf{z} \approx \mathbf{V}_{k}\left(\mathbf{I}_{k}+\mathbf{T}_{k}^{1-\theta}\right)^{-1} \mathbf{e}_{1}\|\mathbf{z}\|_{\mathbf{M}^{-1}}$.
- Alternative: N. Hale, and N. J. Higham and L. N. Trefethen, SIAM J. Numer. Anal.

Preconditioners for the Steklov-Poincaré operator

Let Ω be an open subset of \mathbf{R}^{d} with boundary $\partial \Omega$ and consider the model problem

$$
\left\{\begin{array}{rlrl}
-\Delta u & =f & & \text { in } \Omega \\
u=0 & & \text { on } \partial \Omega .
\end{array}\right.
$$

Given a partition of Ω into two subdomains $\Omega \equiv \Omega_{1} \cup \Omega_{2}$ with common boundary Γ this problem can be equivalently written as

$$
\left\{\begin{array} { r l }
{ - \Delta u _ { 1 } = f } & { \text { in } \Omega _ { 1 } , } \\
{ u _ { 1 } = 0 } & { \text { on } \partial \Omega _ { 1 } \backslash \Gamma , }
\end{array} \quad \left\{\begin{array}{rl}
-\Delta u_{2}=f & \text { in } \Omega_{2}, \\
u_{2}=0 & \text { on } \partial \Omega_{2} \backslash \Gamma,
\end{array}\right.\right.
$$

with the 'interface conditions'

$$
\left\{\begin{aligned}
u_{1} & =u_{2} \\
\frac{\partial u_{1}}{\partial n_{1}} & =-\frac{\partial u_{2}}{\partial n_{2}}
\end{aligned} \quad \text { on } \Gamma\right.
$$

Preconditioners for the Steklov-Poincaré operator

Given $\lambda_{1}, \lambda_{2} \in H_{00}^{1 / 2}(\Gamma), \psi_{1}, \psi_{2}$ denote the harmonic extensions of λ_{1}, λ_{2} respectively into Ω_{1}, Ω_{2}, i.e., for $i=1,2, \psi_{i}$ satisfy

$$
\left\{\begin{aligned}
-\Delta \psi_{i} & =0 & & \text { in } \Omega_{i}, \\
\psi_{i} & =\lambda_{i} & & \text { on } \Gamma, \\
\psi_{i} & =0 & & \text { on } \partial \Omega_{i} \backslash \Gamma .
\end{aligned}\right.
$$

The Steklov-Poincaré operator $\mathscr{S}: H_{00}^{1 / 2}(\Gamma) \rightarrow H^{-1 / 2}(\Gamma)$

$$
\begin{gathered}
\left\langle\mathscr{S} \lambda_{1}, \lambda_{2}\right\rangle_{H^{1 / 2}(\Gamma)}=\left\langle\nabla \psi_{1}, \nabla \psi_{2}\right\rangle_{L^{2}(\Omega)}=: s\left(\lambda_{1}, \lambda_{2}\right) . \\
c_{1}\|\lambda\|_{H^{1 / 2}(\Gamma)}^{2} \leq s(\lambda, \lambda) \leq c_{2}\|\lambda\|_{H^{1 / 2}(\Gamma)}^{2} .
\end{gathered}
$$

Preconditioners for the Steklov-Poincaré operator

$$
\begin{aligned}
& \text { (i) }\left\{\begin{aligned}
-\Delta u_{i}^{\{1\}} & =f \text { in } \Omega_{i}, \\
u_{i}^{\{1\}} & =0 \text { on } \partial \Omega_{i},
\end{aligned}\right. \\
& \text { (ii) }\left\{\begin{aligned}
\mathscr{S} \lambda=- & \frac{\partial u_{1}^{\{1\}}}{\partial n_{1}}-\frac{\partial u_{2}^{\{1\}}}{\partial n_{2}}
\end{aligned} \text { on } \Gamma,\right. \\
& \text { (iii) }\left\{\begin{aligned}
-\Delta u_{i}^{\{2\}} & =0 \text { in } \Omega_{i}, \\
u_{i}^{\{2\}} & =\lambda \text { on } \partial \Omega_{i} .
\end{aligned}\right.
\end{aligned}
$$

The resulting solution is

$$
\left.u\right|_{\Omega_{i}}=u_{i}^{\{1\}}+u_{i}^{\{2\}} .
$$

An other problem

$$
\left\{\begin{aligned}
-\nu \Delta u+\vec{b} \cdot \nabla u & =f & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Discrete Formulation

$$
\mathcal{V}^{h}=\mathcal{V}^{h, r}:=\left\{w \in C^{0}(\Omega):\left.w\right|_{\mathfrak{t}} \in P_{k} \quad \forall \mathfrak{t} \in \mathfrak{T}_{h}\right\} \subset H^{1}(\Omega)
$$

be a finite-dimensional space of piecewise polynomial functions defined on some subdivision \mathfrak{T}_{h} of Ω into simplices \mathfrak{t} of maximum diameter h. Let further $\mathcal{V}_{l}^{h}, \mathcal{V}_{B}^{h} \subset \mathcal{V}^{h}$ satisfy $\mathcal{V}_{l}^{h} \oplus \mathcal{V}_{B}^{H} \equiv \mathcal{V}^{h}$ where $\mathcal{V}_{l}^{h}=\left\{w \in \mathcal{V}^{h}:\left.w\right|_{\partial \Omega}=0\right\}$. Let $\mathcal{X}_{h} \subset H_{0}^{1}(\Gamma)$ denote the space spanned by the restriction of the basis functions of \mathcal{V}_{l}^{h} to the internal boundary Γ.

Discrete Formulation

(i) $\quad \mathbf{A}_{l /, i} \mathbf{u}_{i}^{\{1\}}=\mathbf{f}_{l, i}$,
(ii) $\quad \mathbf{S} \mathbf{u}_{B}=\mathbf{f}_{B}-\mathbf{A}_{I B, 1}^{T} \mathbf{u}_{1}^{\{1\}}-\mathbf{A}_{I B, 2}^{T} \mathbf{u}_{2}^{\{2\}}$,
(iii) $\quad \mathbf{A}_{I /, i} \mathbf{u}_{i}^{\{2\}}=-\mathbf{A}_{I B, 1}^{T} \mathbf{u}_{B}-\mathbf{A}_{I B, 2}^{T} \mathbf{u}_{B}$,
where \mathbf{S} is the Schur complement corresponding to the boundary nodes

$$
\mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}, \quad \mathbf{S}_{i}=\mathbf{A}_{B B, i}-\mathbf{A}_{l B, i}^{T} \mathbf{A}_{I I, i}^{-1} \mathbf{A}_{I B, i}
$$

The resulting solution is $\left(\mathbf{u}_{l, 1}, \mathbf{u}_{l, 2}, \mathbf{u}_{B}\right)$ where

$$
\mathbf{u}_{l, i}=\mathbf{u}_{i}^{\{1\}}+\mathbf{u}_{i}^{\{2\}} .
$$

$H_{00}^{1 / 2}$-preconditioners

Let $\mathcal{X}_{h}=\operatorname{span}\left\{\phi_{i}, 1 \leq i \leq m\right\}$ be defined as above and let $\left(\mathbf{L}_{k}\right)_{i j}=\left\langle\phi_{i}, \phi_{j}\right\rangle_{H_{0}^{k}(\Gamma)}$ for $k=0,1$. Let

$$
\mathbf{H}_{1 / 2}:=\mathbf{L}_{0}\left(\mathbf{L}_{0}^{-1} \mathbf{L}_{1}\right)^{1 / 2}
$$

Then for all $\boldsymbol{\lambda} \in \boldsymbol{R}^{m} \backslash\{\mathbf{0}\}$

$$
\kappa_{1} \leq \frac{\lambda^{T} \mathbf{S} \boldsymbol{\lambda}}{\lambda^{T} \mathbf{H}_{1 / 2} \boldsymbol{\lambda}} \leq \kappa_{2}
$$

with κ_{1}, κ_{2} independent of h.

Discrete DD and Preconditioning

$$
\mathbf{P}=\left(\begin{array}{cc}
\mathbf{A}_{I I} & \mathbf{A}_{I B} \\
0 & \mathbf{P}_{S}
\end{array}\right)
$$

with $\mathbf{A}_{/ /}=\nu \mathbf{L}_{/ /}+\mathbf{N}_{/ /}$where $\mathbf{L}_{/ /}$is the direct sum of Laplacians assembled on each subdomain and $\mathbf{N}_{/ /}$is the direct sum of the convection operator $\vec{b} \cdot \nabla$ assembled also on each subdomain. With P_{S} we denote the approximation of $\mathbf{H}_{00}^{1 / 2}$ by a vector or of $\mathbf{H}^{-1 / 2}$ by a vector. Then we use FGMRES.

Green functions on wirebasket

Steklov-Poincaré

Neumann-Neumann

Green functions on wirebasket

Steklov-Poincaré
$H^{1 / 2}$

Numerical results: Poisson equation

			Linear			Quadratic		
\#dom	n	m	$H_{1 / 2, h}$	$H_{1 / 2}$	$\widehat{H}_{1 / 2}$	$H_{1 / 2, h}$	$H_{1 / 2}$	$\widehat{H}_{1 / 2}$
4	45,377	449	10	9	9	11	11	11
	180,865	897	10	10	10	11	11	11
	722,177	1793	11	11	11	11	11	11
16	45,953	1149	13	12	12	13	13	13
	183,041	2301	13	13	13	13	13	13
	730,625	4605	13	13	13	13	13	13
64	66,049	3549	16	14	14	16	15	15
	263,169	7133	16	15	15	16	15	15
	1,050,625	14,301	17	16	15	17	15	15

FGMRES iterations for model problem .

Numerical results: an other problem

FGMRES iterations for 2nd model problem

Laplace-Beltrami

We can extend everything to an interface that is the union of manifolds \mathfrak{m}_{k} by using the Lapace-Beltrami operator and interpolating between $L^{2}(\Gamma)$ and $H_{\partial \Omega}^{1}(\Gamma)$ with the norm

$$
\|u\|_{H_{\partial \Omega}^{1}(\Gamma)}=\left(\sum_{k=1}^{K}\left\|u_{k}\right\|_{H_{\partial \Omega}^{1}\left(\mathfrak{m}_{k}\right)}^{2}\right)^{1 / 2} .
$$

using $H_{0}^{1}\left(\mathfrak{m}_{k}\right)$ with

$$
|v|_{H_{0}^{1}\left(\mathfrak{m}_{k}\right)}^{2}=\int_{\mathfrak{m}_{k}}\left|\nabla_{\Gamma}^{k} v\right|^{2} \mathrm{~d} s\left(\mathfrak{m}_{k}\right)
$$

where ∇_{Γ}^{k} denote the tangential gradient of v with respect to \mathfrak{m}_{k}

$$
\nabla_{\Gamma}^{k} v(\mathbf{x}):=\nabla v(\mathbf{x})-\mathbf{n}_{k}(\mathbf{x})\left(\mathbf{n}_{k}(\mathbf{x}) \cdot \nabla v(\mathbf{x})\right),
$$

where $\mathbf{n}_{k}(\mathbf{x})$ is the normal to \mathfrak{m}_{k} at \mathbf{x}.

Other Domains: CRYSTAL

A., Kourounis, Loghin IMA J. Num. Anal. 2012

Other Domains: CRYSTAL

Other Domains: CRYSTAL

	$(L, M)_{1 / 2}$			$(L, I)_{1 / 2}$		
n	$N=16$	$N=64$	$N=256$	$N=16$	$N=64$	$N=256$
240,832	17	24	31	110	104	141
$2,521,753$	21	25	29	28	71	65

Iterations for the crystal problem with and without the mass matrix.

Other Domains: "BRAIN"

Other Domains: "BRAIN"

Other Domains: "BRAIN"

	$n=5120357$	$n=25973106$
$N=1024$	$n_{b}=679160$ it $=22$	$n_{b}=2067967$ it $=22$
$N=2048$	$n_{b}=895170$ it $=22$	$n_{b}=2737064$ it $=23$
$N=4096$	$n_{b}=1172815$ it $=24$	$n_{b}=3602083$ it $=23$

Results for reaction-diffusion PDE on Brain (N number of subdomains, n_{b} number of nodes in interface, it FGMRES iteration number, and $\theta=0.7$).

Reaction-Diffusion Systems

Rodrigue Kammogne, D. Loghin Proceed. DD 2012
Rodrigue Kammogne, D. Loghin Tech. Rep. in preparation $\Omega \subset \mathbf{R}^{2}$

$$
\left\{\begin{aligned}
&-\mathbf{D} \Delta \mathbf{u}+\mathbf{M u}=\mathbf{f} \\
& \mathbf{u}=\Omega \\
& \mathbf{u} \text { on } \partial \Omega
\end{aligned}\right.
$$

Reaction-Diffusion Systems

Rodrigue Kammogne, D. Loghin Proceed. DD 2012
Rodrigue Kammogne, D. Loghin Tech. Rep. in preparation $\Omega \subset \mathbb{R}^{2}$

$$
\left\{\begin{aligned}
-\mathbf{D} \Delta \mathbf{u}+\mathbf{M} \mathbf{u} & =\mathbf{f} \\
\mathbf{u} & \text { in } \Omega \\
\mathbf{0} & \text { on } \partial \Omega
\end{aligned}\right.
$$

$\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \mathbf{M}=\left[\begin{array}{cc}\left.\alpha_{(} x, y\right) & \beta_{1}(x, y) \\ \beta_{2}(x, y) & \alpha_{2}(x, y)\end{array}\right], \mathbf{f}=\left[\begin{array}{l}f_{1} \\ f_{2}\end{array}\right], \mathbf{D}=\left[\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right]$ (SPD).
$\mathbf{f} \in L^{2}(\Omega)$ and \mathbf{M} satisfies

$$
0<\gamma_{\min }<\frac{\boldsymbol{\xi}^{T} \mathbf{M} \boldsymbol{\xi}}{\boldsymbol{\xi}^{\top} \boldsymbol{\xi}} \forall \boldsymbol{\xi} \in \mathbf{R}^{2} \backslash\{ \} ; \text { and }\|\mathbf{M}\|<\gamma_{\max }
$$

Reaction-Diffusion Systems

Rodrigue Kammogne, D. Loghin Proceed. DD 2012
Rodrigue Kammogne, D. Loghin Tech. Rep. in preparation $\Omega \subset \mathbf{R}^{2}$

$$
\begin{gathered}
\left\{\begin{aligned}
-\mathbf{D} \Delta \mathbf{u}+\mathbf{M u}=\mathbf{f} & \text { in } \Omega \\
\mathbf{u}=\mathbf{0} & \text { on } \partial \Omega
\end{aligned}\right. \\
\alpha_{1}=\left\{\begin{array}{ll}
1 & \text { if } x^{2}+y^{2}<1 / 4 \\
100 & \text { otherwise }
\end{array} ; \alpha_{2}= \begin{cases}100 & \text { if } x^{2}+y^{2}<1 / 4 \\
1 & \text { otherwise }\end{cases} \right. \\
\beta_{1}=\left\{\begin{array}{ll}
0.1 & \text { if } x^{2}+y^{2}<1 / 4 \\
1 & \text { otherwise }
\end{array} \beta_{2}= \begin{cases}1 & \text { if } x^{2}+y^{2}<1 / 4 \\
0.1 & \text { otherwise }\end{cases} \right.
\end{gathered}
$$

Reaction-Diffusion Systems

Rodrigue Kammogne, D. Loghin Proceed. DD 2012
Rodrigue Kammogne, D. Loghin Tech. Rep. in preparation $\Omega \subset \mathbf{R}^{2}$

$$
\left\{\begin{aligned}
-\mathbf{D} \Delta \mathbf{u}+\mathbf{M u}=\mathbf{f} & \text { in } \Omega \\
\mathbf{u}=\mathbf{0} & \text { on } \partial \Omega
\end{aligned}\right.
$$

$d_{1}=1, d_{2}=0.1$	
domains $=$	41664
size $=8450$	182428
33282	192528
132098	202628

Reaction-Diffusion Systems

Rodrigue Kammogne, D. Loghin Proceed. DD 2012
Rodrigue Kammogne, D. Loghin Tech. Rep. in preparation

The Solution u_{1}

The Solution u_{2}

Other applications: Mathematical Finance

L.Silvestre Communications on Pure and Applied Mathematics 2007

Luis A. Caffarelli, Sandro Salsa, Luis Silvestre Invent. math. 2008

- Let X_{t} be an α-stable Levy process such that $X_{0}=x$ for some point $x \in \mathbf{R}^{n}$.

Other applications: Mathematical Finance

L.Silvestre Communications on Pure and Applied Mathematics 2007

Luis A. Caffarelli, Sandro Salsa, Luis Silvestre Invent. math. 2008

- Let X_{t} be an α-stable Levy process such that $X_{0}=x$ for some point $x \in \mathbf{R}^{n}$.
- Let τ be the optimal stopping time that maximises

$$
u(x)=\sup _{\tau} E\left[\phi\left(X_{t}\right): \tau<+\infty\right]
$$

Other applications: Mathematical Finance

L.Silvestre Communications on Pure and Applied Mathematics 2007

Luis A. Caffarelli, Sandro Salsa, Luis Silvestre Invent. math. 2008

- Let X_{t} be an α-stable Levy process such that $X_{0}=x$ for some point $x \in \mathbf{R}^{n}$.
- Let τ be the optimal stopping time that maximises

$$
u(x)=\sup E\left[\phi\left(X_{t}\right): \tau<+\infty\right]
$$

τ

$$
\left\{\begin{array}{l}
u(x) \geq \phi(x) \text { in } \mathrm{R}^{n}, \\
(-\Delta)^{s} u \geq 0 \text { in } \mathrm{R}^{n}, \\
(-\Delta)^{s} u(x)=0 \text { for those } x \text { s.t. } u(x)>\phi(x) \\
\lim _{|x| \rightarrow+\infty} u(x)=0
\end{array}\right.
$$

Other applications: Mathematical Finance

L.Silvestre Communications on Pure and Applied Mathematics 2007 Luis A. Caffarelli, Sandro Salsa, Luis Silvestre Invent. math. 2008

- Let X_{t} be an α-stable Levy process such that $X_{0}=x$ for some point $x \in \mathbf{R}^{n}$.
- Let τ be the optimal stopping time that maximises

$$
u(x)=\sup _{\tau} E\left[e^{-\lambda \tau} \phi\left(X_{t}\right)\right]
$$

-

$$
\left\{\begin{array}{l}
u(x) \geq \phi(x) \text { in } \mathrm{R}^{n}, \\
\lambda u+(-\Delta)^{s} u \geq 0 \text { in } \mathrm{R}^{n}, \\
\lambda u+(-\Delta)^{s} u(x)=0 \text { for those } x \text { s.t. } u(x)>\phi(x) \\
\lim _{|x| \rightarrow+\infty} u(x)=0 .
\end{array}\right.
$$

Other applications: Quasi-Geostrophic Equation

L.Silvestre Ann. I. H. Poincare (2010)
L. Caffarelli, L. Silvestre, Comm. Partial Differential Equations (2007)
L. Caffarelli, A. Vasseur, Ann. of Math., (2012)
P. Constantin, J. Wu, Ann. I. H. Poincare Anal. Non Lin. (2008), (2009)
P. Constantin, J. Wu, SIAM J. Math. Anal. (1999)

Other applications: Quasi-Geostrophic Equation

$$
\begin{aligned}
& \theta: \mathbf{R}^{2} \times[0,+\infty) \rightarrow \mathbf{R} \\
& \partial_{t} \theta(x, t)+w \cdot \nabla \theta(x, t)+(-\Delta)^{\alpha / 2} \theta(x, t)=0, \quad \theta(x, 0)=\theta_{0} \\
& \text { and } \\
& \qquad w=\left(R_{2} \theta, R_{1} \theta\right)
\end{aligned}
$$

where R_{i} are the Riesz transforms

$$
R_{i} \theta(x)=c P V \int_{\mathbf{R}^{2}} \frac{\left(y_{i}-x_{i}\right) \theta(y)}{|y-x|^{3}} d y
$$

Summary

- Interpolation spaces produce dense matrices i.e. non-local operators BUT we can compute everything using SPARSE LINEAR ALGEBRA

Summary

- Interpolation spaces produce dense matrices i.e. non-local operators BUT we can compute everything using SPARSE LINEAR ALGEBRA
- Interpolation spaces are not only useful in DD

Summary

- Interpolation spaces produce dense matrices i.e. non-local operators BUT we can compute everything using SPARSE LINEAR ALGEBRA
- Interpolation spaces are not only useful in DD
- Link with integro-differential operator such as Riemann-Liouville fractional derivative (M.Riesz 1938,1949).

Summary

- Interpolation spaces produce dense matrices i.e. non-local operators BUT we can compute everything using SPARSE LINEAR ALGEBRA
- Interpolation spaces are not only useful in DD
- Link with integro-differential operator such as Riemann-Liouville fractional derivative (M.Riesz 1938,1949).
- In modelling complex phenomena the use of non-local operators is a new promising subject attracting increasing attention.
- Other areas of application that are worth to mention include: BEM and image processing (filtering):

bottom-left: $\min \left\{\int_{\Omega}|\nabla u(x)| \mathrm{d} x+1 / 50 \int_{\Omega}\left(u_{0}(x)-u(x)\right)^{2} \mathrm{~d} x\right\}$
Pascal Getreuer (2007)
bottom-right: $\min \left\{\|u\|_{1 / 2}^{2}+1 / 50 \int_{\Omega}\left(u_{0}(x)-u(x)\right)^{2} \mathrm{~d} x\right\} \begin{gathered}\text { Science 8 Technology } \\ \text { Facilites Conncil }\end{gathered}$

