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Outline

I do not pretend to be complete. My aim is to
supply some information and potential useful links
to other fields (Mathematics, Meteorology,
Engineering, Numerical Analysis and Optimization)
where similar problems are analysed.
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Outline

I Problem and notation

I Some useful Theorems
I Data assimilation

I Hindcast vs Forcast (meteo problems)
I Stochastic nature of the problem (nonlinear regression)
I Discrete problem

I Constrained regularised Least-Squares
I Iterative methods: Adjoint method, Interior Point methods, ...
I SQD matrices
I Energy norms of errors and Probabilistic stopping criteria

(linear regression problem) for iterative methods

I Summary
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Semilinear elliptic equations
Let Ω ⊂ IRn bounded and with smooth boundary Γ.

L u = f (u) in Ω
u = 0 on Γ

where

L u = −div(α(x)gradu) + s(x)u s(x) ∈ L∞(Ω), s(x) ≥ 0.

(F) f : IR→ IR, |f (t)| ≤ a + b|t|2∗−1, ∀t ∈ IR a, b ≥ 0, 2∗ =
2n

n − 2

In weak form we have∫
Ω
α(x)∇u∇v +

∫
Ω
s(x)uv ∀v ∈ H1

0 (Ω)

is continuous and coercive in H1
0 (Ω).
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Semilinear elliptic equations

Let

F (t) =

∫ t

0
f (s)ds.

The critical points of

J(u) =
1

2

∫
Ω
|∇u|2dx +

1

2

∫
Ω
s(x)u2dx −

∫
Ω
F (u)dx

are the solutions of∫
Ω
∇u∇vdx +

∫
Ω
s(x)uvdx −

∫
Ω
f (u)vdx = 0
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Mountain pass Theorem

MP-1 J ∈ C 1(H1
0 (Ω), IR), J(0) = 0 and ∃r , ρ > 0 such

that J(u) ≥ ρ ∀u ∈ Sr =
{
u ∈ H1

0 (Ω) : ‖u‖ = r
}

MP-2 ∃e ∈ H1
0 (Ω) ‖e‖ > r s.t. J(e) ≤ 0

Palais-Smale conditions

(F) ⇒
for all ‖uk‖H1

0 (Ω) ≤ C ∀k then ∃uki (x)→ u(x)

a.e. in Ω (Palais-Smale)
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Mountain pass Theorem

H1
0 (Ω) ↪→ Lq(Ω) ∀q ∈

[
1,

2n

n − 2

)
compact.

We have existence also for
2n

n − 2
P.L. Lions 1981. Very difficult

numerically Budd,Humphries, Wathen 1999.

|f (t)| ≤ a + b|t|p p >
2n

n − 2
− 1 NO SOLUTION Pohozaev1965
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Mountain pass Theorem

Theorem mountain pass Ambrosetti-Malchiodi 2003

Let J satisfy MP-1 and MP-2 and PS condition. Let

Υ =
{
γ ∈ C

(
[0, 1],H1

0 (Ω)
)

: γ(0) = 0, γ(1) = e
}
.
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0 (Ω)
)
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Υ =
{
γ ∈ C

(
[0, 1],H1

0 (Ω)
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Mountain pass Theorem

Theorem mountain pass Ambrosetti-Malchiodi 2003

Let J satisfy MP-1 and MP-2 and PS condition. Let

Υ =
{
γ ∈ C

(
[0, 1],H1

0 (Ω)
)

: γ(0) = 0, γ(1) = e
}
.

c = inf
γ∈Υ

max
t∈[0,1]

J
(
γ(t)

)
From MP-1 and since any γ crosses Sr we have

c ≥ min
u∈Sr

J(u) ≥ ρ > 0
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Mountain pass Theorem

Theorem mountain pass Ambrosetti-Malchiodi 2003

Let J satisfy MP-1 and MP-2 and PS condition. Let

Υ =
{
γ ∈ C

(
[0, 1],H1

0 (Ω)
)

: γ(0) = 0, γ(1) = e
}
.

c = inf
γ∈Υ

max
t∈[0,1]

J
(
γ(t)

)
Then c is a positive critical level for J, and exists z ∈ H1

0 (Ω) s.t.
J(z) = c and J ′(z) = 0, with z 6= 0 a.e.
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Problem and notation

Let Ω ⊂ IRn bounded and with smooth boundary Γ.

f (x , s) : Ω× IR −→ IR s.t.

f (x , s) = 0 ∀s ≤ 0, x ∈ Ω
f (x , s) > 0 ∀s > 0, x ∈ Ω

lim
s→+∞

f (x , s)

sp
= 0 uniformly in Ω

p =
n

n − 2
, n > 2, or for some p if n = 2.
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Problem and notation

Problem: Given Ω, f as above and λ, I ∈ IR+ find u ∈ H1(Ω) and
k ∈ IR s.t.

L u = λf (x , u) in Ω
u = −k on Γ

−
∫

Γ

∂u

∂ν
dΓ = I ν outer normal at Γ.
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Some useful Theorems

f+ = f+(x) = lim inf
s→+∞

f (x , s) f+ = +∞ is allowed.
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Some useful Theorems

f+ = f+(x) = lim inf
s→+∞

f (x , s) f+ = +∞ is allowed.

Theorem 1

(i) ∫
Ω
f+ = +∞ Problem has solution ∀ I

(ii) ∫
Ω
f+ < +∞ ∃b ≥ λ

∫
f+ s.t.

Problem has solution ∀ 0 < I < b

Teman 1979, Ambrosetti Mancini 1980, Berestycki Brezis 1980
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Some useful Theorems

Theorem 2
Let λ1 the first eigenvalue of L u = λ1u, u|Γ = 0.

(i) Let assume ∃β > 0 s.t. f (x , s) ≤ βs, ∀ x ∈ Ω. Then
∃λ ≥ λ1β

−1 s.t. ∀λ ≤ λ any solution of Problem
satisfies u|Γ ≥ 0 .

NO FREE BOUNDARY

(ii) Let assume ∃α > 0 s.t. f (x , s) ≥ αs, ∀ x ∈ Ω. Then
∃λ̄ ≤ λ1α

−1 s.t. ∀λ ≥ λ̄ any solution of Problem
satisfies u|Γ < 0 .

THERE IS FREE BOUNDARY

Teman 1979, Ambrosetti Mancini 1980, Berestycki Brezis 1980
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Inverse Problem

We do not know the explicit form of f (x , u)
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Inverse Problem

We do not know the explicit form of f (x , u) Based
on Theorem 2, we assume that

f (x , u) =
m∑
i=1

πi max(u(x)i , 0) = πTD(u).

where we denote by

π = (π1, . . . , πm) ≥ 0
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Inverse Problem

We do not know the explicit form of f (x , u) Based
on Theorem 2, we assume that

f (x , u) =
m∑
i=1

πi max(u(x)i , 0) = πTD(u).

where we denote by

π = (π1, . . . , πm) ≥ 0

What value for m ?
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Inverse Problem

We have an Inverse Problem to solve.
Using the experimental data (y) and after Tikhonov regularization
(Jε), we want to solve in Ω ⊂ IR2

(FF)

Find u ∈ H1(Ω) ∩ H2(Ω) and k > 0 s.t.
minπ

(
‖~g(u,π)− Y‖2

W + Jε(f
′′)
)

such that
L u(π) = λπTD(u(π)) + g

−
∫

Γ

∂u

∂ν
dΓ = I ,

u|Γ = −k
π ≥ 0.

OR
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Inverse Problem

u = v − k

(FF)

Find v ∈ H1
0 (Ω) ∩ H2(Ω) and k > 0 s.t.

minπ

(
‖~g(v − k ,π)− Y‖2

W + Jε(f
′′)
)

such that
L v(π) = λπTD(v(π)− k) + g

−
∫

Γ

∂v

∂ν
dΓ = I ,

π ≥ 0.
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Stochastic nature of the problem

The experimental data Y in (FF) are Stochastic Variables that
we can assume to be N (0, σ2I). We denote the realizations of Y
by yk , k = 1, . . . , `.
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Stochastic nature of the problem

The experimental data Y in (FF) are Stochastic Variables that
we can assume to be N (0, σ2I). We denote the realizations of Y
by yk , k = 1, . . . , `.

Problem (FF) is a nonlinear regression with constraints.

8 / 16



EFDA Workshop on Equilibrium Reconstruction Culham, November 14–16 2012 Mario Arioli

Data Assimilation

The inverse problem (FF) is recurrent in other fields of research

I Meteorology

I Oceanography and Hearth studies

I Engineering

I FORECAST = Equinox ! We use this for real time
applications.

I HINDCAST (backtesting in BE) = testing a mathematical
model. Inputs for past events are entered into the model to
see how well the output matches the known results.
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Discrete problem

Let Xh = (Vh, ‖·‖X ) be the finite-dimensional subspaces of
X = H1

0 (Ω) with the indicated induced norm topology. and let
{ψi}1≤i≤n denote a basis of Xh and let H denote the Grammian
(or Riesz) matrix corresponding to the inner product (·, ·)X :

(H)ij = (ψi , ψj)X 1 ≤ i , j ≤ n

so that
‖uh‖X = ‖u‖H

where u ∈ IRn denotes the vector of the coefficients of uh expanded
in the basis {ψi}.
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Discrete problem

Therefore, we have a nonlinear problem in finite dimension as

Lu = λ̃hD(u)π + g,

where Lij = a(ψi , ψj) with i , j = 1, . . . , n, g is the vector
corresponding to the Dirichlet boundary conditions, λ̃h the
computed value of λ, and D(u) ∈ IRn×m with

Di ,j(u) =
∫

Ω max(ujh, 0)ψi dx (j = 1, . . . ,m) .

finally, the objective function of (FF) can be approximated by

‖G(uh)π − y‖2
2 +

ε

2
πTMπ,

where G ∈ IR`×m, M ∈ IRm×m and the norm is the standard
euclidean norm.
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Discrete problem

(FF)h

minπ

(
‖G(u, k)π − y‖2

2 +
ε

2
πTMπ

)
such that

Lu = λ̃hD(u)π + g,

−
∫

Γ

∂uh
∂ν

dΓ = Ih,

π ≥ 0.
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Discrete problem

Standard Problem

min
x

f̃ (x)

b(x) ≥ 0
c(x) = 0

where x =


u
π
λ
k
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Iterative methods

Equinox solves the problem (FF)h using a forward approach.

I Estimate a solution of the constraint equations

I Estimate the solution of the normal equations

Alternatives?
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Iterative methods

L(x,µ,σ) = f̃ (x)− µTb(x)− σTc(x)

Lagrangian of the Standard problem.
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Iterative methods

L(x,µ,σ) = f̃ (x)− µTb(x)− σTc(x)

Lagrangian of the Standard problem. We can use

I Sequential Quadratic Programming: at each point xj , we seek
a decreasing direction d s.t.

mind L(xj ,µj ,σj) +∇L(xj ,µj ,σj)
Td +

1

2
dT∇2

xxL(xj ,µj ,σj)d

s.t. b(xj) +∇b(xj)
Td ≥ 0, c(xj) +∇c(xj)

Td = 0, µj ≥ 0.

I Adjoint methods (see
http://dolfin-adjoint.org/about/index.html , Farrell et al. at
Imperial College London)

12 / 16



EFDA Workshop on Equilibrium Reconstruction Culham, November 14–16 2012 Mario Arioli

Iterative methods
We can use

I Sequential Quadratic Programming: at each point xj , we seek
a decreasing direction d s.t.

mind L(xj ,µj ,σj) +∇L(xj ,µj ,σj)
Td +

1

2
dT∇2

xxL(xj ,µj ,σj)d

s.t. b(xj) +∇b(xj)
Td ≥ 0, c(xj) +∇c(xj)

Td = 0, µj ≥ 0.

I Adjoint methods (see
http://dolfin-adjoint.org/about/index.html , Farrell et al. at
Imperial College London)

Both methods require the evaluation in a point of derivative of
nonlinear functions. This can be achieved using Automatic
Differentiation (AD) Griewank, Walther, (2008). Evaluating Derivatives: Principles and Techniques

of Algorithmic Differentiation, SIAM.
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Constrained Optimization with regularization

An other notation simplification and a standard problem
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Constrained Optimization with regularization

Q = ∇2
xxL(xj ,µj ,σj) Semidefinite Positive

minx qTx +
1

2
xTQx

s.t. ATx = e, x ≥ 0.
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Constrained Optimization with regularization

Q = ∇2
xxL(xj ,µj ,σj) Semidefinite Positive

minx qTx +
1

2
xTQx

s.t. ATx = e, x ≥ 0.

Primal-Dual Regularisation

minx,r qTx +
1

2
xTQx +

1

2
ρ||x− xk ||2H +

1

2
ν||r + yk ||2N

s.t. ATx + νNr = e, x ≥ 0 ρ > 0 ν > 0.(
H, N, Q SPD

)
can be solved by INTERIOR-POINT METHODS

Friedlander Orban 2012 Math. Prog. Comp. and Wright 1997 SIAM
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SQD matrices

The choice of the regularization matrices H, N is crucial for good
performance The optimality conditions produce linear systems[

Q̃ A
AT −N

] [
x
y

]
=

[
g1

g2

]
where

Q̃ = Q + ρH + D, SPD D ≥ 0 diagonal.
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SQD matrices

The choice of the regularization matrices H, N is crucial for good
performance The matrices[

Q̃ A
AT −N

]
are called SQD (symmetric quasi-definite) and they have several
important properties Arioli Orban, Venderbei 1995 Siam, ....

I We can compute the LTDL Gaussian decomposition without
pivoting (It will be backward stable)

I The spectrum of the SQD matrices is real and symmetric
around the origin.

I The Krylov methods can be efficiently implemented!
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Energy norms and probabilistic stopping criteria

I We need stopping criteria for the Iterative Solvers that respect
the norm we introduced

I The H norm correspond to the H1
0 (Ω) norm computed on the

finite-element test functions: we must use this to measure the
error e = u− uk .

I Using specialized Krylov space methods this can be estimated
cheaply and accurately.

I For the LINEAR regression, probabilistic stopping criteria have
been introduced Arioli Gratton CPC 2012. With probability 10−8 of
being wrong, they stop the iterative process with a solution of
a linear regression problem having standard deviation close to
the standard deviation of the original problem.
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Summary

I We left out several important topics

I BIFURCATION

I Mesh generation and ADAPTIVITY
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The HINDCAST approach can help to identify which f (u(x)) is
the best, i.e. which polynomial in u(x) is appropriate.
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Summary

I We left out several important topics

I BIFURCATION

I Mesh generation and ADAPTIVITY

f (u) = π1u + πpu
p�� us s ∈ IR+, s > 1 ??
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Summary

I We left out several important topics

I BIFURCATION

I Mesh generation and ADAPTIVITY

Supercomputers and collaborations between JET and RAL
(Improving GS2 scalability using mixed-mode
programming:Gyrokinetic Plasma Turbulence)
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Summary

I We left out several important topics

I BIFURCATION

I Mesh generation and ADAPTIVITY

THANK YOU !!
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