Comparison of CVS and Subversion

D.J. Worth and C. Greenough
October 2005

Abstract

Source code management is one of the basics of good software development. If used
properly it provides a trail of the changes made to the source code and documenta-
tion, as well as being an aid when bug-fixing. In this document we compare two of
the major source code management technologies - CVS and Subversion - outlining
their simliarities and differences under the following headings

e repository operations
e features

technical status

user interfaces

e licenses

We conclude with a list of other source code management systems and a description
of setting up CVS and Subversion on the Software Engineering Group computer
system.

Keywords: source code management, CVS, Subversion

Email: 4. j.worth@rl.ac.uk or c.greenough@rl.ac.uk
Reports can be obtained from www.softeng.cse.clrc.ac.uk

Software Engineering Group

Computational Science & Engineering Department
Rutherford Appleton Laboratory

Chilton, Didcot

Oxfordshire OX11 0QX

© Council for the Central Laboratory of the Research Councils

Enquires about the copyright, reproduction and requests for additional copies of this report
should be address to:

Library and Information Services
CLRC Rutherford Appleton Laboratory
Chilton, Didcot

Oxfordshire OX11 0QX

Tel: +44 (0)1235 445384

Fax: +44 (0)1235 446403
Email:library@rl.ac.uk

CLRC reports are available online at:
http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from
the use of information contained in any of their reports or in any communication about their
tests or investigations

Contents

1

Introduction
1.1 CVS . s
1.2 Subversion

Repository Operations

2.1 Atomic Commits e
2.2 Files and Directories Moves or Renames
2.3 File and Directories Copies v v i e
2.4 Remote Repository Replicationo .
2.5 Propagating Changes to Parent Repositories
2.6 Repository Permissions. Lo
2.7 Changesets Support
2.8 Tracking Line-wise File History,
Features

3.1 Ability to Work Only on One Directory of the Repository
3.2 Tracking Uncommitted Changes
3.3 Per-file Commit Messages i e
Technical Status

4.1 Documentation e
4.2 Ease of Deployment e
4.3 Command Set e e
4.4 Networking Support e
4.5 Portability
User Interfaces

5.1 Web Interface
5.2 Availability of Graphical User Interfaces
License

Summary

Other SCM Systems

A1 SCCS . . e
A2 RVS . e
A3 Aegis e
A4 Perforce e
A5 Visual SourceSafeo

CVS Set Up

C Subversion Set Up

Converting CVS Repositories to Subversion

RO =

S S N S N S SO SO SO S R S

Oy Ut Ot Ut Ot

S OO

(=]

=}

00 00 00 ~1 -1

12

1

This
[]

Introduction

note provides a comparison of two source code management (SCM) tools:

CVS (Concurrent Versions System) - http://www.nongnu.org/cvs/

Subversion - http://subversion.tigris.org/

The information was found at [1] and considers the following aspects of the tools:

Repository operations
Features

Technical status

User interface

License

We will give a brief overview of each system here to set the context of what follows in the

next

1.1

sections.

CVS

Client /server CVS enables disparate developers to function as a single team. The version
history is stored on a single central server and the client machines have a copy of all the
files that the developers are working on. Therefore, the network between the client and
the server must be up to perform CVS operations (such as checkins or updates) but need
not be up to edit or manipulate the current versions of the files. Clients can perform all
the same operations which are available locally.

CVS’ basic version control functionality maintains a history of all changes made to each
directory tree it manages, operating on entire directory trees, not just single files.

CVS supports branches allowing several lines of development to occur in parallel and
providing mechanisms for merging branches back together when desired.

CVS can tag the state of the directory tree at a given point, recreate that state and display
the differences between tags or revisions in the standard diff formats.

CVS runs scripts which you supply to log operations or enforce site-specific policies.

CVS has Unreserved Checkouts allowing more than one developer to work on the same
files at the same time.

CVS provides a flexible modules database that provides a symbolic mapping of names to
components of a larger software distribution. It applies names to collections of directories
and files. A single command can manipulate the entire collection.

CVS gives project managers fine control over the development process, e.g. by checking
changes about to be committed, checking log messages or e-mailing other developers about
changes.

Remote operation is efficient, transmitting only those files which have changed. When
appropriate, CVS transmits patches to files and verifies the results rather than sending
entire files. CVS can compress the text it transmits.

Remote operation is authenticated. CVS can use the industry standard Kerberos protocols
to verify the identity of the remote user. Kerberos is much more secure than the source-
address authentication provided by the ordinary rlogin and rsh protocols. CVS can also
work with ssh, a secure replacement for rsh, or use straight password authentication.

1.2

Subversion

Subversion is meant to be a better CVS, so it has most of CVS’ features. Generally, Subversion’s
interface to a particular feature is similar to CVS’, except where there’s a compelling reason to
do otherwise.

Directories, renames, and file meta-data are versioned. Lack of these features is one of
the most common complaints against CVS. Subversion versions not only file contents and
file existence, but also directories, copies, and renames. It also allows arbitrary metadata
(‘properties’) to be versioned along with any file or directory, and provides a mechanism
for versioning the ‘execute’ permission flag on files.

Commits are truly atomic. No part of a commit takes effect until the entire commit has
succeeded. Revision numbers are per-commit, not per-file; log messages are attached to
the revision, not stored redundantly as in CVS.

Apache network server option, with WebDAV /DeltaV protocol. Subversion can use the
HTTP-based WebDAV /DeltaV protocol for network communications, and the Apache
web server to provide repository-side network service. This gives Subversion an advantage
over CVS in interoperability, and provides various key features for free: authentication,
path-based authorization, wire compression, and basic repository browsing.

Standalone server option. Subversion also offers a standalone server option using a custom
protocol (not everyone wants to run Apache 2.x). The standalone server can run as an
inetd service, or in daemon mode, and offers basic authentication and authorization. It
can also be tunnelled over ssh.

Branching and tagging are cheap (constant time) operations. There is no reason for these
operations to be expensive, so they aren’t. Branches and tags are both implemented in
terms of an underlying ‘copy’ operation. A copy takes up a small, constant amount of
space. Any copy is a tag; and if you start committing on a copy, then it’s a branch as
well. (This does away with CVS’ ‘branch-point tagging’, by removing the distinction that
made branch-point tags necessary in the first place.)

Natively client/server, layered library design. Subversion is designed to be client/server
from the beginning; thus avoiding some of the maintenance problems which have plagued
CVS. The code is structured as a set of modules with well-defined interfaces, designed to
be called by other applications.

Client /server protocol sends diffs in both directions. The network protocol uses bandwidth
efficiently by transmitting diffs in both directions whenever possible (CVS sends diffs from
server to client, but not client to server).

Costs are proportional to change size, not data size. In general, the time required for a
Subversion operation is proportional to the size of the changes resulting from that opera-
tion, not to the absolute size of the project in which the changes are taking place. This is
a property of the Subversion repository model.

Choice of database or plain-file repository implementations. Repositories can be created
with either an embedded database back-end (BerkeleyDB) or with normal flat-file back-
end, which uses a custom format.

Versioning of symbolic links. Unix users can place symbolic links under version control.
The links are recreated in Unix working copies, but not in win32 working copies.

Efficient handling of binary files. Subversion is equally efficient on binary as on text files,
because it uses a binary diffing algorithm to transmit and store successive revisions.

e Parseable output. All output of the Subversion command-line client is carefully designed
to be both human readable and automatically parseable; scriptability is a high priority.

The following sections give a range of comparisons between CVS and Subversion.

2 Repository Operations

2.1 Atomic Commits

Support for atomic commits means that if an operation on the repository is interrupted in
the middle, the repository will not be left in an inconsistant state. Are the check-in operations
atomic? Are the check-in operations atomic, or can interrupting an operation leave the repository
in an intermediate state?

CVS No. Commits are not atomic.

Subversion | Commits are atomic

2.2 Files and Directories Moves or Renames

Does the system support moving a file or directory to a different location while still retaining
the history of the file?

CVS No. Renames are not supported and a manual one may break history in two.

Subversion | Yes. Renames are supported.

2.3 File and Directories Copies

Does the version control system supports copying files or directories to a different location at
the repository level, while retaining the history?

CVS No. copies are not supported.

Subversion | Yes. It’s a very cheap operation (O(1)) that is also utilized for branching.

2.4 Remote Repository Replication

Does the system support cloning a remote repository to get a functionally equivalent copy in
the local system? That should be done without any special access to the remote server except
for normal repository access.

CVS No.

Subversion | Indirectly, by using the SVN::Mirror script [2] or the svn-push utility [3].

2.5 Propagating Changes to Parent Repositories

Can the system propagate changes from one repository to another?

CVS No.

Subversion | Yes, using either the SVN::Mirror script [2] or the svn-push utility [3].

2.6 Repository Permissions

Is it possible to define permissions on access to different parts of a remote repository? Or is
access open for all?

CVS Limited. ‘pre-commit hook scripts’ can be used to implement various per-
missions systems.

Subversion | Yes. The WebDAV-based service supports defining HT'TP permissions var-
ious directories of the repository.

2.7 Changesets Support

Does the repository supports changesets? Changesets are a way to group a number of modifica-
tions that are relevant to each other in one atomic package, that can be cancelled or propagated
as needed.

CVS No. Changes are file-specific.

Subversion | Partial support. There are implicit changesets that are generated on each
commit.

2.8 Tracking Line-wise File History

Does the version control system have an option to track the history of the file line-by-line? I.e:
for each line can it show at which revision it was most recently changed, and by whom?

CVS Yes - cvs annotate.

Subversion | Yes - svn blame.

3 Features

3.1 Ability to Work Only on One Directory of the Repository

Can the version control system checkout only one directory of the repository? Or restrict the
check-ins to only one directory?

CVS Yes.

Subversion | Yes.

3.2 Tracking Uncommitted Changes

Does the software has an ability to track the changes in the working copy that were not yet
commited to the repository?

CVS Yes. Using cvs diff.

Subversion | Yes. Using svn diff.

3.3 Per-file Commit Messages

Does the system have a way to assign a per-file commit message to the changeset, as well as a
per-changeset message?

CVS No. Commit messages are per change.

Subversion | No. There is no such feature.

4 Technical Status

4.1 Documentation

How well is the system documented? How easy it is to get started using it?

CVS Excellent. There are many online tutorials and resources and an online book.
The command line client also provides an online comprehensive help system.
Subversion | Very good. There is a free online book and some online tutorials and re-

sources. The book is written in DocBook/XML and so is convertible to many
different formats. The command-line client also provides a good online help
system that can be used as a reference.

4.2 Ease of Deployment

be

How easy it is to deploy the software? What are the depenedencies and how can they
satisfied?
CVS Good. Because it is the de-facto standard, CVS is available on most systems
and is easy to deploy.
Subversion | A Subversion service requires installing an Apache 2 module (if one wishes

to use HTTP as the underlying protocol) or its own proprietary server. The
client requires only the Subversion-specific logic and the Neon WebDAV
library (for HT'TP). Installation of the components is quite straightforward,
but will require some work, assuming Subversion does not come prepackaged
for one’s system.

4.3 Command Set

What is the command set? How compatible it is with the commands of CVS (the current
open-source defacto standard)?

CVS A simple command set that includes three most commonly used commands
(cvs commit, cvs update and cvs checkout) and several others.
Subversion | A CVS-like command set which is easy to get used to for CVS users.

4.4 Networking Support

How well is the networking integration in the system? How compliant is it with existing protocols
and infrastructure?

CVS Good. CVS uses a proprietary protocol with various variations for its
client/server protocol. This protocol can be tunneled over an SSH-
connection to support encryption.

Subversion | Very good. The Subversion service can use either WebDAV+DeltaV (which

is HTTP or HTTPS based) as its underylying protocol, or its own propri-
etary protocol that can be channeled over an SSH connection.

4.5 Portability

How portable is the version-control system to various operating systems, computer architectures,
and other types of systems?

CVS Good. Client works on UNIX, Windows and Mac OS. Server works on
UNIXes and on Windows with a UNIX emulation layer.

Subversion | Excellent. Clients and Servers work on UNIX, Windows and Mac OS X.

5 User Interfaces

5.1 Web Interface

Does the system have a WWW-based interface that can be used to browse the tree and the
various revisions of the files, perform arbitrary diffs, etc?

CVS Yes. CVSWeb [4], ViewCVS [5], and Chora [6].

Subversion | Yes. ViewCVS [5], Chora [6], SVN::Web [7], WebSVN [8], ViewSVN [9],
mod_svn_view [10], SVN::RaWeb::Light [11], SVN Browser [12] and Insur-
rection [13]. Aside from that, the Subversion Apache service provides a
rudimentary web-interface.

5.2 Availability of Graphical User Interfaces

What is the availability of graphical user-interfaces for the system?

CVs Very good. There are many available GUIs: CVSGui [14] (for Windows, Mac
and Linux) , Cervisia [15] (for KDE), TortoiseCVS [16] (Windows Explorer
plug-in).

Subversion | Very good. There are many available GUIs: RapidSVN [17] (cross-platform),
TortoiseSVN [18] (Windows Explorer plug-in), JSVN [19] (Java), etc. Most
of them are still under development.

6 License

What are the licensing terms for the software?

CVS GNU GPL (open source).

Subversion | Apache/BSD-style license. (open-source).

7 Summary

We have presented a comparison of two source code management systems, CVS and Subversion,
which are the two most popular among a large collection of such systems. The systems were
compared in a number of categories including repository operations, features, technical status
and user interfaces and overall we recommend the use of Subversion primarily because it uses
atomic commits and provides versioning for directories as well as files.

To make the switch there is a utility to convert an existing CVS repository to a Subversion
repository see Appendix D.

References

[1] SCM Comparison, http://better-scm.berlios.de/comparison/comparison.html
[2] SVN:Mirror, http://search.cpan.org/ clkao/SVN-Mirror-0.64/

[3] SVN Push, http://search.cpan.org/dist/SVN-Push/

[4] CVSWeb, http://www.freebsd.org/projects/cvsweb.html

[5] ViewCVS, http://viewcvs.sourceforge.net/

[6] Chora, http://www.horde.org/chora/

[7] SVN::Web, http://freshmeat.net/projects/svnweb/

[8] WebSVN, http://websvn.tigris.org/

[9] ViewSVN, http://viewsvn.berlios.de/

[10] mod_svn_view, http://www.outoforder.cc/projects/apache/mod svn _view/
[11] SVN::RaWeb::Light, http://web-cpan.berlios.de/modules/SVN-RaWeb-Light/
[12] SVN Browser, http://www.polarion.org/svnbrowser.php

[13] Insurrection, http://insurrection.tigris.org/

[14] CVSGui, http://www.wincvs.org/

[15] Cervisia, http://www.kde.org/apps/cervisia/

[16] TortoiseCVS, http://www.tortoisecvs.org/

[17] Rapid SVN, http://rapidsvn.tigris.org/

[18] Tortoise SVN, http://tortoisesvn.tigris.org/

[19] JSVN, http://jsvn.alternatecomputing.com/

A Other SCM Systems

A.1 SCCS

The Source Code Control System was originally developed at the Bell Telephone Laboratories.
It is a standard part of Unix System V and comes with every flavour of Linux.

A.2 RVS

Revision Control System was developed after SCCS in the early 1980s. It is generally easier to
use than SCCS and more powerful. It may also be faster at retrieving a file from the repository
though mostly the time difference will not be noticable.

A.3 Aegis

Aegis (http://aegis.sourceforge.net/) supervises the development of changes to a project
and the integration of those changes back into the master source of the project. It does not allow
changes to be unconditionally added to the master source. It enforces a number of requirements,
each designed to ensure that the project does not ‘go backwards’ because of a change. The
philosophy of Aegis is to ensure that the source code in the repository (the Baseline in Aegis-
speak) will build whenever it is checked out. No changes are allowed without passing a build
test as well as a functionality test and a code review. Over time the functionality tests will build
into a regression test suite for the code.

A.4 Perforce
Vendor

Perforce Software Inc. http://www.perforce.com/

Description

The Perforce SCM System features comprehensive software configuration management capa-
bilities built around a scalable client/server architecture. Requiring only TCP/IP, developers
can access the Perforce Server through a variety of Perforce clients (GUIs for several platforms,
Web, or Command-Line). Perforce can be deployed quickly and easily, and requires minimal
administration, even for large or distributed sites.

Available on over 50 operating systems, Perforce includes version control, workspace man-
agement, atomic change transactions and a powerful branching model to develop and maintain
multiple codelines.

All Perforce software is free and fully functional, with the exception of the Perforce Server,
which allows only two users and two client workspaces when used without a license. A Perforce
license enables the Perforce Server to support more users and an unlimited number of workspaces.
It also entitles you to Perforce Technical Support. Prices are available from the Perforce web
site along with details of educational discounts and free licensing for open source development.

A.5 Visual SourceSafe
Vendor

Microsoft http://msdn.microsoft.com/vstudio/previous/ssafe/

Description

Through project-oriented version control and rich integration with Visual Studio®, Visual
SourceSafe provides individual developers and small development teams with tools to make
safe alterations to existing code and track changes across users, projects, and time.

Visual SourceSafe is a version control system product that delivers restore point and parallel
collaboration capabilities, thus allowing application development organizations to work on sev-
eral versions of software simultaneously. The version control system introduces a check-in and
check-out model in which an individual developer checks out a file, makes changes, and then
checks the file back in. Other developers typically are not able to make changes to a file while
it is checked out. Source code control systems also allow developers to roll back or undo any
changes that later create problems.

B CVS Set Up

This section provides a quick run through of the steps I took to perform a basic CVS set up.
The set up allows remote connection to the repository via ssh (for users with accounts on the
server) and web based repository browsing with ViewCVS.

The commands given for remote access assume that the user can ssh from the client machine
to the server. CVS uses rsh by default but this can be changed to ssh by setting the environment
variable CVS_RSH to ssh.

Create the Repository
Login to the server (in this case herodium.cse.rl.ac.uk) as root and issue the command
cvs -d /usr/local/cvsroot init

Make sure the the permissions are set so that the people who need to the use the repository
have read and write access to the repository directory (/usr/local/cvsroot in this case).

Add Files to the Repository

Add the directories and files to put under CVS to a temporary directory (/tmp/cvs_test)
ensuring that the structure is what you want as it is difficult to move files and directories in the
CVS repository.

Import the files as an ordinary user on the server machine

cd /tmp/cvs_test

cvs -d /usr/local/cvsroot -m "Initial import" singch vendor_tag start
If the files don’t exist on the server machine the import can be done remotely with

cd /tmp/cvs_test

cvs -d :ext:herodium.cse.rl.ac.uk:/usr/local/cvsroot -m "Initial import" \
singch vendor_tag start

In both cases the files and directories are stored in the repository under the name singch.

Checkout the Files

By default the files will be checked out to a directory with the same name as the one where the
files are stored in the repository so, on the server machine as an ordinary user

cvs -d /usr/local/cvsroot checkout singch

will put the files in $cwd/singch.
On a client machine the files can be checked out with

cvs -d :ext:herodium.cse.rl.ac.uk:/usr/local/cvsroot checkout -d new.dir singch

Here new_dir is the name of the directory to check the files out to.

Repository Browsing with ViewCVS

ViewCVS [5] is a browser interface for CVS and Subversion version control repositories. It
generates templatised HTML to present navigable directory, revision, and change log listings.
It can display specific versions of files as well as diffs between those versions.

I used the development version of ViewCVS from their CVS repository. Once the code was
downloaded I used the following steps to install the software:

1.
2.
3.

run ./viewcvs-install and decide where ViewCVS should be installed,
edit the installed viewcvs.conf file following instructions in the file,

copy www/cgi/viewcvs.cgi file to the Apache cgi script directory.

Point your web browser at http://herodium.cse.rl.ac.uk/cgi-bin/viewcvs.cgi to view
the repositories.

C

Subversion Set Up

This section provides a quick run through of the steps I took to perform a basic Subversion set
up. The set up allows remote connection to the repository via ssh (for users with accounts on
the server) or the http protocol (for authorised users) and web based repository browsing either
with Subversion’s own WebDAV functionality, WebSVN or ViewCVS (see above for details).

Create the Repository

On the server (in this case herodium.cse.rl.ac.uk) create a directory where the repositories will
be kept, e.g. /usr/local/svn and make sure that users have read and write access to that
directory.

As an ordinary user create a repository

svnadmin create /usr/local/svn/singch

Set up http Access to the Repositories

To enable http access with basic authorisation I followed the following procedure.

1.

2.

Edit /etc/httpd/conf/httpd.conf to add a <Location> for svn and map it to /usr/local/svn.

Edit /etc/httpd/conf/httpd.conf to add basic authorisation with AuthType Basic

. Create authentication file /etc/svn-auth-file with

htpasswd -cm /etc/svn-auth-file djw

to add user djw and set their password. (The -c flag is not required when subsequent
users are added since it is the flag to create the file.)

. Edit /etc/httpd/conf/httpd. conf to allow read only activities for anonymous users but

require authentication for commits etc.

The Subversion section of httpd.conf looks like

10

Subversion repositories
<Location /svn>
DAV svn

any "/svn/foo" URL will map to a repository /usr/local/svn/foo
SVNParentPath /usr/local/svn

SVNIndexXSLT "/svnindex.xsl"

AuthType Basic
AuthName "Subversion repository"
AuthUserFile /etc/svn-auth-file

For any operations other than these, require an authenticated user.
<LimitExcept GET PROPFIND OPTIONS REPORT>

Require valid-user

</LimitExcept>

</Location>

Add Files to the Repository

Create a temporary directory, e.g. /tmp/svn_test and under that create the directories branches,
tags, and trunk.

Add the directories and files to put under Subversion to svn_test/trunk.

Import the files as an ordinary user on the server machine

svn import /tmp/svn_test file:///usr/local/svn/singch/ -m "Initial import"
If the files don’t exist on the server machine the import can be done remotely with

svn import /tmp/svn_test http://herodium.cse.rl.ac.uk/svn/singch \
-m "Initial import"

Checkout the Files
On the server machine as an ordinary user
svn checkout file:///usr/local/svn/singch/trunk project

will put the files in $cwd/project
On a client machine the files can be checked out with

svn checkout http://herodium.cse.rl.ac.uk/svn/singch/trunk project

Repository Browsing with Subversion WebDAV

If http access is set up as described above then Subversion’s own WebDAV technology will
provide access on http://herodium.cse.rl.ac.uk/svn/singch.

A stylesheet to format the output can be used with the SUNIndexXSLT "/svnindex.xsl"
directive to the http server.

11

Repository Browsing with WebSVN

WebSVN [8] offers a view onto subversion repositories that has been designed to reflect the
Subversion methodology. You can view the log of any file or directory and see a list of all the
files changed, added or deleted in any given revision. You can also view the differences between
two versions of a file so as to see exactly what was changed in a particular revision.

I used version 1.61 of WebSVN the latest at the time of writing. Once the code was down-
loaded I used the following steps to install the software:

1. unpack the archive to /usr/local/WebSVN,

2. Copy include/distconfig.inc to include/config.inc and edit following instructions
in the file.

3. Edit httpd.conf to add the line Alias /WebSVN /usr/local/WebSVN.

Note that WebSVN has no built in authentication mechanism but the same Apache au-
thentication can be used as when setting up access to the repository via http. The section of
httpd.conf for WebSVN would then look like

Alias /WebSVN /usr/local/WebSVN
<Location /usr/local/WebSVN>

AuthType Basic
AuthName "Subversion repository"
AuthUserFile /etc/svn-auth-file

Require valid-user
</Location>

Point your web browser at http://herodium.cse.rl.ac.uk/WebSVN/index.php to view the
repositories.

D Converting CVS Repositories to Subversion

The tool cvs2svn (http://cvs2svn.tigris.org) can be used to convert a CVS repository into
a Subversion one. It has many options to control exactly what is transfered but I used only the
default options which converts the entire CVS repository, including all tags and branches.

Once it was installed (by running a script as root) converting a CVS repository is simply a
metter of issuing the command

cvs2svn -s /tmp/singch-svn /usr/local/cvsroot/singch

The new repository /tmp/singch-svn can then be copied to its correct position (/usr/local/svn
in the examples above) and will then be available for browsing and checkouts etc.

12

