
Considering Software Preservation

Brian Matthews, Arif Shaon, Juan Bicarregui, Catherine Jones, Esther Conway and Jim

Woodcock

Software is a class of electronic object which is by its very nature digital, and the

preservation of software is often a vital prerequisite to the preservation of other electronic

objects. However, software has many characteristics that make preserving it substantially

more challenging than for many other types of digital object. Software is inherently

complex, normally composed of a very large number of highly interdependent components

and often forbiddingly opaque for people other than those who were directly involved in its

development. Software is also highly sensitive to its operating environment, with the typical

software artefact depending on a large number of other items including compilers, runtime

environments, operating systems, documentation and even the hardware platform with its

built-in software stack. Preserving a piece of software thus involves preserving much of its

context as well.

Handling these challenges is a major barrier to the preservation of software, so much so that

the preservation of software is often seen as a secondary activity, less critical than the

preservation of the data it manipulates. This is despite the fact that in many cases, such data

becomes unusable without the software to handle it; and recreating software from partial

information can be a near-impossible task.

Software preservation is thus a relatively underexplored topic and there is little practical

experience in the field of software preservation as such. The e-Science Centre, Science and

Technology Facilities Council (STFC) has undertaken preliminary studies sponsored by the

UK Joint Information Systems Committee (JISC) into the Significant Properties of Software

for preservation (2007), and subsequently in a development project on Tools and Guidelines

for Preserving and Accessing Software Research Outputs (2007-09). Given the relative

immaturity of the field, the studies became explorations of the notion of software

preservation, looking at the stakeholders and motivations behind software preservation as

much as identifying methods and technology.

Different communities have different motivations for preserving software, such as libraries

and archives, managers of data archives who have a need to preserve associated software,

and software developers who themselves maintain and reuse software over the long term.

We therefore considered different approaches to software preservation, ranging from a

strong emphasis on preserving software executables directly, which uses hardware

preservation and emulation, to an emphasis on preserving the essential behaviour of software

in a new context via migration and porting. The choice of preservation approach depends

on the nature of the software artefacts available, the extent to which the original operating

environment of the software can also be preserved or reproduced, and legal restrictions such

as software licensing.

The project identified some concepts useful for a software preservation methodology,

discussing the stages of retrieval, reconstruction and replay which need to be passed through

to reproduce a usable performance of a software product. We defined a notion of adequacy

of preservation, an aspect of the authenticity of preservation which tests the future

performance of software against specified preservation properties once it has been

reconstructed into a working version in the new environment. We developed a new software

preservation framework to categorise software components and identified the properties

required to ensure adequate preservation. This software preservation framework uses

concepts from the Open Archival Information System (OAIS) information model; indeed the

framework can be seen as a specialization of OAIS for the case of software.

We tested the software preservation framework in collaboration with the British

Atmospheric Data Centre (BADC). This included assessing the overall efficiency of the

framework against a variety of BADC software, specifically in terms of its relevance (to the

software) and sufficiency (of the information recorded) for long-term preservation of the

software. The cost-effectiveness of the framework must be considered within the context of

the BADC’s approach to accommodating changes in the technological environment to

ensure effective long-term software maintenance and reuse.

Software engineering best practice shares many of the concerns of software preservation in

producing quality software that can be maintained and reused in the future, such as providing

version control, dependency analysis and good documentation. Software preservation could

be integrated into the software life cycle to systematically capture those properties required

for preservation and an adequate replay of the software. We have provided a Java-based tool

called Significant Properties Editing and Querying for Software (SPEQS), developed in view

of our analysis of the BADC use case (Figure 1). SPEQS demonstrates the feasibility of

capturing preservation properties identified in the software preservation framework and

integrating these with the software development life cycle, to aid in long-term preservation.

Link:

British Atmospheric Data Centre: http://badc.nerc.ac.uk/home/index.html

Please contact:

Brian Matthews, e-Science Centre, Science and Technology Facilities Council, UK

E- mail: brian.matthews@stfc.ac.uk

Figure 1: Using the SPEQS tool to capture preservation properties of software.

http://badc.nerc.ac.uk/home/index.html

