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Abstract CODE DESCRIPTION

Analytic descriptions of arbitrary magnetic fields can be=jeld Description
calculated from the generalised gradients [1] of the ors-axi Lo )
field. Using magnetic field data, measured or computed on FOr @ periodic structure, a general scalar potential that
the surface of a cylinder, the generalised gradients can Ggtsfies Laplace’s equation, (a cylindrical harmonic or
calculated by solving Laplace’s equation to find the thrednultiPole expansion) can be written:
dimensional multipole expansion of the field within the ° 00
cylinder. After a suitable transformation, this descopti ¥ = Z eXP(Zm‘?)/ dk G () exp(thz)Im(kp),
can be combined with a symplectic integrator allowing the =~ ™=~=° -
transfer map to be calculated. A new tracking code is under
development in C++, which makes use of a differential al- — Z exp(umg) Ym (p, 2),
gebra class to calculate the transfer map. The code has been m=0
heavily optimised to give a fast, accurate calculation ef th  _ :
transfer map for an arbitrary field. The multipole nature of mz::o cos(m) ¥m.c(p, ) + 1 sIn(me) Yo (6, 2).
the field description gives additional insights into fringe (1)
field and pseudo-multipole effects and allows a deeper u

derstanding of the beam dynamics ?fnL(k) are arbitrary coefficients, anf},, are the modified

Bessel functions, which can be expressed as a Taylor ex-
pansion:

INTRODUCTION ot
2) 2)

> 1
Venturini and Dragt [1] give a prescription to describe a Im(z) = Z m (5
magnetic field or potential in terms of its cylindrical har- =0 ) ]
monics and Taylor expansions. Such a description gives FTom EQ. (1), the vector potentials can be derived:
an analytical description of the field in the transverse @lang s = 0, ©)
with a longitudinal dependence on the generalised gradi-

ents of the field — that is, the numerically calculated onz4, = 3 Cos(m¢)p2¢w7s _ Sm(m‘b)pgwm
axis components of the field gradients. The resultant field me1 9z m 9z
map satisfies Maxwell's equations and automatically in- > cos(me) O sin(mg) 9
cludes fringe field and non-linear terms. A code has beefl- = Y —Tpa—p%,s + Tpa—p%,c-

written in C++ that utilises a fast Fourier method to cal- m=1
culate the generalised gradients for an arbitrary magnet&ys. (1) and (2) can be used to expresg p, z) as:
field along a straight beam line. Being able to describe the im|
fields analytically allows rapid calculation of transferpsa >, 1 m "

using a suitable analytic integration scheme. To this end, pare I+ |m|) 2

a specialised differential algebra template class is used t h o

describe the transverse field components, and this offers / dke K2 @G, (k) exp(ikz),  (4)
significant time savings over similar, more general, codes. —o0

A second order symplectic integration scheme [2] is imOf

plemented to allow numerical or analytical computation of . |m! o) (2

the evolution of the canonical phase space vector from an¥m(p, 2) = Z(_l) 2011 + |m])! |m|)!/’( 'CRi(z),
initial state to the final state. The modular design of the 1=0 (5)

code gives a straightforward method of adding furtherfuncv-vhere theC,[JZ’] (2) are the on-axis generalised gradients.

tionality to the code, or inserting alternative compongents . L
y 9 b Suppose the radial component of the magnetic fiBlg,

e.g. user-defined analytical descriptions of the field ralte. . .
native integration schemes etc. As an example, an ad'.-:(;c’w:s n fg?teds?;ffcrﬁff a; cyllzlndreirrof rf;lile.sthen the
tional module has been added to describe the synchrotrdﬁ can be fitte €rms ot a Fourier series.

radiation emitted by a particle as it traverses the field [3]. By(p=R,,2) =

oo

o0
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UK. am (R, z) cos(me@) + by, (R, z) sin(me¢) (6)
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The coefficients,, (a,,) correspond to normal (skew) gration stepAo:
components of the field, and the integer, gives the mul-

tipole order, i.e.m = ( corresponds to a solenoid compo- M (Ag) =exp ( _gpz ) exp (: _ﬂaz )
nent,m = 1 represents the dipole component,= 2 a 2 2
guadrupole, etc. To calculate the generalised gradidrés, t Ao p?
Fourier series coefficients are scaled by the derivative of eXp ( 92 (_5 + 2(1+ 5)) ) g
the Bessel function, and a Fourier transform is performed: p2
. Y —1
-] 00 I+m—1 P < _AU2(1 + 5) ) Ay (9)
0 : k) b
Chs(2) = S /_OO dk exp(zkz)m bm, (7) Ao P2 .
eXp(‘ 2 ( +2<1+5>)'>
and A Ao
exp( ——a, )exp (: _7PZ ) ,
-l

e} l+m—1
0 (= b o) ;
Cmel2) = g /oo dkexp(ikz) s am (®) wherea, .. (¢, 2) = qAs.y.2(2,y, 2), and

clll . (2) is thel th derivative with respect te of the gener- Ay = exp <: _/ay(x7y’ z)dy :) .
alised gradienté‘,[,?],a(z). Egs. (3), (5), (7) and (8) can then

be used to calculate the vector potential at any point within This integrator was developed_ to.allow accurgte track-
the volume of the cylinder. ing throughs-dependent magnetic fields (whesds the

The magnetic field can be derived from the vector pot rgndependent variable, the distance along the reference tra
__'hemagnetic hield can be derivedrom the vector pote ectory). Many magnetic elements are modelled using an
tials, and transformed into Cartesian coordinates in ain ar

trary gauge (see [4] for details). The field is thereforeyfull mpulse boundary approximation, where the magnetic field

described in terms of its multivole modes and the eneisf assumed to be constantihdependent) inside the mag-
! ! ! uitip YeNELat and zero elsewhere, which allows the charged particle

gllsed gr.ad|ents. quthgrmore, th? a'go”th”.‘ hgsa}smomﬂémiltonian to be separated into drift and kick regions.

ing quality — numerical inaccuracies in thg initial flelq aré swever in many magnetic systems (e.g. wigglers and un-

smeared out. The modified Besse! functlohg(k,_z), n dulators) thes-dependence of the magnetic field cannot be

Eqs_. (7). and (8) mean th_e errors shrink exponentially as tré%curately modelled in this way — the fringe fields play an

radial distance to the axis decreases. important role in the charged particle dynamics. The an-

alytical description of the field, described above, explic-

itly includes fringe field contributions and this symplecti

integrator is well suited to describing the dynamics of a
A “stripped-down” differential algebra template classcharged particle in such a field.

has been written which allows polynomial expressions to

be defined with an arbitrary number of variables to arbitrary MODELLING THE CESR-C WIGGLER

order. The standard mathematical operators have been de- ) )

fined as well as methods for differentiation, integratioan, e To demonstrate the techniques ment_loned ab_ove, _the

ponentiation and the trigonometric functions. Expre&s;ionC(l)dted""f"_"sldu‘:‘jectj to model tthe CIIESR-c_:dW|5ggIeAr, ;gmg I.'_5|m-

differing in the degree and number of variables (explicitJ ated field data on a rectangufar gri [5].  Spline

instances), can be used in the same code and convers'i'atr‘?rpoIat'on code was used to calculate the radial mag-

between explicit instances is allowed. The field descri[ﬁfetIC field (Bf;? Zg the slurface oga cylinder V;:'th a'radlﬁsl
tion is initially calculated in two variables:(y) to order ©F 2-6¢m wit evenly spaced points in the azimuthal

eight. Transforming to a suitable gauge (i4, — 0) re- direction and 8192 points in the longitudinal)) direction.

sults in a field map accurate to order six and the integratidor\'caSt chf)_u_rier transfc()jrAm of tr?ishfield was p()je_rformed to f":jd
of the phase space vector therefore requires an express‘%ﬁ coefficients,,, andby., which were use |n.Eqs. (7)an
in six variables to order six. The ability to mix, and con-(®) 10 calculate the generalised gradients. Fig. 1 shows the

vert between, classes of expressions allows a fast, emciecﬁalcglatedonorma! and skew componen_ts of the generalised
calculation of the final dynamical map. gradientCy (the dipole component), which corresponds to

the on-axis field in thg andx directions, respectively. Be-
cause the field is calculated to some finite order (sixth, in
Symplectic Integrator this case) the field expansion is truncated, and the higher
order components are not included. However, the number
A second order symplectic integration scheme [2pfterms can easily be increased to give greater accuracy in
has been implemented which calculates the Lie maghe final result.
M, that transforms the canonical phase space vectorFig.2 (left) shows the initial interpolated field map on
(x,pe, Y, Dy, 8, 0) from an initial to a final state for an inte- the surface of a cylinder. Fig.2 (right) shows the residual

Differential Algebra Template Class
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Figure 1: TheC? normal (red) and skew (blue) dipole com- s 2 s o w5 o s 1 15 & 28
ponents of the generalised gradient for the CESR-c wiggler. #m
These components are identified with the on-axis figlgs

Figure 3: The evolution of the canonical coordinatesx,)
of a5 GeV electron as it traverses the CESR-c wiggler. The
trajectory was integrated over 10,000 points.

difference between the interpolated field and the calcdlate
field. The maximum difference & x 10~ T; this differ- CONCLUSION
ence will shrink exponentially as the radial distance to the
axis decreases. Outside the cylinder the uncertaintiés wil A new C++ code to describe arbitrary magnetic fields
grow exponentia"y, and therefore the error in the cal@dat and calculate the evolution of the dynamical variables of
field will grow rapidly. a charged particle within such a field has been developed.
Finally, the analytic field description was used withThe code is designed to provide a fast and accurate method
Eq. (9) to calculate the transfer map, and track the evaiutid®f describing charged particle dynamics. In the given ex-
of the dynamical variables. The energy of the electron wadnple, for a 4.8 m wiggler magnet, the field was interpo-
set to 5GeV and 10,000 integration steps were used. fted at4%8192=401,408 points on the surface of a cylin-
each integration step, the field components and the Lie m&g"- This field was used to calculate numerically the gen-
M were calculated, resulting in a transfer map for the ergralised gradients for the multipole components up to the
tire magnet. The field components, calculated at each stefth pole: this provides an analytical description of the
were written to a file, so the particle track could be quicklyransverse field. Finally, the field description was used
calculated numerically given any initial state. Fig. 3 skow!0 integrate analytically and numerically the evolution of
the evolution of the canonical coordinates g, ) over the @ phase space vector (to second order in the Hamiltonian
length of the magnet for an initial state, ()). and sixth order in the field description) over the length of
the magnet using 10,000 integration steps. The whole cal-
culation took under 8 minutes with a 2.66 GHz processor.

andB,.

The code is modular, so additional functionality can eas-
I l ily be added. Further examples of the applications of this

= — & L ) code, and an example of a module to calculate synchrotron
1| RN [, b st T radiation, are described in [3].
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