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ABSTRACT 

Thermal response factors offer an accurate way to characterise the 

performance of building components. Although the existing techniques use 

time series methods they also require special environmental apparatus and 

boundary conditions in order to achieve consistent results. In this work a 

novel method for estimating the response of building components in unsteady 

boundary conditions is developed and then compared against the standard 

u-value method. The novel method uses a point algebraic technique to 

extract response factor values directly 'from the data. The response values 

being estimated from time series statistical central moments. The response 

factors represent the dynamic thermal transmission and the area under the 

response f~~tor is the steady stal~ u-value. 

The u-value is determined and then compared to the theoretically predicted 

value. Linear vector and non-linear thermal systems are considered. 

Keywords. Thermal response. 
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INTRODUCTION 

Mitalas and Stephenson (Mitalas and Stephenson 1967 and 1968) pioneered the 

use of the response factor approach to the thermal characterisation of 

rooms. Their method is used in heating and cooling load calculations for 

building design (ASHRAE Handbook of Fundamentals 1989); however, it has 

proved difficult to extract consistent response factors from experimental 

data. In order to assess the impact of a particular. construction on the 

building energy loads the relationship between the thermal processes and 

the thermophysical properties must be understood. Generally speaking the 

ability of current data analysis methods to characterise accurately the 

thermal properties of a building under actual m3teorological conditions is 

severely limited. There is thus a need to develop and refine data analysis 

techniques which can quantify the therrnophysical processes and their 

interactions. In this work a technique based on time series methods is 

developed that can estimate the response factors from experimental data. 

The new method can be used when general meteorological boundary conditions 

prevail. The data need only be collected for a duration equivalent to 

several time constants of the thermal process. The new method can be 

. extended to nonlinear processes, such as are found at the solid fluid 

interface; whereas the current method only works when the process is 

linear. 



RESPONSE FACTOR ESTIMATION 

The heat flux flowing through a building component may be expressed in 

terms of the components response factors and the temperature gradient that 

is driving the flux. An ordered sequence of data in time is called a time 

series and the relationship between two time series may be characterised in 

terms of response factors. The heat flux may be expressed as a convolution 

between the observed temperature gradient and the thermal response factor, 

assuming that the thermophysical properties are linear, time invariant and 

that the heat flux f(t) and local temperature gradient VT(t) constitute a 

complete description of the process. Mathematically these conditions may 

be expressed as (Joseph and Preziosi 1989) 

t 
f(t) = I hfVT (r)VT(t-r)dr 

t-~ 

which is an integral form of the 

(1) 

equation where r denotes lag, 

and where ~ is the finite memory of the process; ie the Borel theorem of 

convolution (Luikov 1968). This is a scala~ equation and assumes that the 

heat flux has only one variable, the temperature gradient. The response 

factor, hfVT(r) is related to the steady state thermal conductivity k 

(Joseph and Preziosi 1989) 

(2) 

That is, the area under the response function between the local heat flux 

and temperature gradient is equal to the steady state thermal conductivity 

(Kusuda 1978) or more generally the area represents the steady state gain 

of the variables (Irving 1992). 
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Under certain circumstances the convolution equation may be simplified. If 

the wall is kept under steady state conditions then we obtain 

f = -U VT (3) 

where u is the U-value of the wall, which can be seen to be u = JhfVT(r)dr. 

In steady state the temperature gradient may be replaced by a finite 

difference so that 

(4) 

This leads to a definition (Pratt 1981) that the steady state thermal 

transmittance is the amount of heat which flows per unit area per unit time 

when a one degree steady state temperature difference is maintained across 

the structure. The U-value estimate offers a simple but effective measure 

against which to compare the integrated response factors. 

The convolution equation may be Fourier transformed into the frequency 

domain with 

f(W) = HfVT(w) VT(W) 

where HfVT(w) is the frequency response between f and VT. 

The convolution equation (1) allows the heat flux through a region of a 

building component to be estimated as a function of the local temperature 

gradient and response factors. The wall of a building experiences unsteady 

temperature and heat flux conditions on both sides simultaneously. This is 

a vector problem and the heat flux and temperatures on one side of the 
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structure will be a function of the heat flux and temperatures on the other 

side of the wall. The most simple representation is in the form of a two 

port network equation which relates the heat flux and temperature fields as 

an input output convolution. If we denote Te(t) and fe(t) as the external 

surface temperature field and heat flux, and Ti (t) and fi (t) as the 

internal surface temperature field and heat flux then these may be related 

by the vector equation 

= 
~eTi (t) hfeTi (t) 

~efi {t) hfefi (t) (5) 

where one port is used as the input and the other port is used as the 

output of the system, and where e denotes the convolution operation. 

Equation (5) may be considered as a generalisation of the matrix form which 

is given in Carslaw and Jaeger (1946), which is only strictly valid for 

homogeneous materials under steady state periodic boundary conditions. 

Equation (5) can be seen to be two linear simultaneous equations which have 

four unknown response function values. However, it is a straightforward 

matter to generate four simultaneous linear equations in terms of 

statistical central moments, which may then be solveG for the four unknown 

response factor values. 

If the input {x(t)} and output {y(t)} time series are stationary then the 

convolution equations may be expressed in terms of time delayed central 

moments. These equations for the two port case are 
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ex Y (r1) . i h11 (a1) ex x ( r 1 I a 1 ) da + i h 1 3 (a 1 ) ex x ( r 1 1 a 1 l da 1 
1 1 1 1 1 3 

ex y (r 1) a: s hu (a1) eX X (Tlla1)da1 + s hu (a 1) ex x ( r 1 1 a 1 ) da 1 
1 3 1 1 3 3 

ex Y ( r 1) = i h11 (a1) ex x (r11a1)da1 + i hu(a1) eX X (T1,a1)da1 
3 1 3 1 1 :1 

ex Y (r 1 l a: i hu (a1) ex x (rl,a1)da1 + i hu (a 1) ex x ( r 1 1 a 1 ) da 1 
3 3 3 1 3 3 

where ·exy<r1 ) = E[y(t) x(t-r
1

)J is the correlation and 

where exx(r1 ,a1 ) = E[x(t-r1 ) x(t-a
1

)1 is the auto correlation, 

where E[ 1 is the averaging operation and r ~~d a denote delay. 

(6) 

Note that we are using an absolute time frame of reference for the moments 

rather than the usual retarded time frame of reference. 

For a general linear system the vector correlation equations are 

ex. Y. ( r 1) = eX.X (Tl 10'l) ex.x (rl,all e h .. <a1 l 
l J l 1 1 n Jl 

(7) 

ex Y. (r 1) 
n J 

ex x (rl 1al) 
n 1 

eX X (Tl,al) 
n n 

hjn (a l) I 

where each individual term is a linear superposition of the form 

(8) 

In the frequency or z domains this may be written as 
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~X y. (W1) ~X X (W1) ~xx.(wl) ~XX (W1) Hj 1 (w1) 
1 J 1 1 1 J 1 n 

~x Y. (w1) ~X X (W1) ~X X, (W1) ~X X (Wl) Hj ~ (Wl) 
2 J 2 1 2 J 2 n 

= 

~x.y.(wl) ~x.x (wl) ~x.x. (wl) ~x.x (wl) Hji (wl) 
1 J 1 1 1 J 1 n 

which may be solved for the (i,j)th response value at the frequence w
1 

using for example Cramer's rule. 

NONLINEAR RESPONSE FACTORS: A POINT ALGEBRAIC APPROACH 

(9) 

The Volterra series is a nonlinear generalisation of the linear convolution 

equation (Volterra 1959) and is Volterra's integral representation of the 

Taylor's expansion. The Volterra Kernels are the same as nonlinear 

response factors and their values may be evaluated from central moment 

estimates. 

First consider a linear time invariant system which is stimulated by a 

sequence of data {x(t)}, then the most general expression which 

simultaneously satisfies both the superposition and time invariant 

properties of the system (Seibert 1986) is the linear convolution equation, 

where 

T 
y(t) = S hxy(r1) x(t-r1)dr1 -eo 
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where {y(tl} is the output sequence and hxy(r) is the first order Volterra 

kernel function or linear response factor. This may be generalised in the 

form of a Volterra series and may be written as (Volterra 1959) 

N 
y(t)= t 1 

na1 n! 

for continuous data or for the discrete data case as 

N t 
y(t) = t l t 

n=1 n! r 1 =-m 

where we consider the thermal properties to be nonlinear to order N. 

We thus have N unknown coefficients and only one equation so there is a 

need to generate N equations and then to solve them. 

When the data sequences {x(tl} and {y(tl} are drawn from stochastic 

sequences then they and their interactions may be described in terms of 

-statistical central moments. 

If the different order nonlinear response factors are separated out and 

time series moments taken then we have the following set of equations 

(Dewson and Irving 1992). 
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E[y(t) x(t-r1)] .. 

E[y(t) 
n 
1r x(t-ri)] = 

i=1 

n n 
E[ 1r x(t-r.) 1r x(t-u.)] 

i=1 1 j=1 J 

which is known as the isolated kernel approximation, where E[ ] is the 

(11) 

(12) 

averaging operation and r and u denote time delay relative to time t. The 

time series cross moments may be written as 

and auto moments as 

n 
1r x(t-rill 

i=1 

n n 
Cxnxn(r1, ... ,rn,u1, ... ,un) = E[ 1r x(t-ri) ... 1r x(t-uJ.)]. 

i=1 ;, =1 

Note that these equations are in the absolute time frame of reference and 

not the usual time retarded frame of · •ference. 

Separating out each of the higher order terms from the expansion does not 

in itself facilitate the estimation of the Volterra kernels. However, 

there are experimental situations which arise where the estimation of the 

Volterra kernel values may be straightforward. One well known and 

extensively studied class of experiments is the so called Wiener white 
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noise technique (Wiener 1942 1 Schetzen 1980) 1 where the input data 

sequences {x(t)} are drawn from Gaussian white noise distributions. 

Recently the Wiener identification technique has been extended for cases 

where the input data are stationary but not white noise (Dewson and Irving 

1992). The response factor values may be extracted algebraically when the 

future independent form of the central moments is used. If a future 

independent form is assumed then equation (10) may be written as 

which is the time delay domain Borel theorem of convolution. This may be 

rearranged to yield the response factor value hyx(r 1 ) at a given time delay 

(14) 

which yields a unique value for hyx(r1}. 

Fo~ a non-linear system the response factor values may be estimated using 

(Dewson and Irving 1992) 

hxny ( r 1 I ••• , r n) = Cxny ( r 1 1 ••• 1 r n} - Bxny ( r 1 I ••• I r n) 

Cxnxn ( o I ••• 1 0} 

As an example consider the first non-linear response factor where 
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hxxy ( r 1 , r 3 ) = cxxy ( r 1 , r'3 ) - Bxxy ( r 1 , r 3 ) 

cxxxx (0,0,0,0) 

and the value of Bxxy (r 1 ,T 3 ) is estimated using 

(16) 

(17) 

Thus the method can, in principle, be extended to any order of nonlinearity 

and may be used with general boundary conditions. It does, however, 

require the isolated kernel approximation and the future independence 

assumptions to be valid and also that the moments be well defined 

(basically this means that the data should be almost stationary) . 

Example Application of the Method 

Many experim~ntal studies of heat transmission through wall~ have been 

performed in the past so years. Even so the measured U-values and response 

factors are not very accurate (typically lC%) and are not robust to changes 

in meteorological and environmental conditions. In the present work time 

series data was collected and analysed from a passive solar test cell that 

was exposed to the external meteorological conditions. The time series 

meteorological measurements collected were dry bulb temperature, wind 

speed, wind direction, global horizontal irradiance, diffuse horizontal 
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irradiance and the nett irradiance between the test cell roof and the sky. 

Inside the test cell time series data were collected for dry bulb 

temperature and nett irradiance between the north facing wall and the south 

facing window. The passive solar test cell was not heated for this 

experiment and the ventilation rate was maintained at less than 0.05 air 

changes per hour. 

In order to obtain the response factor and U-value of the north facing wall 

time series measurements were obtained from thermistors and TNO heat flux 

mats, each being embedded at a depth of approximately 5mm in the plywood 

which formed part of the wall's internal and external surface. The time 

series data were collected at one minute intervals for a duration of one 

month and the data was analysed on the CRAY XMP at the Rutherford and 

Appleton Laboratory. 

Samples of the temperature and heat flux time series are shown in Figure 1 

and Figure 2, and in Figure 3 is a schematic diagram of the experimental 

configuration used for the response factor measurements. 

The sample covariance, Cxy(r), and auto covariance Cxx(r1,r2l, are 

estimated from the time series temperature and heat flux values. The 

.:esponse factor values ~re then obtained using equation (13) . The values 

obtained for the response factor values, hfeTi (r), and the temperature gain 

~eTi (r) are shown in Figures 4 and 5. 

Integrating the response factor hfeTi (r) yields an estimate of the U-value 

with 

S hfeTi (r)dr = 0.350 ± 0.016 w m-2 K-l 
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and this may be compared to the theoretical value of (Martin 1989) 

U = 0.373 W m-2 K-1 

which is determined on the basis of the following resistance values 

Layer Thickness Resistance 
(mm) (Km3/W) 

Plasterboard 12.7 0.085 
Air gap 20.0 0.170 
Glass fibre 100.0 2.326 
Plywood skin 12.7 0.070 
Plywood guard 5.0 0.028 
Total 2. 679 

U-value of construction = 1 = 0.373 wm-2 K-l --2.679 

The experimental and theoretical values agree well on the basis of a two 

tailed Student's t-test, which for these data has a value of 

t,,.5% = 0.373 - 0.350 = 1.6 < 2.26 
0.016 

which indicates that the two values are the same in a statistical sense. 

Although the agreement is good in the present example further experiments 

and analysis should be undertaken to identify the accuracy, consistency and 

sensitivity of the method before firm recommendations for its use may be 

made. 

CONCLUSIONS 

The findings of this paper may be summarised as follows: a time series 

method has been developed that enables the thermal response factor values 
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to be estimated from unsteady temperature and heat flux observations. This 

method was used to extract the response factors of a wall in a test cell. 

The area under the response factor is identified to be the U-value of the 

wall which was estimated and which compared favourably to the theoretical 

value. The linear vector form of the method is equivalent to the matrix 

method of Carslaw and Jaeger when the boundary conditions are steady state 

periodic. The scalar form was extended to the nonlinear case, so that 

known nonlinear process can now also be included in the analyses. The 

point algebraic method uses the isolated kernel approximation and the 

future independence assumption. The scalar and vector forms assume 

linearity and use the temperature field rather than the temperature 

gradient which drives the heat flux, as would be expected for the integral 

form of the diffusion equation. A programme of experimental and 

theoretical work is currently ongoing with the universities of Bristol and 

Newcastle to examine the validity of those approximations and assumptions. 

The findings from that work will be reported. In addition independent 

experimental work is needed to confirm the aptness of the method and to 

determine its inherent accuracy and range of appropriate use. 
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FIGURE CAPTIONS 

Figure 1. Sample of the time series temperatures Te(t) and heat flux 

values fe(t) observed at the external surface of the test cell 

wall. 

Figure 2. Sample of the time series temperatures Ti (t) and heat flux 

values fi (t) observed at the internal surface of the test cell 

wall. 

Figure 3. A schematic diagram of the experimental design used for the 

response factor measurement. 

Figure 4. The estimated values of the response factor hfeTi (r) using the 

point algebraic method. 

Figure 5. The estimated values of the response factor ~eTi (r) using the 

point algebraic method. 
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