
~ Science and Engineering Research Council

~ Rutherford Appleton Laboratory
~ Chilton DIDCOT Oxon OXll OQX RAL-92-011

On the Role of Read and Write Frames
in Algorithm Refinement for States with
Invariants

J Bicarregui

ARCHIVE COPY
NOT TO BE REMOVED 1 .

January 1992

I

L~NDER. A~ CIRCUMSTANCES I

LIBRARY, R61
-8 MAR 1993

RI.JTHERFORD APPLETON
lAOORA T:ORV

Science and Engineering Research Council
"The Science and Engineering Research Council does noL
accept any responsibiHty for loss or damage arising from Lhe
use of information conLained in any of its reports or in any
communication about its tests or investigations"

On the Role of Read and Write Frames
in Algorithm Refinement for States with Invariants

Juan Bicarregui
Systems Engineering Division

Rutherford Appleton Laboratory.

January 20, 1992

Abstract

The read and write frames of reference variables used in the VDM style of operation
decomposition serve two purposes: semantically, they record information as to what
access to the state a valid implementation of the operation can be allowed to make;
furthermore, in a more syntactic vein, they serve to bind the variables that occur in the
predicates of the operation specification. The use of the frames in these two roles is
examined, in particular for the case where there is an invariant on the state, and it is
argued that they can be usefully distinguished.

A model for operation specification and refinement is developed that explicitly han
dles changes in the frames. In order to handle state invariants, it is necessary to define
when a part of the state is independent of the rest with respect to the invariant that
is in force. A semantic definition and syntactic criterion for independence are given.
This idea of partitioning the state into independent parts with respect to the invariant is
developed in connection with notions of satisfaction and satisfiability.

1 Introduction

There is little doubt that, if we are to successfully manage the building of ever more complex
software systems, the ability to break down the task in hand, separately tackle each sub-task,
and then bring these separate solutions together with confidence that the whole will perfonn
successfully, is crucial. Thus when developing a fonnalism of software specification and
refinement the issue of compositionality must be central.

Following the process of top-down design, at any stage we have a specification of a system
component and the design task is to develop a component that satisfies that specification.
Typically the design will be the composition of several smaller components that, at this stage,
will only be specified and which will later be developed independently themselves.

We can state the problem as:

1

If we require that a specification S is to be refined by a design D, written

S~D

then we can build a high level design which states that D should be some composition, C,
of components S1 ••• Sn which are themselves only specified at this stage,

such that, if each component is itself refined by a design,

then the original specification must be satisfied by the composition of those designs.

Compositionality states that the development of each Si should be able to proceed indepen
dently of the rest.

This paper considers two issues that arise when we examine the matter of compositionality
for the process of algorithm refinement taking as a starting point the VDM style of operation
decomposition given, for example, in [Jones90]. The first consideration is that each sub
development, Si ~ Di, should be truly independent of the rest. That is, that sufficient
information should be contained in the S, to characterise its valid implementations, particular
attention being paid to the case where there is an invariant that relates the possible values
of components of the state. The second issue is the matter of state access: the so called
frame problem addressed by the "externals" clauses in the operation definition. Typically,
each of the smaller components, S,, involves only part of the state available to S, so in the
development of each S,, we want only to concern ourselves with that part and not have to
look outside for contextual information. In VDM, the frame of reference of an operation is
given explicitly by the read and write access conditions.

Of course the two issues are related since what is a sensible frame for an operation depends
crucially on any invariant that may be in force on the state. The interaction of these two
concerns motivates us to distinguish two roles for the read and write frames and the separation
of these roles yields a more expressive notation. This extra expressive power comes at the
expense of some prolixity - a third frame is introduced into the definition of an operation,
however the model proposed is envisaged as the basis for machine based support and it is
anticipated that the extra complexity could be handled automatically and only come to the
fore when explicitly relevant.

The rest of this section gives an outline of the background to the work presented here and
some motivating examples for the model proposed. Section 2 defines a model for state-based
operations that explicitly handles frames and invariants and makes a definition of when
a part of the state is independent with respect to the invariant which is then used in the
examination of the role that the read and write frames play in satis:fiability and refinement.
The third section briefly considers the present work in a broader perspective, drawing some
conclusions and proposing possible future work.

2

Background

Operation decomposition in VDM

The starting point for the work given here is the treatment of operation decomposition in VDM
given in [Jones87, Jones90]. In these works a clear exposition of the underlying principles is
given through examples and a set of proof rules for verification of refinements. These rules
are proved correct with respect to a denotational semantics. We take on board the arguments
given there advocating the convenience of having postconditions relating before and after
states and do not reiterate those arguments here. The rules do not, however, explicitly handle
the frame of reference variables. An extension of the model is given in [Milne88], however,
the rules there are rather cumbersome and no attempt to justify them is made.

[AhKee89] is perhaps the most detailed treatment of operation decomposition in the VDM
style. A denotational semantics is given for a language that extends that of [Jones90] with
arrays, and procedures. A proof theory for this language is given and is shown to be sound
and relatively complete with respect to the denotational semantics. In order to cater for
blocks and procedures with static scoping, the usual Hoare triple is augmented by a syntactic
environment with static and dynamic components. The static part of the environment may
be compared with our set of read variables, and the work does indeed consider extending
and contracting this frame, however, it does not distinguish the read-only from the read-write
variables.

Other approaches

There is a large body of work stemming from [Dijkstra76] that considers verification of
programs in the framework of a weakest precondition semantics. Mostly, this work considers
only postconditions of one state which leads to some very elegant mathematics.

Some more recent works add specifications to the language bringing them closer to present
concerns. [Morris87] gives an elegant treatment with "prescriptions" which makes use of
higher ordinals to handle unbounded non-determinism. [Morgan86] includes a similar "spec
ification statement" and explicitly handles the writable variables and also postconditions of
two states. Many previous works are brought together in [Morgan88] and the central ideas are
presented in textbook form in [Morgan90] which gives a formalism for algorithm refinement
via a set of proof rules defining valid refinements. In this treatment, all state variables are
global with respect to read access and a single "frame" is given that denotes those variables
that are able to be written.

None of these treatments deal directly with the variables that are in read scope. They
assume a global state and carry around the scoping environment only implicitly. Thus the
local specification of a part of an operation given during the development is insufficient to
determine the valid implementations. For example, one has to look back up the development
tree to discover what variables are in scope, what invariants are in force etc.

[Back88] does consider the frame of free variables available for use in expressions and also
caters for specification statements through non-deterministic assignment statements. How-

3

ever, his treatment deals only with single state postconditions and does not distinguish the
read-only from the read-write variables. There the frame cannot contract during development.
This has the effect that x:=x is not refined by skip, since skip has a smaller read frame. Thus
this frame is somewhat different to the read frame considered in this paper.

Motivation

Two example operations are given that motivate the usefulness of a third frame. They both
act on the same state, which although very simple, is already complex enough to expose the
issues with which we wish to deal:

State :: a N
b N
c N

inv-State(a,b,c) 6.

a E {0,1} 1\

b~a!\

c E {1, 2}

A quick syntactic analysis of the clauses in the invariant shows us that the components a

and b are in some way "linked" whereas c is independent of a and b.

Example 1, choose.b

Let us consider the specification of an operation that writes b, say choose.b.

choose.b

ext rd b
-wr b

post true

Clearly, because of the invariant, the operation is not free to choose any b: N, rather it
needs to ensure that the invariant is maintained, i.e. b ~ a. So perhaps such an operation
specification should only be meaningful if it also has read access to a. On the other hand, it is
possible to implement the operation by b: = 0 which is a correct whatever the value of a, so
read access to a is not necessarily required by the implementation. In fact, even ignoring the
C!.ccess conditions, there are just two possible implementations of choose.b which preserve
the invariant, b: = a and b: = 0. Which implementations are valid depends on how we
interpret the read frame when an invariant is in force.

Let us consider the first of these alternatives. We will restrict what we consider to be a
well-formed operation so that state access is always "sensible" with respect to the invariant.

As a first cut, let us say that an operation must have read access to (at least) all fields
that appear in the same conjunct of the invariant that a write field appears in. Thus the

4

operation reads sufficient of the state to ensure that all the relevant clauses in the invariant
are maintained. (There is no need to consider those clauses not mentioning any writes since
they will not be affected by the operation.)

This resolves the problems with the example choose_b above which becomes:

choose_b'

ext rd a, b
wrb

post true

This is interpreted as if the relevant clauses, b :::; a and a E { 0, 1}, were added to the pre
and post conditions so the satisfiability criterion would then quantify over the read frame and
include the appropriate clauses of the invariant:

"---- "--

Va:N, b:N·aE{0,1}/\ b :::;a=> 3b:N·aE{0,1}/\b:Sa/\true

However, by restricting well-formedness in this way, we have lost some of the expressive
power in the language. Perhaps we really intended to specify an operation that maintained
the invariant but did not read a. That is, we meant that the only valid implementation should
be b: = 0.

Example 2, seLc

Now consider the operation specification:

set_c

ext rd b
wrc

post c E { b, b + 1}

This is a well-formed operation by the above criterion and does indeed specify a bona-fide
operation with two obvious implementations c: = b and c: = b + 1. But in order to know
that it is satisfiable (ie. that c E {1, 2}) we need the information relating to a that is given in
the first clause of the invariant. Furthermore, apart from the two obvious implementations, if
we consider the extra information about a given in the first clause of invariant, then c: = 1
is also a valid implementation.

Thus the "available information" for determining valid implementations must include all the
clauses that could give us any information about fields that appear in clauses with fields that
could be written. That is, we must take the transitive closure of the "appears in a clause with"
relation. This closure partitions the state into independent parts and in order to characterise
the possible implementations of the specified operation we may need the information from
the invariant about all fields that are "connected" to any field in frame. So for the operation

5

specification to have a well-defined meaning it must be able to look at all the parts of the
state connected to the variables that appear in its definition.

However, there is still good reason to keep the smaller read frame since it can give information
as to what implementations are intended to be valid. In this case, for example, although we
require access to a in order to ascertain what the valid implementations are, it is not intended
that c: = a should itself be a valid implementation, which would in fact be the case if the
read frame were extended to include a. Thus expanding the read frame to the include all
connected fields would change the meaning of the operation specification.

So the approach investigated in this paper, will be to carry around a third frame. This frame
plays the "syntactic" role of carrying the declarations of all fields related to the fields in the
read and write frames. The read and write frames are thus freed to play their "semantic"
role: to give information about the access permitted of valid implementations.

We will also localise those clauses of the invariant that are relevant to this frame and thus
make the operation definition independent of the state declaration yielding compositionality
as discussed earlier.

We show below that a suitable third frame can, in practice, be deduced syntactically from the
other parts of the operation together with the state definition. Thus its manipulation would
be expected to go on behind the scenes in a support tool for the process.

2 A Model of Operations with Frames

2.1 Operation Definitions

We have motivated the need for a third frame which I will simply call the frame, as opposed
to the reads and the writes. This frame must be an independent part of the state in a sense
which is defined below. In order to make the operation definition independent of the state,
it will also carry those clauses of the invariant that pertain to it. It is also shown below that
any invariant can be split into a conjunction of clauses, each conjunct pertaining solely to
one independent part of the state.

Thus an operation definition is composed of six parts: the fmme which carries the declaration
of all the variables that are in scope and binds all the free variables that appear in the rest of
the operation definition, the invaTiant which contains all the contextual information about
these variables1 , the Teads and wTdes which give information about access to the reference
variables that must be maintained by any implementation and the pTe and post which have
their usual meaning, that is as if the invariant were conjoined to them 2 •

1the typing information could be put here instead of in the frame and the whole treatment carried out in an
untyped logic

2The exposition in this paper does not deal with operations with parameters and results. Their treatment
can be considered independently of issues covered here or it can be subsumed within it by considering the
parameters as read only variables and the result as a write only variable.

6

OpDef .. frame map Id to Type ..
invariant Exp

reads Id-set
writes Id-set

pre Exp
post Exp

where

inv-OpDef(mk-OpDef(F, I, R, W, P, Q)) 6
R ~ dom(F) 1\

W ~ dom(F) 1\

I: Exp(dom(F))3 1\

P: Exp(dom(F)) 1\
""-----,--

Q: Exp(dom(F) U dom(F))

We do not insist on any relationship between R, Wand the free variables of P and Q.

It is also a requirement that a valid frame of an operation definition be an "independent part"
of the frame of any operation that it refines. This requirement will later form part of the
definition of the satisfaction relation but before we consider it in more detail we introduce
some notation.

2.2 Notation

Hooking

If S is any set of identifiers, say

S = {xa I a Ea}

~

then S is the set with each identifier in S distinguished in some way, with a ~ say. That
is,

S = { Xa I X a E S}

More generally if we want to distinguish just some of the members of S, those in S1 ~ S
say, then we write:

Similarly, if E is an expression with free variables in S, written

3This notation is explained in the next section.

7

E: Exp(S)

and S1 ~ S, then

Thus: .

Identity

We define a shorthand notation for saying that a set of variables are unchanged. Ids is simply
the conjunction of clauses each stating that a variable in S is unchanged.

I ds 6 1\ Xi = Xi
x,es

Quantification

Let F be a composite type

F :: h T1

fn Tn

and let S be a subset of the fields of F

Let E be an expression with free variables in S

then we use the notation

vs.E

to stand for the universal quantification of all the free variables from S, that is, as a shorthand
for

and similarly

L..- L.._

VS·E

for the correspondingly hooked formula.

8

Invariants

Since we will be analysing the role of invariants on composite types it will be convenient
to write them explicitly when we mean the type restricted by the invariant and leave the
undecorated type name to denote the "free" type. Thus

VFt I· E b. VF ·I => E

2.3 Independence of a part of the state

We will first give a "semantic" version of when two parts of a state are independent before
reverting to a syntactic one.

Definition

Let S be a subset of the fields of a composite type with invariant, F t I.

S ~ {Ji, · · • ,Jn}

Let T be the rest of the fields.

T = {Ji, ... ,fn}-S

ind
The part S of F is said to be an independent part, written S ~ F, if and only if, swapping
the S parts of two states that each satisfy the invariant maintains the invariant. That is if

"-- "-- "--S "-- T
VF, F · I A I {} I A I

This can be shown to follow from the following, more succinct, definition:

We can, of course, break the state into its independent parts by taking the finest partition that
respects independence. As stated earlier, legal frames must be independent parts of the state.

The following theorem states that a part is independent exactly when it is possible to write
the invariant in such a way that the independence of that part is syntactically obvious.

Theorem

A part S of composite type F t IF is an independent part of F, if and only if, there are
predicates Is: Exp(S) and Ir: Exp(F-S) such that

9

Proof

The proof proceeds by construction of the two required predicates. The key definition, the
restriction of the invariant to a part of the state, is given below. The proof then follows
easily by showing that the required predicates are the obvious restrictions of the invariant.
For brevity, details are not given here.

Definition

For a partS of composite type Ft Ip, define Is, the invariant restricted to S by

Is 6. :JF-S · Ip

With this definition the following corollary gives a criterion for independence.

Corollary

ind
S ~ F iff VS, F-S · Is 1\ IT {:} Ip

This criterion for independence is a little reminiscent of the notion of independent events
in probability theory: that is, that the probability of two events happening together is the
product of the probability of them each happening separately.

The definition of the restriction of an invariant owes something to the notion of hiding in
CSP.

It is easy to show that the syntactic condition for independence described in example 2, that
is, the closure of the relation "appears in the same clause as", is a sufficient condition for
independence. In practical cases, it is this syntactic condition that we are likely to use as it
generally yields a sufficiently fine partition of the state for refinement.

2.4 Satisfiability

Given that we have an operation specification with a frame that is an independent part of
the overall state and with the restricted invariant also given as part of the specification, it is
possible to consider satisfiability (and refinement) using only local information.

The standard satisfiability condition, roughly stated, says that: for any initial state satisfying
the precondition there must be a final state that satisfies the post condition. It can be stated
formally as follows:

Vu: Etinv ·:la-: Etinv ·]ire =? post

10

However this tells us nothing about the fact that the implementation must respect the access
conditions given by the read and write frames. How should the condition be generalised to
accommodate this information?

Our first attempt might be to simply quantify over the read and write frames, saying something
like "for all values of the reads there must exist possible values of the writes such that ... ".
However this is not correct since the invariant (and predicates) could mention variables
outside the read and write frames.

In fact, we require the choice of writes to be made without recourse to the value of things
outside the read frame and that this choice should be valid whatever these values actually
are. This idea can be captured formally simply by rearranging the order of quantification in
the formula.

We get a condition that is "scoped over" the frame but in which the quantifiers for the parts
inside and outside the reads have to be interspersed to reflect the fact that values assigned to
the writes can only depend on the part inside the reads.

For an operation mk-OpDef(F, I, R, W, P, Q) we get:

~ ~ .__
V R · 3W ·V F-R · 3F-W · P 1\ I :::} Q 1\ I 1\ IdF. w

The presence of IdF. w reflect the fact that any implementation must respect the write access
condition. The innermost quantifier can easily be removed by use of the identities in the last
clause yielding4

~ ~ "-- "-- .__ F- W "--F- W
V R · 3W ·V F-R · P 1\ I :::} Q 1\ I

The position in this formula of the existential quantification over W captures the fact that
the values given to the writes can depend on the reads but not on those fields outside the
reads. It brings to light the fact that the write frame is more than just a syntactic sugaring
for an addition of the appropriate clauses Xi = Xi to the postcondition.

2.5 Refinement

The generalisation of the definition of refinement5 to this model does not seem to present any
difficulties. Rather than attempt to give a comprehensive proof theory for refinement here, a
flavour of the treatment is given by stating a few rules that justify some valid refinements,
primarily focusing on those aspects that relate to the frame.

4 For variables outside the writes, where we know hooked and unhooked values are equal, we have the
freedom to use hooked or unhooked variables as we like. Unlike the standard usage, here we choose to use the
hooked names so we have hooked variables appearing for the whole frame whereas unhooked variables only
appear for the writes.

5based on a denotational semantics in the style of [Jones87].

11

Weaken pre and strengthen post

The rules for weakening the precondition and strengthening the postcondition contain no
surprises. They are the obvious extensions of the usual rules.

PAl\[=? Pc
(F,I,R, W,PA, Q) ~ (F,I,R, W,Pc, Q)

"--

p 1\ I 1\ Qc 1\ I 1\ Idp. w =? QA
(F,I,R, W,P, QA) [;;; (F,I,R, W,P, Qc)

Contract reads and writes

An implementation that achieves that specification whilst reading or writing fewer variables
than it might is obviously correct. Because the frame is unchanged, we can shrink the reads
and writes without worrying about variables becoming unquantified.

RA 2 Re
(F, I, RA, W, P, Q) [;;; (F,I, Re, W, P, Q)

WA 2 We
(F,I, R, WA, P, Q) [;;; (F,I, R, We, P, Q)

Contract frame

We can shrink the frame provided the new frame is an independent part of the old, the
invariant is restricted accordingly, and that no variable mentioned falls out of scope. This
last condition being captured by insisting that the new OpDef is well-formed.

ind
FA 2 Fe, (Fe, lpc, R, W, P, Q): OpDef

(FA,I,R, W,f, Q) [;;; (FcJFc,R, W,P, Q)

Expand frame

We can expand the frame, that is declare independent local variables. The new variables will
not appear in the abstract specification though they can later appear in the implementation.
Naturally, since they are to be used as local variables, they are available for reading and
writing.

FnS=<f
(F,I, R, W, P, Q) [;;; var v: Sin (F U S,I, R US, W US, P, Q) end

Expanding Reads and Writes

Having permitted expansion of the reads and writes by variables from outside the frame, we
have a choice as to whether to allow expansion of the writes within the frame provided we

12

ensure x = x for the new write variables. The choice corresponds to whether the intention
is that variables not in the writes should not be changed at any time during execution of the
program section under development, or whether they just have to be reset to their original
value by the end of the execution.

As we already have the possibility of expanding the reads and writes when the frame is
expanded, we will insist that access conditions given by reads and writes are "hard and fast".
Namely, that it is not possible to expand the reads and writes by variables that are already
in the frame6

•

Assignments

It is in the rule for assignments that the read and write frames are ultimately employed:
assignments can only be made to the write variables and the expression evaluated can only
refer to read variables. Assuming it is is well-typed7 , the assignment, x: = e, precisely
satisfies the postcondition,

thus we get the refinement rule

xE W,e:Exp(R),IdF-{x}l\li\P => (QAI)[efx,xfx]
(F,I,R, W,P, Q) C w:= e

3 Discussion

The motivation for the present work came from an intention to develop interactive tools
support for operation decomposition in the VDM style. There is much to be gained from
mechanical support for this process and there seems to be good reason to develop a formalism
with mechanical support specifically in mind since potential difficulties for pencil and paper
methods may become unimportant when such support is provided.

Compositionality is of central importance to a design methodology, and the extra complexity
of explicitly carrying the necessary contextual information is a small price to pay in the
definition of an abstract model of the development process. The syntactic clutter that results
is indeed an inconvenience for the presentation of such a model, but this in itself should
not be a discouragement since tools based on such a model could go a long way towards
handling this cumbersome baggage without distracting the user. Furthermore, localising the
state definition to the operation specifications has the potential advantage of allowing more
general data reifications than permitted by a retrieve function between global state definitions.

6 This choice means that the model could include a primitive fonn of shared-state concurrency though that
matter is not gone into here as it not the subject of this paper.

7 We also assume the definedness of e

13

As pointed out earlier, the interspersing of the universal and existential quantifiers over read
and write frames in the satisfiablity obligation reflects the fact that the read and write frames
play more than a purely syntactic role in the decomposition process. The third frame "scopes"
the semantics of the operation specification and gives rise to a degree of freedom in the choice
of what interpretation to give to the operation outside this frame. Lamport points out that an
important decision in the design of his Temporal Logic of Actions, was that the semantics
should be that "all can change" unlyss otherwise stated. This permits more elegant laws
concerning the concurrency combinators. Generally the opposite approach has been taken
in the development methodologies for sequential programs. There may be some benefit in
examining this incongruity further. For the sake of modularity, for instance, there may be
some benefit in having a frame, outside of which we assume nothing.

The separation of the syntactic and semantic roles of the two traditional frames can lead to
some "interesting" specifications. Why should a specification be constrained to deal with
the same variables as the implementation? Although there is a danger of introducing some
"surprise" refinements in this way, the specifier is always at liberty to coalesce the two frames
if so desired. As well as the obvious implications in the treatment of shared-state concurrency,
there may also be the possibility of specifying some forms of "security" requirements in this
way.

At the time of writing, only a few examples have been tried in the framework presented here,
this is the subject of ongoing work by the author.

The presentation of a set of refinement rules, each of which deals with the manipulation of
one part of the operation specification, begs the question as to whether all valid refinements
are justifiable through a series of such orthogonal steps or whether sometimes we need to
alter more than one part at once. If this were so, then there would be a need for some rules
that combine valid refinements to justify others.

Acknowledgements

I would like to acknowledge the considerable contribution of my colleagues to this work: I
am grateful to my supervisor professor Cliff Jones for providing the framework upon which
this is all based and to my colleagues at RAL, in particular the two Brians, Ritchie and
Matthews, and Chris Reade who, together and separately, have helped to clarify these ideas
as they are represented both in my mind and on the page.

References

[AhKee89] Operation Decomposition Proof Obligations for Blocks and Procedures. J. A. Ah
Kee. Ph.D. Thesis. University of Manchester. 1989.

[Back88] A Calculus of Refinements for Program Derivations. R.J.R. Back. Acta Informatica
(1988).

[Dijkstra76] A Discipline of Programming. E.W.Dijkstra, Prentice-Hall (1976).

14

[Jones87] VDM Proof Obligations and their Justification C.B.Jones, Proceedings of the VDM
'87 Symposium, LNCS 252, Springer-Verlag(1987).

[Jones90] C.B.Jones, Systematic Software Development using VDM (second edition) Prentice
Hall, 1990.

[Milne88] Proof Rules for VDM Statements. R. Milne, Proceedings of the VDM '88 Sym
posium, LNCS 328, Springer-Verlag(1988).

[Morgan86] The Specification Statement. C. Morgan. TOPLAS 10, 3 (July 1988).

[Morgan88] On the Refinement Calculus. C. Morgan, K. Robinson and P. Gardiner. Oxford
University Technical Monograph, PRG-70, 1988.

[Morgan90] Programming from Specifications C. Morgan, Prentice Hall, 1990.

[Morris87] A theoretical basis for stepwise refinement and the programming calculus. J.
Morris, Sci.Comput. Programming, 9 287-306 (1987).

15

