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Abstract 

The read and write frames of reference variables used in the VDM style of operation 
decomposition serve two purposes: semantically, they record information as to what 
access to the state a valid implementation of the operation can be allowed to make; 
furthermore, in a more syntactic vein, they serve to bind the variables that occur in the 
predicates of the operation specification. The use of the frames in these two roles is 
examined, in particular for the case where there is an invariant on the state, and it is 
argued that they can be usefully distinguished. 

A model for operation specification and refinement is developed that explicitly han­
dles changes in the frames. In order to handle state invariants, it is necessary to define 
when a part of the state is independent of the rest with respect to the invariant that 
is in force. A semantic definition and syntactic criterion for independence are given. 
This idea of partitioning the state into independent parts with respect to the invariant is 
developed in connection with notions of satisfaction and satisfiability. 

1 Introduction 

There is little doubt that, if we are to successfully manage the building of ever more complex 
software systems, the ability to break down the task in hand, separately tackle each sub-task, 
and then bring these separate solutions together with confidence that the whole will perfonn 
successfully, is crucial. Thus when developing a fonnalism of software specification and 
refinement the issue of compositionality must be central. 

Following the process of top-down design, at any stage we have a specification of a system 
component and the design task is to develop a component that satisfies that specification. 
Typically the design will be the composition of several smaller components that, at this stage, 
will only be specified and which will later be developed independently themselves. 

We can state the problem as: 

1 



If we require that a specification S is to be refined by a design D, written 

S~D 

then we can build a high level design which states that D should be some composition, C, 
of components S1 ••• Sn which are themselves only specified at this stage, 

such that, if each component is itself refined by a design, 

then the original specification must be satisfied by the composition of those designs. 

Compositionality states that the development of each Si should be able to proceed indepen­
dently of the rest. 

This paper considers two issues that arise when we examine the matter of compositionality 
for the process of algorithm refinement taking as a starting point the VDM style of operation 
decomposition given, for example, in [Jones90]. The first consideration is that each sub­
development, Si ~ Di, should be truly independent of the rest. That is, that sufficient 
information should be contained in the S, to characterise its valid implementations, particular 
attention being paid to the case where there is an invariant that relates the possible values 
of components of the state. The second issue is the matter of state access: the so called 
frame problem addressed by the "externals" clauses in the operation definition. Typically, 
each of the smaller components, S,, involves only part of the state available to S, so in the 
development of each S,, we want only to concern ourselves with that part and not have to 
look outside for contextual information. In VDM, the frame of reference of an operation is 
given explicitly by the read and write access conditions. 

Of course the two issues are related since what is a sensible frame for an operation depends 
crucially on any invariant that may be in force on the state. The interaction of these two 
concerns motivates us to distinguish two roles for the read and write frames and the separation 
of these roles yields a more expressive notation. This extra expressive power comes at the 
expense of some prolixity - a third frame is introduced into the definition of an operation, 
however the model proposed is envisaged as the basis for machine based support and it is 
anticipated that the extra complexity could be handled automatically and only come to the 
fore when explicitly relevant. 

The rest of this section gives an outline of the background to the work presented here and 
some motivating examples for the model proposed. Section 2 defines a model for state-based 
operations that explicitly handles frames and invariants and makes a definition of when 
a part of the state is independent with respect to the invariant which is then used in the 
examination of the role that the read and write frames play in satis:fiability and refinement. 
The third section briefly considers the present work in a broader perspective, drawing some 
conclusions and proposing possible future work. 
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Background 

Operation decomposition in VDM 

The starting point for the work given here is the treatment of operation decomposition in VDM 
given in [Jones87, Jones90]. In these works a clear exposition of the underlying principles is 
given through examples and a set of proof rules for verification of refinements. These rules 
are proved correct with respect to a denotational semantics. We take on board the arguments 
given there advocating the convenience of having postconditions relating before and after 
states and do not reiterate those arguments here. The rules do not, however, explicitly handle 
the frame of reference variables. An extension of the model is given in [Milne88], however, 
the rules there are rather cumbersome and no attempt to justify them is made. 

[AhKee89] is perhaps the most detailed treatment of operation decomposition in the VDM 
style. A denotational semantics is given for a language that extends that of [Jones90] with 
arrays, and procedures. A proof theory for this language is given and is shown to be sound 
and relatively complete with respect to the denotational semantics. In order to cater for 
blocks and procedures with static scoping, the usual Hoare triple is augmented by a syntactic 
environment with static and dynamic components. The static part of the environment may 
be compared with our set of read variables, and the work does indeed consider extending 
and contracting this frame, however, it does not distinguish the read-only from the read-write 
variables. 

Other approaches 

There is a large body of work stemming from [Dijkstra76] that considers verification of 
programs in the framework of a weakest precondition semantics. Mostly, this work considers 
only postconditions of one state which leads to some very elegant mathematics. 

Some more recent works add specifications to the language bringing them closer to present 
concerns. [Morris87] gives an elegant treatment with "prescriptions" which makes use of 
higher ordinals to handle unbounded non-determinism. [Morgan86] includes a similar "spec­
ification statement" and explicitly handles the writable variables and also postconditions of 
two states. Many previous works are brought together in [Morgan88] and the central ideas are 
presented in textbook form in [Morgan90] which gives a formalism for algorithm refinement 
via a set of proof rules defining valid refinements. In this treatment, all state variables are 
global with respect to read access and a single "frame" is given that denotes those variables 
that are able to be written. 

None of these treatments deal directly with the variables that are in read scope. They 
assume a global state and carry around the scoping environment only implicitly. Thus the 
local specification of a part of an operation given during the development is insufficient to 
determine the valid implementations. For example, one has to look back up the development 
tree to discover what variables are in scope, what invariants are in force etc. 

[Back88] does consider the frame of free variables available for use in expressions and also 
caters for specification statements through non-deterministic assignment statements. How-
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ever, his treatment deals only with single state postconditions and does not distinguish the 
read-only from the read-write variables. There the frame cannot contract during development. 
This has the effect that x:=x is not refined by skip, since skip has a smaller read frame. Thus 
this frame is somewhat different to the read frame considered in this paper. 

Motivation 

Two example operations are given that motivate the usefulness of a third frame. They both 
act on the same state, which although very simple, is already complex enough to expose the 
issues with which we wish to deal: 

State :: a N 
b N 
c N 

inv-State(a,b,c) 6. 

a E {0,1} 1\ 

b~a!\ 

c E {1, 2} 

A quick syntactic analysis of the clauses in the invariant shows us that the components a 

and b are in some way "linked" whereas c is independent of a and b. 

Example 1, choose.b 

Let us consider the specification of an operation that writes b, say choose.b. 

choose.b 

ext rd b 
-wr b 

post true 

Clearly, because of the invariant, the operation is not free to choose any b: N, rather it 
needs to ensure that the invariant is maintained, i.e. b ~ a. So perhaps such an operation 
specification should only be meaningful if it also has read access to a. On the other hand, it is 
possible to implement the operation by b: = 0 which is a correct whatever the value of a, so 
read access to a is not necessarily required by the implementation. In fact, even ignoring the 
C!.ccess conditions, there are just two possible implementations of choose.b which preserve 
the invariant, b: = a and b: = 0. Which implementations are valid depends on how we 
interpret the read frame when an invariant is in force. 

Let us consider the first of these alternatives. We will restrict what we consider to be a 
well-formed operation so that state access is always "sensible" with respect to the invariant. 

As a first cut, let us say that an operation must have read access to (at least) all fields 
that appear in the same conjunct of the invariant that a write field appears in. Thus the 
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operation reads sufficient of the state to ensure that all the relevant clauses in the invariant 
are maintained. (There is no need to consider those clauses not mentioning any writes since 
they will not be affected by the operation.) 

This resolves the problems with the example choose_b above which becomes: 

choose_b' 

ext rd a, b 
wrb 

post true 

This is interpreted as if the relevant clauses, b :::; a and a E { 0, 1}, were added to the pre 
and post conditions so the satisfiability criterion would then quantify over the read frame and 
include the appropriate clauses of the invariant: 

"---- "--

Va:N, b:N·aE{0,1}/\ b :::;a=> 3b:N·aE{0,1}/\b:Sa/\true 

However, by restricting well-formedness in this way, we have lost some of the expressive 
power in the language. Perhaps we really intended to specify an operation that maintained 
the invariant but did not read a. That is, we meant that the only valid implementation should 
be b: = 0. 

Example 2, seLc 

Now consider the operation specification: 

set_c 

ext rd b 
wrc 

post c E { b, b + 1} 

This is a well-formed operation by the above criterion and does indeed specify a bona-fide 
operation with two obvious implementations c: = b and c: = b + 1. But in order to know 
that it is satisfiable (ie. that c E {1, 2}) we need the information relating to a that is given in 
the first clause of the invariant. Furthermore, apart from the two obvious implementations, if 
we consider the extra information about a given in the first clause of invariant, then c: = 1 
is also a valid implementation. 

Thus the "available information" for determining valid implementations must include all the 
clauses that could give us any information about fields that appear in clauses with fields that 
could be written. That is, we must take the transitive closure of the "appears in a clause with" 
relation. This closure partitions the state into independent parts and in order to characterise 
the possible implementations of the specified operation we may need the information from 
the invariant about all fields that are "connected" to any field in frame. So for the operation 
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specification to have a well-defined meaning it must be able to look at all the parts of the 
state connected to the variables that appear in its definition. 

However, there is still good reason to keep the smaller read frame since it can give information 
as to what implementations are intended to be valid. In this case, for example, although we 
require access to a in order to ascertain what the valid implementations are, it is not intended 
that c: = a should itself be a valid implementation, which would in fact be the case if the 
read frame were extended to include a. Thus expanding the read frame to the include all 
connected fields would change the meaning of the operation specification. 

So the approach investigated in this paper, will be to carry around a third frame. This frame 
plays the "syntactic" role of carrying the declarations of all fields related to the fields in the 
read and write frames. The read and write frames are thus freed to play their "semantic" 
role: to give information about the access permitted of valid implementations. 

We will also localise those clauses of the invariant that are relevant to this frame and thus 
make the operation definition independent of the state declaration yielding compositionality 
as discussed earlier. 

We show below that a suitable third frame can, in practice, be deduced syntactically from the 
other parts of the operation together with the state definition. Thus its manipulation would 
be expected to go on behind the scenes in a support tool for the process. 

2 A Model of Operations with Frames 

2.1 Operation Definitions 

We have motivated the need for a third frame which I will simply call the frame, as opposed 
to the reads and the writes. This frame must be an independent part of the state in a sense 
which is defined below. In order to make the operation definition independent of the state, 
it will also carry those clauses of the invariant that pertain to it. It is also shown below that 
any invariant can be split into a conjunction of clauses, each conjunct pertaining solely to 
one independent part of the state. 

Thus an operation definition is composed of six parts: the fmme which carries the declaration 
of all the variables that are in scope and binds all the free variables that appear in the rest of 
the operation definition, the invaTiant which contains all the contextual information about 
these variables1 , the Teads and wTdes which give information about access to the reference 
variables that must be maintained by any implementation and the pTe and post which have 
their usual meaning, that is as if the invariant were conjoined to them 2 • 

1the typing information could be put here instead of in the frame and the whole treatment carried out in an 
untyped logic 

2The exposition in this paper does not deal with operations with parameters and results. Their treatment 
can be considered independently of issues covered here or it can be subsumed within it by considering the 
parameters as read only variables and the result as a write only variable. 
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OpDef .. frame map Id to Type .. 
invariant Exp 

reads Id-set 
writes Id-set 

pre Exp 
post Exp 

where 

inv-OpDef(mk-OpDef(F, I, R, W, P, Q)) 6 
R ~ dom(F) 1\ 

W ~ dom(F) 1\ 

I: Exp(dom(F))3 1\ 

P: Exp( dom(F)) 1\ 
""-----,--

Q: Exp( dom(F) U dom(F)) 

We do not insist on any relationship between R, Wand the free variables of P and Q. 

It is also a requirement that a valid frame of an operation definition be an "independent part" 
of the frame of any operation that it refines. This requirement will later form part of the 
definition of the satisfaction relation but before we consider it in more detail we introduce 
some notation. 

2.2 Notation 

Hooking 

If S is any set of identifiers, say 

S = {xa I a Ea} 

~ 

then S is the set with each identifier in S distinguished in some way, with a ~ say. That 
is, 

S = { Xa I X a E S} 

More generally if we want to distinguish just some of the members of S, those in S1 ~ S 
say, then we write: 

Similarly, if E is an expression with free variables in S, written 

3This notation is explained in the next section. 
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E: Exp(S) 

and S1 ~ S, then 

Thus: . 

Identity 

We define a shorthand notation for saying that a set of variables are unchanged. Ids is simply 
the conjunction of clauses each stating that a variable in S is unchanged. 

I ds 6 1\ Xi = Xi 
x,es 

Quantification 

Let F be a composite type 

F :: h T1 

fn Tn 

and let S be a subset of the fields of F 

Let E be an expression with free variables in S 

then we use the notation 

vs.E 

to stand for the universal quantification of all the free variables from S, that is, as a shorthand 
for 

and similarly 

L..- L.._ 

VS·E 

for the correspondingly hooked formula. 
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Invariants 

Since we will be analysing the role of invariants on composite types it will be convenient 
to write them explicitly when we mean the type restricted by the invariant and leave the 
undecorated type name to denote the "free" type. Thus 

VFt I· E b. VF ·I => E 

2.3 Independence of a part of the state 

We will first give a "semantic" version of when two parts of a state are independent before 
reverting to a syntactic one. 

Definition 

Let S be a subset of the fields of a composite type with invariant, F t I. 

S ~ {Ji, · · • ,Jn} 

Let T be the rest of the fields. 

T = {Ji, ... ,fn}-S 

ind 
The part S of F is said to be an independent part, written S ~ F, if and only if, swapping 
the S parts of two states that each satisfy the invariant maintains the invariant. That is if 

"-- "-- "--S "-- T 
VF, F · I A I {} I A I 

This can be shown to follow from the following, more succinct, definition: 

We can, of course, break the state into its independent parts by taking the finest partition that 
respects independence. As stated earlier, legal frames must be independent parts of the state. 

The following theorem states that a part is independent exactly when it is possible to write 
the invariant in such a way that the independence of that part is syntactically obvious. 

Theorem 

A part S of composite type F t IF is an independent part of F, if and only if, there are 
predicates Is: Exp(S) and Ir: Exp(F-S) such that 
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Proof 

The proof proceeds by construction of the two required predicates. The key definition, the 
restriction of the invariant to a part of the state, is given below. The proof then follows 
easily by showing that the required predicates are the obvious restrictions of the invariant. 
For brevity, details are not given here. 

Definition 

For a partS of composite type Ft Ip, define Is, the invariant restricted to S by 

Is 6. :JF-S · Ip 

With this definition the following corollary gives a criterion for independence. 

Corollary 

ind 
S ~ F iff VS, F-S · Is 1\ IT {:} Ip 

This criterion for independence is a little reminiscent of the notion of independent events 
in probability theory: that is, that the probability of two events happening together is the 
product of the probability of them each happening separately. 

The definition of the restriction of an invariant owes something to the notion of hiding in 
CSP. 

It is easy to show that the syntactic condition for independence described in example 2, that 
is, the closure of the relation "appears in the same clause as", is a sufficient condition for 
independence. In practical cases, it is this syntactic condition that we are likely to use as it 
generally yields a sufficiently fine partition of the state for refinement. 

2.4 Satisfiability 

Given that we have an operation specification with a frame that is an independent part of 
the overall state and with the restricted invariant also given as part of the specification, it is 
possible to consider satisfiability (and refinement) using only local information. 

The standard satisfiability condition, roughly stated, says that: for any initial state satisfying 
the precondition there must be a final state that satisfies the post condition. It can be stated 
formally as follows: 

Vu: Etinv ·:la-: Etinv ·]ire =? post 
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However this tells us nothing about the fact that the implementation must respect the access 
conditions given by the read and write frames. How should the condition be generalised to 
accommodate this information? 

Our first attempt might be to simply quantify over the read and write frames, saying something 
like "for all values of the reads there must exist possible values of the writes such that ... ". 
However this is not correct since the invariant (and predicates) could mention variables 
outside the read and write frames. 

In fact, we require the choice of writes to be made without recourse to the value of things 
outside the read frame and that this choice should be valid whatever these values actually 
are. This idea can be captured formally simply by rearranging the order of quantification in 
the formula. 

We get a condition that is "scoped over" the frame but in which the quantifiers for the parts 
inside and outside the reads have to be interspersed to reflect the fact that values assigned to 
the writes can only depend on the part inside the reads. 

For an operation mk-OpDef(F, I, R, W, P, Q) we get: 

~ ~ .__ 
V R · 3W ·V F-R · 3F-W · P 1\ I :::} Q 1\ I 1\ IdF. w 

The presence of IdF. w reflect the fact that any implementation must respect the write access 
condition. The innermost quantifier can easily be removed by use of the identities in the last 
clause yielding4 

~ ~ "-- "-- .__ F- W "--F- W 
V R · 3W ·V F-R · P 1\ I :::} Q 1\ I 

The position in this formula of the existential quantification over W captures the fact that 
the values given to the writes can depend on the reads but not on those fields outside the 
reads. It brings to light the fact that the write frame is more than just a syntactic sugaring 
for an addition of the appropriate clauses Xi = Xi to the postcondition. 

2.5 Refinement 

The generalisation of the definition of refinement5 to this model does not seem to present any 
difficulties. Rather than attempt to give a comprehensive proof theory for refinement here, a 
flavour of the treatment is given by stating a few rules that justify some valid refinements, 
primarily focusing on those aspects that relate to the frame. 

4 For variables outside the writes, where we know hooked and unhooked values are equal, we have the 
freedom to use hooked or unhooked variables as we like. Unlike the standard usage, here we choose to use the 
hooked names so we have hooked variables appearing for the whole frame whereas unhooked variables only 
appear for the writes. 

5based on a denotational semantics in the style of [Jones87]. 
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Weaken pre and strengthen post 

The rules for weakening the precondition and strengthening the postcondition contain no 
surprises. They are the obvious extensions of the usual rules. 

PAl\[=? Pc 
(F,I,R, W,PA, Q) ~ (F,I,R, W,Pc, Q) 

"--

p 1\ I 1\ Qc 1\ I 1\ Idp. w =? QA 
(F,I,R, W,P, QA) [;;; (F,I,R, W,P, Qc) 

Contract reads and writes 

An implementation that achieves that specification whilst reading or writing fewer variables 
than it might is obviously correct. Because the frame is unchanged, we can shrink the reads 
and writes without worrying about variables becoming unquantified. 

RA 2 Re 
(F, I, RA, W, P, Q) [;;; (F,I, Re, W, P, Q) 

WA 2 We 
(F,I, R, WA, P, Q) [;;; (F,I, R, We, P, Q) 

Contract frame 

We can shrink the frame provided the new frame is an independent part of the old, the 
invariant is restricted accordingly, and that no variable mentioned falls out of scope. This 
last condition being captured by insisting that the new OpDef is well-formed. 

ind 
FA 2 Fe, (Fe, lpc, R, W, P, Q): OpDef 

(FA,I,R, W,f, Q) [;;; (FcJFc,R, W,P, Q) 

Expand frame 

We can expand the frame, that is declare independent local variables. The new variables will 
not appear in the abstract specification though they can later appear in the implementation. 
Naturally, since they are to be used as local variables, they are available for reading and 
writing. 

FnS=<f 
(F,I, R, W, P, Q) [;;; var v: Sin (F U S,I, R US, W US, P, Q) end 

Expanding Reads and Writes 

Having permitted expansion of the reads and writes by variables from outside the frame, we 
have a choice as to whether to allow expansion of the writes within the frame provided we 
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ensure x = x for the new write variables. The choice corresponds to whether the intention 
is that variables not in the writes should not be changed at any time during execution of the 
program section under development, or whether they just have to be reset to their original 
value by the end of the execution. 

As we already have the possibility of expanding the reads and writes when the frame is 
expanded, we will insist that access conditions given by reads and writes are "hard and fast". 
Namely, that it is not possible to expand the reads and writes by variables that are already 
in the frame6

• 

Assignments 

It is in the rule for assignments that the read and write frames are ultimately employed: 
assignments can only be made to the write variables and the expression evaluated can only 
refer to read variables. Assuming it is is well-typed7 , the assignment, x: = e, precisely 
satisfies the postcondition, 

thus we get the refinement rule 

xE W,e:Exp(R),IdF-{x}l\li\P => (QAI)[efx,xfx] 
(F,I,R, W,P, Q) C w:= e 

3 Discussion 

The motivation for the present work came from an intention to develop interactive tools 
support for operation decomposition in the VDM style. There is much to be gained from 
mechanical support for this process and there seems to be good reason to develop a formalism 
with mechanical support specifically in mind since potential difficulties for pencil and paper 
methods may become unimportant when such support is provided. 

Compositionality is of central importance to a design methodology, and the extra complexity 
of explicitly carrying the necessary contextual information is a small price to pay in the 
definition of an abstract model of the development process. The syntactic clutter that results 
is indeed an inconvenience for the presentation of such a model, but this in itself should 
not be a discouragement since tools based on such a model could go a long way towards 
handling this cumbersome baggage without distracting the user. Furthermore, localising the 
state definition to the operation specifications has the potential advantage of allowing more 
general data reifications than permitted by a retrieve function between global state definitions. 

6 This choice means that the model could include a primitive fonn of shared-state concurrency though that 
matter is not gone into here as it not the subject of this paper. 

7 We also assume the definedness of e 
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As pointed out earlier, the interspersing of the universal and existential quantifiers over read 
and write frames in the satisfiablity obligation reflects the fact that the read and write frames 
play more than a purely syntactic role in the decomposition process. The third frame "scopes" 
the semantics of the operation specification and gives rise to a degree of freedom in the choice 
of what interpretation to give to the operation outside this frame. Lamport points out that an 
important decision in the design of his Temporal Logic of Actions, was that the semantics 
should be that "all can change" unlyss otherwise stated. This permits more elegant laws 
concerning the concurrency combinators. Generally the opposite approach has been taken 
in the development methodologies for sequential programs. There may be some benefit in 
examining this incongruity further. For the sake of modularity, for instance, there may be 
some benefit in having a frame, outside of which we assume nothing. 

The separation of the syntactic and semantic roles of the two traditional frames can lead to 
some "interesting" specifications. Why should a specification be constrained to deal with 
the same variables as the implementation? Although there is a danger of introducing some 
"surprise" refinements in this way, the specifier is always at liberty to coalesce the two frames 
if so desired. As well as the obvious implications in the treatment of shared-state concurrency, 
there may also be the possibility of specifying some forms of "security" requirements in this 
way. 

At the time of writing, only a few examples have been tried in the framework presented here, 
this is the subject of ongoing work by the author. 

The presentation of a set of refinement rules, each of which deals with the manipulation of 
one part of the operation specification, begs the question as to whether all valid refinements 
are justifiable through a series of such orthogonal steps or whether sometimes we need to 
alter more than one part at once. If this were so, then there would be a need for some rules 
that combine valid refinements to justify others. 
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