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ABSTRACT 
In this work, a formalism for the estimation of the response functions from a mixed 

order (linear + non-linear) system, recently developed by the authors and presented in 

companion papers, is employed to identify the response functions of a non-linear electrical 

resonator circuit. Electrical resonator circuits of the type used in this work have previously 

been employed to investigate the period doubling route to chaos and the experimental 

verification of theoretically predicted universal constants. In this work we follow the same 

experimental procedure of these previous investigators. First and second order response 

functions are estimated from the time series of the driving voltage and the voltage across the 

LC components, collected from the circuit. These estimated response functions are then 

employed to predict the voltage across the LC components of the circuit, for a range of 

different driving frequencies and voltage amplitudes for a sinusoidal input signal, and for a 

random noise input signal. This work demonstrates that a single set of response functions can 

characterise a wide area of the phase space of the circuit, and so also demonstrates the 

applicability of the input-output representation, known as the Volterra series, to a wide class 

of systems which exhibit non-linear phenomena. 
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INTRODUCTION 
There exists a considerable amount of work in the literature on the effects of non­

linearity in physical systems. However, the detailed analysis of the experimental time series 

from nonlinear systems remains an outstanding problem. Consequently this is an important 

issue, which has an impact in many areas of science and engineering. Most of the techniques 

that are currently employed to analyse data from these systems are based on the methods 

developed for the analysis of time series data from linear systems, for example, the linear 

correlation function, and it's Fourier transform, the spectral density. Even though techniques 

exist that can estimate the non-linear terms, these require stringent approximations in order to 

simplify the analysis. For instance in maximum likelihood methods, the order and form of the 

model must be selected before the analysis commences, as the number of parameters that 

may be fitted is severely limited. 

It has long been known that for a linear time-invariant system the first order impulse 

response function represents a complete description of the phenomenon. This representation 

is based upon a characterisation of the physical system in terms of it's observables. It is 

equally important to realise that for many non-linear phenomena a set of non-linear response 

functions also offer a complete description of the physcial process. The generalisation of the 

well known linear convolution equation is known as the Volterra series [1,2], first employed 

by Wiener [3;4] to characterise the input-output behaviour of non-linear systems. In this 

generalisation, the causal relationship between the input time series ( x(t)} and the output 

time series {y(t)} is expressed in terms of a set of response functions {hlt1, ••• ;ti), i=l,N}, 

where N and J.1 are, respectively, the order and the finite length of the memory, of the non­

linear process, and may be written, for discrete data as, 

N J.1 J.1 n 
y(t) = I 1 L ..... L hx .. xy<t1;t2, .. .. ,tn) TI x(t-ti) (1) 

n=l n! 1:1 =0 't0 =0 i= 1 

This is an input-output 'black box' representation of a system, where the response 

functions or Volterra kernels, hn('t1,t2, .... ,'tn), characterise the system, and where t denotes 

time and the 'ti's denote time delay with respect to the time t. The values of the Volterra 

kernels represent those finite amplitude finite memory impulse response functions that 

describe the nonlinear system in terms of its physical observables, and are linked to the usual 

internal description approach, for example in the form of differential equations, through the 

realisation process. This characterisation is a localized model which interrelates the 

instantaneous voltages to the response or time averaged Green's functions of the circuit. It is a 

localized model in that a point, in the phase space, was selected and the nonlinear properties 

of the circuit, at that point, estimated. These nonlinear relationships were then used to predict 

the behaviour of the circuit at other points in the phase space of the circuit. In principle a 

global model may be estimated at any given point, however this is not usually done in 

practice. 
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In. the first two papers of this series [5,6], a formalism was developed for the 

estimation of the non-linear response functions from an analysis of the experimental time 

series data for the mixed [5] and isolated [6] order cases. This formalism overcomes the need 

to use the delta functional approximations that have previously been applied to simplify the 

multi-dimensional convolution integrals, in order to analyse time series from non-linear 

systems. These include the use of special input sequences, for example a sinusoidal input or 

white noise, or the direct interaction approximation (i.e the response functions between 

modes are assumed to be of a dirac delta functional form), applied to turbulent flow by 

Kraichnan [7]. In this work, this formalism is applied to analyse the properties of an 

electronic resonator circuit, which displays both non-linear and chaotic behaviour. 

Non-linear electrical resonators are known to be a valuable means to experimentally 

investigate the properties of dynamic non-linear systems, due to the simplicity of the system 

and the richness of the observed behaviour [8]. Circuits of this type have been used to 

compare the measured universal scaling parameters and the order of appearance of periodic 

windows from within chaos [8,9], with those predicted by theory [10]. Other investigators 

have experimentally determined 'phase diagrams' [11,12], in which the distinct responses of 

the resonator are associated with different 'phases' or regions of the phase space. In these 

experiments the circuit has been driven with periodic functions close to the resonant 

frequency of the circuit. In this paper we report a set of response function values, determined 

by our formalism, of an electrical resonator circuit using periodic driving functions. 

EXPERIMENT 

The non-linear resonator circuit analysed in this work is a series array of a resistor, 

inductor and capacitor (RLC), in which the capacitor, a Motorola MV2108 variactor diode, is 

the non-linear component. This diode has a non-linear charge-voltage characteristic as it's 

capacitance varies as a function of the voltage across it. The resonator was driven, first 

sinusoidally by a AIRMEC 304 frequency synthesizer with a output impedence of 50 n, and 

secondly by a CEL Instruments 213 random noise generator. The voltage across the capacitor 

and inductor components was considered as the output of the circuit, as in previous 

experiments using a circuit of this type [8,12], and was recorded using a Gould DS01604 

20 MHz oscilloscope. The resonator circuit was as shown in reference [8], and the values of 

the component used were, the resistance 180Q, the inductance l20J.1.H and the capacitance of 

the diode is given by equation (2). An analysis was performed on this output signal in the 

frequency domain using a linear spectral analyzer. The time series voltage across the LC 

components, along with the time series of the driving voltage signal to the circuit, were 

monitored by the Gould digital storage oscilloscope. The use of this digital storage 

oscilloscope enabled samples of the time series of the input and output signals to be 

collected, and downloaded to a Personnal Computer (PC). The downloaded time series in 
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binary format, from each experiment, were then converted to ASCII format and transfered to 

a Cray X/MP-416 for analysis. 

At low drive voltages the circuit behaved as a linear RLC circuit, as the drive voltage 

was increased, the circuit displayed the frequency multiplications observed by previous 

investigators [8,9,12]. As in previous investigations the bifurcation mode or 'phase' could be 

determined from displaying the drive voltage versus the output signal on the oscilloscope in 

the x-y mode and from the power spectral density of the time series displayed on the spectral 

analyser. The Lissajou figures displayed on the oscilloscope contained a number of loops 

equal to the bifurcation mode or 'phase' excited. Once a particular bifurcation mode had been 

established, the real time input and output voltage signals were then captured by the digital 

oscilloscope, stored on the PC, transfered and analysed using the formalism, to estimate the 

linear and non-linear response functions of the resonator circuit. 

BACKGROUND THEORY 
The variactor diode which is the nonlinear element of the circuit has a capacitance 

which varies as a function of the voltage across it, such that under reverse voltage, the 

voltage across the diode, V c• is given by, 

VC = q 

C(Vc) 

where the capacitance C(V c) is, 

C(Vc) = Co ----
(1- VC /<!>)fl 

(2) 

where C0 = 80pF, <1> = 0.6V is the contact potential, and Jl is the junction gradient, which 

varies from 0.5 for an abrupt junction to 0.33 for a graded junction. Under forward voltage, 

the vari~ctor behaves like a normal conducting diode. 

The equation governing the circuit can be considered to be roughly that of a damped 

harmonic oscillator [15], 

d2q + a(q) dq + f(q) = Vit) - -
dt2 dt 

where a(q) and f(q) are, respectively, the nonlinear damping and restoring forces of the 

circuit, and where V it) is the driving voltage. The motion of the charge carriers in the diode 

can be thought of as being analogous to a very soft elastic system with dissipation, thus as the 

system is driven harder, either by increasing the amplitude or frequency, their motion 

becomes locked into a sequence of sub-harmonics of the frequency of the drive voltage. 

These bifurcations represent the states which dissipate the minimum amount of energy for the 

system. At the end of the bifurcation sequence is the onset of chaos which is suggested to 

have a nonstationary and unstable family of chaotic solutions [14]. This implies that different 

regions of the phase space are governed by different families of solutions each with it's own 
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equations of motion. In this scenario there is no global solution to the motion of the charge 

carriers. 

It has also been suggested by various authors [8,9,11,12,15] that the successive 

extrema of the observed voltages may be modelled by a nonlinear return map of the form, 

Xn+t = f(Xn,p) - JXn (3) 

where p is a set of parameters that can be determined empirically from the data, and J is a 

determinant which corresponds to the dissipation per cycle, and when J:;t() then the system 

may experience hysteresis [15]. Equation (3) is a nonlinear map between successive extrema 

of the sequence and assumes there is no noise in the process. Equations of this form may be 

readily solved [16], however there is noise in all experimental situations, and the return map 

should be written as, 

Xn+l = f(Xn,p)- 1Xn + rn+l 
where {r(t)} is a stochastic distribution. This is a form of nonlinear auto-regression [16], and 

there is no unique solution for the empirically devived parameters, p, because of the inclusion 

of the unknown {r(t)] into the equation. Thus the estimated parameter values, p, will be 

dependant upon the choice of the properties of { r( t)}. 

There is an alternative approach where the equation of motion of the charge carriers 

in the diode are governed by a sequence of nonlinear pulses or solitons [17], which propagate 

through the diode. The equation of motion thus becomes [18], 

d2q + a(q) dq + (eq- 1) = Vd(t) (4) 

dt2 dt Q> 

where r is the damping constant, and (eq-1) (= L <ljz sech2(ait-~J0) is a sequence of pulses 

generated by Vi t). Equation ( 4) represents a description of the global behaviour of the diode, 

including the observed hysteresis effects, rather than the localised behaviour offered by the 

bifurcation and return map approaches. 

If a global solution exists, then it should be possible to measure the properties of the 

system at a single point in the phase space, and then to employ these properties within other 

regions of the phase space. In this work we shall test this hypothesis by estimating the 

nonlinear response functions of the system at fully developed chaos and then observe whether 

or not these values can predict the behaviour of the circuit in the linear and the bifurcations 

regions. 

THEORY OF ANALYSIS FORMALISM 

In the frrst two papers of this series [5,6] a formalism has been developed for the 

estimation of the linear and non-linear response functions from an analysis of the input and 

output time series data of a system. This formalism is based upon the time delayed statistical 

moments, between the input and output time series, which are estimated from the 
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experimental data. These time series moments are used as the basis of a set of simultaneous 

equations, which relate these time delayed moments and the unknown response functions. 

This set of simultaneous inhomogeneous equations is solved algebraically for the unknown 

response function values of the physical process under study. 

In this application of the new formalism, the sinusoidal drive voltage time series will 

be denoted by Vi(t), and the output voltage by V 0(t), and the equation relating the two, 

assuming that the system is causal, time-invariant and has a finite length memory, will be 

given by a Volterra series of the form, 

N J.1 J.1 n 
Y0 (t) = L 1 L ..... :E hnCk1,k2, .... ,kn)Il Vi(t-ki) 

n=l n! k1=0 ~=0 i=l 

where N is the finite order of the system, ~ is the length of the 'memory' of the system, and 

hn(k1,k2, .... ,kn) is the nth order response function between the input and output voltages. 

The set of simultaneous equations constructed using the formalism [5] is given by, 

N 

Mvi .. ViVo('tl•···•'tr) = L 1 
n=l n! 

forr = 1, ... , N 

where Mvi .. viVoCt1, ... ,'tr) is the time delayed rth order cross moment between the Vi(t) and 

Y0 (t) time series, and Mvi .. ViVi .. vi(t1, ... ,tr>k1, ... ,k11) is the time delayed (r+n)th order auto 

moment of the Vi(t) time series. In this work we shall be using an absolute moment form in 

the calculation of the time series moments from the data, it has been shown that the analysis 

formalism is independent of the type of time series moment used, i.e absolute, central, etc 

[13]. This set of simultaneous equations may be written in the following matrix form as [5], 

MvivoC'tt) Mu M12 MIN ht (kl) 
M vi ViVo( 'tt ''tz) Mzt Mzz MzN h2(k1,kz) 

• • • • • 
• = • • 0 • (6) 
• • • • • 
• • • • • 

Mvi ... ViVo MNI MN2 
('tt> .. ,'tN) 

MNN hN(kt , .... ,kN) 

where ~ = Mv; .. ViVi .. vi(tt> ... ,tr>k1, ... ,k5). This set of equations can be solved for the 

unknown response function values using standard matrix methods. 

When applying the formalism it is necessary to choose suitable values for the order of 

the system (N) and the length of memory of the system (~). As the circuit is described by a 

second order differential equation [8,9], it is reasonable to assume that the order of the 

system is two (i.e N=2), through the homogeneous replacement of the differential terms [2]. 

Figures 1 and 2 show a typical 100 points of time series data of the input to and the output 

from the circuit, when the circuit is driven by a random noise source (figure 1) and a 

frequency synthesizer, set at 1.95 MHz (figure 2). It can be observed from these figures that, 
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as the two signals are very similar in form, it can be assumed that the circuit has only a 

memory, which is short compared to the data sampling interval (50 ns). 

Assuming that the system relating the input drive voltage, Vi(t), and the output 

voltage, V0 (t), can be described by a Volterra series of order two (N=2), having a short term 

finite memory,~· Thus the equation relating the input and output voltages will be given by, 

J.1 
V 0 (t) = L. h1 (kt) Vi(t-kt) + 

k1=0 
(7) 

The set of simultaneous equations, which can be solved for the unknown response function 

values, are formed, from equation (5), such that matrix equation (6) becomes, 

I 

Mvivo(tl) I = I MviVi(tl,kl) MviViVi('tt.kt,kz) 11 

MviViVo('tt>'tz) MviViVi('tt ,'tz,kt) MviViViVi('tt ,'tz,kt ,kz) 
(8) 

with 0 ~ 1:1 ~ ~. 0 ~ 1:2 ::::; ~. 0 ~ k1 ~ ~. 0 ~ k2 ~ ~. where Mviv0 ('t1) and Mvivivo('tt>'tz) are, 

respectively, the first and second order cross moments between the input and output voltage 

time series, Mvivi('tt.kt), MviViVi('tr,kr,kz) (and MviViVi('tr,'tz,kt)) and Mvivivi('tt,'tz,kr) are, 

respectively, the second, third and fourth order auto moments of the time series of the input 

voltage, and h1(k1) and h2(k1,k2) are, respectively, the unknown first and second order 

response functions. 

The ability of the technique to correctly determine the response of the system will be 

demonstrated by displaying the predictive power of the estimated response functions, using 

equation (7), over a range of input voltages and frequencies. The predictive power of the 

model will be demonstrated by two test statistics, the root mean square (rms) difference and 

the normalised root mean square (nrms) difference between the measured and model 

predicted output voltage, where theRMS difference is given by 

rms = [ ....!. r [ y(t) - Yp(t) ] 2 J 1/2 (9) 
T t=l 

and the normalised RMS difference by, 

nrms = [....!. I [ 
T t=l 

y(t) - y
2
(t) 

y(t) 

ANALYSIS OF EXPERIMENTAL DATA 

(10) 

In this section, a set of response functions will be estimated, using the formalism 

recently developed by the authors [5], for the electrical resonator circuit, described in a 

previous section. The set of estimated response functions which characterise the system in 

terms of the physical observables, and this characterisation will then be used to test the 
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hypothesis that the response functions can accurately predict the circuit's behaviour over a 

wide range of the 'phases' exhibited by the resonator circuit. Electrical resonator circuits of 

this form have been reported to display non-linear behaviour, and have been used to 

investigate the period doubling route to chaos. In this work we have followed the 

experimental procedure of previous workers, so that the voltage across the capacitor and 

inductor components was monitored as the output of the circuit [8,12]. However in this work, 

as well as using a spectral analyser to identify particular states of the circuit, the output signal 

and the input drive voltage, were captured using a digital storage oscilloscope. 

The frequency of the input signal was set at 1.95 MHz, and figure 2 shows a typical 

100 points of the input and output voltage time series. The result of the analysis of this output 

time series using the spectral analyser is shown in figure 3. It can be observed that, at this 

drive voltage and frequency, the circuit is manifesting a form of the previously reported 

'chaotic' behaviour displayed by this type of circuit. The time series sequence of the output 

signal recorded at 1.95 MHz, shown in figure 2, appears to be a non-stationary modulated 

sine wave rather than a stochastic or chaotic sequence. The time series auto and cross 

moments of varying orders are estimated from a 1000 point sample of this time series data 

set, and from these the first and second order response functions can be determined by the 

solution of equation (8), using standard matrix methods. The values of the response function 

estimates are given in Table 1, 

Table 1 : Estimated First and second order response function values 

kt=O kt=1 

ht(kl) 0.9559 0.01363 

h2(kl,k2) k1=0 kt=1 

k2=0 0.03728 -0.03004 

k2=1 -0.03004 0.03792 

By using the estimated first and second order response function values, shown in table 

1, and equation (7), it is possible to demonstrate the ability of the model estimated by the 

technique to predict the output voltage of the circuit, V op(t), given the driving voltage, Vi(t). 

In the first example of this methodology, the ability of the estimated response functions to 

characterise the same operating region of the phase space, i.e fully developed chaos, from 

which the response functions had been estimated, will be demonstrated. A separate 100 point 

sample of the data set shown in figure 2 was chosen, and the estimated response functions 

and the driving voltage employed to predict the output voltage of the circuit, using equation 

(7). Figure 4 shows the observed and predicted (by the estimated response functions) output 

voltage from the circuit for this sample of data. A good agreement between the measured and 

8 



model predicted voltage can be observed to have been achieved, this is also confirmed by the 

values of the two test statistics, the nns and the normalised nns difference between the two 

time series are 0.318 and 1.398, respectively. 

The above example has demonstarted the fonnalisms ability to predict the behaviour 

of the circuit at the same operating point in the phase space. In the following examples, the 

formalisms ability to predict the behaviour of the circuit at other operating points will be 

considered. This will determine whether or not, a global solution for the motion of the charge 

carriers exists, through the existance of a global model that can predict the behaviour of the 

circuit, across a range of driving voltages and frequencies. 

In the other examples, the ability of the model described by the set of estimated 

response functions, to characterise a different 'phase' or bifurcation mode exhibited by the 

circuit will be demonstrated. In the second example the frequency of the input signal was 

changed to 1.79 MHz, where the circuit exhibited period x16 bifurcations, as can be observed 

in the spectral density shown in figure 5, which shows the characteristic signature of the x2, 

x4, x8 and x16 bifurcations. The spectral density of the x16 bifurcation state, shown in figure 

5, may be qualitatively compared to the spectral density obtained at 'fully developed chaos', 

as shown in figure 3. The total area under the peaks of the spectrum is proportional to the 

power provided by the forcing function to maintain the motion of the charge carriers. As can 

be observed the area under the chaotic spectrum is greater than the sum of the areas under the 

sequence of bifurcation peaks. This is also true for the bifurcation sequences in the region of 

chaos and to the reverse bifurcation sequences beyond chaos. Qualitatively, this implies that 

the bifurcation states are energetically favorable to the motion of the charge carriers, whilst 

additional energy must be dissipated in the wave-wave or pulse-pulse interactions of the 

chaotic motion. Figure 6 shows the observed and predicted output voltage from the circuit, 

and again a good agreement can be observed. The value of the rms and normalised rms 

difference in this example are 0.444 and 0.248, respectively. 

In the third example the frequency of the input driving signal was reduced to 1.73 

MHz, where the circuit exhibited period x4 bifurcations. In the process of reducing the 

frequency of the driving signal, the bifurcation mode or 'phases' of period x8 was observed, 

on the spectral analyser, so indicating the bifurcation route to chaos. Figure 7 shows the 

observed and predicted output voltage from the circuit, when driven with at a frequency of 

1.73 MHz, and again a good agreement can be observed. The value of the rms and 

normalised rms difference in this example are 0.484 and 0.623, respectively. 

In the fourth example, the frequency of the input signal was reduced to 1 MHz, and in 

the process of reducing the frequency of the driving signal, the bifurcation mode or 'phases' 

of period x2 was observed, on the spectral analyser, which can be observed in the spectral 

9 



density shown in figure 8. Figure 9 shows the observed and predicted output voltage from the 

circuit, when driven with at a frequency of 1 MHz, and again a good agreement can be 

observed. The value of the rms and normalised rms difference in this example are 1.323 and 

3.401, respectively. 

In the final sinusoidal example, the amplitude of the driving voltage was reduced by a 

factor 10. Figure 10 shows the observed and predicted output voltage from the circuit, when 

driven with at a frequency of 1 MHz, and again a good agreement can be observed. The value 

of the rms and normalised rms difference in this example are 0.092 and 0.997, respectively. 

Wiener, who was the first to characterise the input-output behaviour of non-linear 

systems in terms of the non-linear response functions and the Volterra series [3,4], indicated 

that the correct probe for non-linear systems was 'Gaussian white noise' rather than harmonic 

sequences. Hence for the final example, the frequency synthesizer used in the previous 
' 

examples was replaced by the noise source. A sample of the input and output time series for 

this example can be observed in figure 1. Figure 11 shows the observed and predicted output 

voltage from the circuit, when driven with random noise source, again a good agreement can 

be observed. The value of the rms and normalised rms difference in this example are 0.027 

and 2.318, respectively. This example demonstrates that the set of estimated response 

functions are valid, not only over a range of frequencies and amplitudes of the input signal, 

but are also valid when used with an entirely different input signal (random noise compared 

to sinusoidal). 

The above examples have demonstrated that the response functions estimated in the 

chaotic region can accurately predict the behaviour in the bifurcation and linear regions of the 

oscillator. This would not be the case if the different regions were governed by different 

families ·of solutions. The estimated response functions represent a local single valued 

solution to the motion of the charge carriers as the region of phase space where they may be 

appropriately used is quite broad. This indicates that the equation of motion of the charge 

carriers in the diode are governed by a sequence of nonlinear pulses or solitons [17,18], and 

not by the bifurcation or return map approaches. 

CONCLUSIONS 

In this work, a formalism, developed by the authors in companion papers, has been 

employed to estimate the linear and leading nonlinear response functions of a driven non­

linear oscillator. The period doubling and chaotic behaviour reported by other investigators 

using circuits of this type have been replicated. The first and second order response functions 

were estimated from the time series moments of the input and output time series data 

collected from the circuit in a chaotic bifurcation mode or 'phase'. These estimated response 

functions were then employed to predict the output of the circuit, when driven with a range of 
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different frequencies and voltage amplitudes for a sinusoidal input signal, and for a stochastic 

input signal. The range of frequencies and voltage amplitutes applied to the circuit span a 

region of the phase space, from the chaotic phase, in which the response functions were 

estimated, through the period doubling sequence (x16 and lower bifurcation modes) to lower 

voltages, where the circuit's behaviour is approximately linear. In all cases the predicted 

output voltage of the system, using the estimated response functions, displayed good 

agreement between the measured and model predicted output time series. This work has 

demonstrated that a single set of response functions can characterise a wide region of the 

phase space of the circuit, and also that these estimated response functions are independent of 

the type of input signal used. This work indicates that the equation of motion of the charge 

carriers in the diode are governed by a sequence ofnonlinearpulses or solitons [17,18], rather 

than by the bifurcation or return map approaches. This work has also shown that the time 

series of the output signal from the circuit within the fully developed chaos region when 

driven with a sinusoidal voltage signal, appears to be a non-stationary modulated sine wave 

rather than a stochastic or chaotic sequence. The area under the peaks of the spectrum, which 

is proportional to the power provided by the forcing function to maintain the motion of the 

charge carriers, has been used to imply that the bifurcation states exhibited by the circuit are 

energetically favorable to the motion of the charge carriers . 

Overall this work has shown that the formalism [5,6] can estimate the response 

functions of a nonlinear electrical resonator circuit. It has thus demonstrated the ability of the 

formalism to estimate the set of response functions that characterise a system, and the 

applicability of the formalism and the input-output representation, known as the Volterra 

series, to a wide class of systems which exhibit nonlinear phenomena. 

ACKNOWLEDGEMENTS 

This work was funded by the Building Sub-Committee of the UK Science and 

Engineering Research Council. The authors are pleased to acknowledge the support and 

helpful comments of Brian Day of the University of Bristol in this project. 

REFERENCES 

[1] Volterra V, Singli Integrali Lineari dei Moti spontanei a caratheristiche indipendenti, 
Atti Torino, 35, 1900, p186-192. 

[2] Volterra V, Theory of Functionals and of Integral and Integro-differential Equations, 
Dover, New York, 1959. 

[3] Wiener N, Response of a Nonlinear Device to Noise, MIT Radiation Laboratory Report 
N.o 165, 1942. 

[4] Wiener N, Nonlinear Problems in Random Theory, John Wiley, New York, 195~. 

[5] Irving AD, Dewson T and Hong G, Nonlinear Response Function Estimation I : Mixed 
order case, Submitted to J. Phys. A, 1992. 

11 



[6] Dewson T and Irving AD, Nonlinear Response Function Estimation II : Isolated order 
case, Submitted to J. Phys. A, 1992. 

[7] Kraichnan RH, Irrevesible Statistical Mechanics of Incompressible Hydrodynamic 
Turbulence, Phys. Rev. 109, 1958, p1407-1422. 

[8] Linsay PS, Period Doubling and Chaotic Behaviour in a Driven Anharmonic Oscillator, 
Phys. Rev. Lett. 47(19), 1981, p1349-1352. 

[9] Testa J, Perez J and Jeffries C, Evidence for Universal Chaotic Behaviour of a Driven 
NonlinearOscillator, Phys. Rev. Lett. 48(11), 1982, p714-717. 

[10] Feigenbaum MJ, Quantitative Universality for a Class of Nonlinear Transformations, J. 
Stat. Phys. 19(1), 1978, p25-52. 

[11] Cascais J, Di1ao R and Noronha Da Costa A, Chaos and Reverse Bifurcation in a RCL 
Circuit, Phys. Lett. 93A(5), 1983, p213-216 

[12] Baxter JH, Bocko MF and Douglass DH, Behaviour of a Nonlinear Resonator Driven at 
Subharmonmic Frequencies, Phys. Rev. A, 41(2), 1990, p619-625. 

[13] Irving AD and Dewson T, Nonlinear Response Function Estimation : Moment 
Formulation and the Effect ofOutliers, Submitted to J. Time Ser. Analysis, 1992. 

[14]Jackson EA, Perspectives of Nonlinear Dynamics Vol 1, Cambridge University Press, 
Canbridge, 1989, and Vol2, 1990. 

[15] Van Buskirk Rand Jefferies C, Observation of Chaotic Dynamics of Coupled Nonlinear 
Oscillators, Phys. Rev. A, 31(5), 1985, p3332-3357. 

[16] Irving AD and Dewson T, Nonlinear Response Function Estimation IV : Chaos and 
Nonlinear Auto-Regression, In preparation. 

[17] Toda M, Studies of a Nonlinear Lattice, Phys. Rep. 18C, 1975, p 1-124. 

[18] Klinker T, Meyer-Ilse Wand Lanterborn W, Period Doubling and Chaotic Behaviour in 
a Driven Toda Oscillator, Phys. Lett., 101A(8), 1984, p371-375. 

12 



Voltage (V) 

0.2 

0.15 

0.1 

0.05 

-0.05 

-0.1 

Time (Jlsec) 

Figure 1 : A sample of the input voltage to and the output voltage from 
the circuit, when the circuit was driven by the noise source 
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Figure 2 : A sample of the input voltage to and the output voltage from 
the circuit in the fully developed chaotic mode exhibited by the circuit, 

when the frequency of the driving voltage = 1.95 MHz 
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Figure 3 : The spectral density of the output voltage from the circuit, 
in the fully developed chaotic mode exhibited by the circuit, when the 

frequency of the driving voltage = 1.95 MHz 

Figure 5 : The spectral density of the output voltage from the circuit, 
displaying the x2, x4, x8 and x16 bifurcations modes exhibited by the circuit 

when the frequency of the driving voltage = 1.79 MHz 

Figure 8 : The spectral density of the output voltage from the circuit 
displaying the x2 bifurcation mode exhibited by the circuit 

when the frequency of the driving voltage = 1.08 MHz 
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Figure 4 : A sample of the measured and predicted output voltage from the 
circuit in the fully developed chaotic mode exhibited by the circuit, 

when the frequency of the driving voltage = 1.95 MHz 
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Figure 6 : A sample of the measured and predicted output voltage from the 
circuit at the saturation point of the x16 period bifurcations exhibited by 

the circuit, when the frequency of the driving voltage= 1.79 MHz 



Output 
Voltage (V) 

6 

4 

2 

0 

-2 

-4 

-6 

.. easured 

Predicted 

~ A A 
lf<l 

A A A A 

71 7 3 74 5 -

lu V 

~ 
~ 

\) 
V ~ ~ V V ~ 

Time (JJ. sec) 

Figure 7 : A sample of the measured and predicted output voltage from the 
circuit at the saturation point of the x4 period bifurcations exhibited by 

the circuit, when the frequency of the driving voltage= 1.73 MHz 
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Figure 9 : A sample of the measured and predicted output voltage 
of the circuit, when the frequency of the drive voltage = 1 MHz 
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Figure 10 : A sample of the measured and predicted output voltage 
of the circuit, when the frequency of the drive voltage = 1 MHz 
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Figure 11 : A sample of the measured and predicted output voltage 
of the circuit, when the circuit was driven by a noise source 






