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Abstract 

We study in detail the charged fermion masses in the context of the minimal GUT­

version of the supersymmetric SU( 4) 0 0( 4) model. We show how the presence of vacuum 

expectation values (VEVs) of the order of the GUT mass scale for the right-handed (RH) 

sneutrinos may modify the "naive" equality of the charged-lepton and the down-quark 

masses at Ma = 1016 GeV. In particular, we indicate how one can successfully modify the 

problematic low-energy relation between m 8 and mp., while preserving the good prediction 

mb/mr = r ~ 2.7 (r being the renormalization parameter). The fact that the VEVs of the 

RH sneutrinos are predicted to be of order"' Ma, may also have interesting consequences 

in the mechanism of symmetry breaking of the model. 
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One of the outstanding problems of particle physics is certainly related to the under­

standing of the structure of fermi on masses. In particular, since the discovery of Grand 

Unified Theories (GUTs), it was noticed that many of these models lead to particular rela­

tions among the fermion masses which can be tested experimentally. In general, this may 

result in stringent constraints on the models, in addition to those obtained, for example, 

from the limit on the proton lifetime and the m~asurement of the Weinberg angle at low 

energy. Certainly, the most famous mass relations are those which were derived in the 

(minimal) SU(5) GUT model [1], namely the equality of the down-type quark and the 

charged lepton masses at the GUT mass scale (Ma ~ 1016 GeV): md;(Ma) = me;(Ma), 

where i = 1, 2, 3 labels the various generations. Introducing the renormalization parame­

ter, r, which takes into account the different running of the mass of the quarks with respect 

to the charged leptons down from M 0 to some scale J.l, and which may be evaluated by 

the following expression (which is actually appropriate for the SUSY SU(5) model): 

(1) 

these mass relations predict 1 : 

md = rme, (2) 

In eq.(l) n9 is the number of fermion generations, a 3 (J.L) is the QCD running coupling 

constant and a 1 (J.L) = [5aem(J.L)/3 cos2 Bw(J.L)]. For J.L=1 GeV and with n 9 =3, eq.(1) gives2
: 

r ~ 2.7, in good agreement with the observed mass ratio mb/mr (at J.L=1 GeV). This 

success of the third relation in eq.(2) has in fact been one of the stronger successes of the 

idea of GUTs. Unfortunately, this agreement does not hold for the first two families, since 

the actual masses give md/me ~ 20 and m 8 /mJL ~ 1.6, in both cases different than the 

value of r (~ 2.7) obtained from eq.(1). If this disagreement may be understood for the 

first family saying that the down quark mass is dominated by non-perturbative QCD, md 

being much lighter than AqcD rv 100 MeV, this argument cannot be of any help for the 

second family. In fact, apart from the fact that we expect only a marginal contribution 

1 Throughout this paper, all masses must be understood as the running masses evaluated 

at the scale J.l = 1 Ge V. 
2 In the non-supersymmetric case r turns out to be only slightly different: r ~ 2.9. 
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on the s-quark mass from non-perturbative QCD (since ms "'AQcD ), its effects would in 

any case imply an even smaller mass originated by the electro-weak symmetry breaking, 

making therefore the inconsistency of the second relation in eq.(2) even more serious. The 

optimum would be to find a solution which modifies these mass relations only for the first 

two families, while keeping the good mb = r mr prediction. In minimal SU(5), for example, 

two suggestions were pointed out: ( i) the enlargement of the Higgs sector by the addition 

of a 45 (of SU ( 5)) dimensional representation, and ( ii) the introduction of suitable non­

renormalizable terms, which were thought to result as the effect at low energies of some 

unspecified interaction (e.g., supergravity, etc.). In the first case, the mass matrices at the 

GUT scale were modified as follows: lvfe =Me( 5)+Me( 45) = Md(5)-3Md( 45), and Md = 
Md(5) + Md( 45), removing therefore the naive relation Me = Md obtained in the absence 

of the 45 Higgs multiplet. Unfortunately, in this way one looses any correlation between 

Me and Md, and therefore not only destroys the unwanted mass relations involving the first 

two families, but also the successful relation between mb and mr. The same thing usually 

occurs also in the more complicated models. In S0(10), for example, with the presence 

of all the Higgs multiplets belonging to the product 16 ® 16 = 10s EB 120A EB 126s (the 

indices "S" and "A" mean, respectively, symmetric and antisymmetric Yukawa couplings 

in generation space), one does not get any correlation between the fermi on masses in the 

different sectors [1]. In this case the 126 Higgs representation plays the same role as the 45 

in the SU(5) model, ruining the naive relations (2) obtainable if only the 10 were present. 

More recently, the study of the GUT models derivable as effective field theories from 

the string has indicated two promising models, which have the nice feature of not requiring 

the presence of the adjoint or the other large self-conjugate Higgs representations (which 

cannot be present in string inspired theories with Kac-Moody level K = 1) for obtaining the 

correct symmetry breaking of the gauge group down to the Standard Model (SM) and for 

producing the well-known doublet-triplet mass splitting which is essential for avoiding a fast 

proton decay induced by the exchange of light colour-triplet Higgs scalars. These models, 

which are based on the gauge groups "flipped" SU(5)®U(l) [2] and SU(4)®0(4) [3), have 

been extensively studied in the literature, both in their simple GUT versions [2-5] as well 

as in their "string" type of version [2,6,7]. In the flipped SU(5) ® U(l) model, the word 

"flipped" refers to the exchange in the fermionic representations of the up-type with the 
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down-type fields (u(c) +-+ d(c), ,)c) +-+ e(c) ), with respect to the "standard" SU(5) model. 

It can be shown that, contrary to this last model, the flipped version [2] does not lead to 

any relation among the charged fermi on masses. On the other hand, the SU ( 4) 0 0( 4) 

group [3], which is isomorphic to the left-right symmetric group SU( 4)0SU(2)L 0SU(2)R, 

naively, reproduces the results of the minimal SU(5), leading to the same mass relations 

(2). In such a model, one must therefore face the problem of modifying the relations which 

are not in agreement with the experimental information, without affecting the successful 

one which relates mb to mr. In this paper we suggest a solution based on the possible 

presence of large vacuum-expectation-values (VEV s) for the scalar partners of the right­

handed (RH) neutrinos. In a particular example, we shall see how it is possible to modify 

only the relation involving the second generation fermions, with the strange quark mass 

given as a function of < v~ >. Of course, we cannot solve at the same time the problem 

associated with the relation md = r me, but, as discussed above, this may just be a 

consequence of the importance of non-perturbative QCD effects for the down quark mass. 

Our main result is that by fitting the s-quark mass we are able to predict, under quite 

general assumptions concerning the free parameters of the model, that< v~ >"'Me within 

one order of magnitude. This means that it is possible that, at least in part, the gauge 

group SU ( 4) 0 0( 4) is broken down to the SM not only by the Higgs supermultiplets, but 

also by the scalar neutral component of the RH matter superfields. 

In the next paragraph we shall briefly review the main characteristic features of the 

model and fix our notations. Then, we shall construct and analyse in detail the mass matrix 

for the down-type quarks, treating the "naive" mass matrix which yields the mass relations 

(2) as ·the unperturbed matrix, and considering the effect of < vc >=I 0 as a correction. 

This will give some insight on the type of modification of the mass matrices which can be 

obtained. At last, we shall show a particular example which allows the evaluation of the 

mass eigenvalues, and therefore, through the fitting of m 8 , gives a prediction for < v~ >. 

The superfield content of the SU( 4) 0 0( 4) model, in its minimal GUT version, is 

given in the Table, which has been taken from ref.[5], to which we also refer for the 

notation. The fifteen standard fermions plus the RH neutrino vc of each generation fit in 

the reducible sum F( 4, 2, 1) EB F(4, 1, 2) of SU( 4) 0 SU(2)L 0 SU(2)R, identifiable with 

the standard fermionic 16 representation of SO(lO). The gauge group is spontaneously 
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broken down to the Standard Model at the GUT mass scale through the VEV s of the 

scalar components of the Higgs supermultiplets, belonging to two incomplete ( spinorial) 

representations of SO(lO): H( 4, 1, 2) and ii(4, 1, 2); we denote these VEVs by < i/H > 

and< v}r >,respectively. Then, the subsequent electro-weak symmetry breaking down to 

U(l)em is produced by a bidoublet Higgs field h(1, 2, 2), whose two VEVs, , < h0 
>-Vu 

and < h0 >= vd, constrained by the condition Jv~ + VJ = v ~ 246 GeV, produce mass 

terms in the "up" and the "down" -type fermion sectors, respectively. The model also 

contains a D(6, 1, 1) multiplet, which forms with h(1, 2, 2) a 10-dimensional representation 

in the SO(lO) embedding of the model, and whose role is essentially to generate the desired 

doublet-triplet mass-splitting producing massive states ("'"' M a) with the coloured triplets 

dH and dH of ii and H. Finally, there are n 9 + 1 gauge singlet superfields </>m of which one 

(say, </>o) has the scalar component developing a VEV at the electroweak scale (we shall 

take, for simplicity, < </>o >- X = v GeV). These singlets, besides producing a suitable 

seesaw mechanism for suppressing the neutrino masses [4,5], are essential for generating a 

correct Higgs mixing [2,3] and so prevent the appearance of an unacceptable electroweak 

axion. The model is then completely specified by the most general superpotential satisfying 

the discrete z2 symmetry ii ---7 -ii, which is essential for forbidding a heavy tree-level 

Majorana mass for the standard left-handed (LH) neutrinos. As in ref.[5], we write such 

superpotential as: 

W =A~i FiFih + A~m FiH<f>m + A3HHD + A4HHD + Ar;-hh<f>m 

+ Ar;,mq</>mcPn</>q + A~i FiFiD + A~i FiFiD + A~DD</>n, 
(3) 

where in general all the nine Yukawa-type coupling constants Ai are independent. In the 

case of the SO(lO) embedding of the model, however, one gets [5] the following constraints: 

A1 = A7 = As and A5 = Agj in what follows, in addition to these conditions, we shall also 

choose A3 = A4 . After spontaneous symmetry breaking the only surviving (i.e., uneaten, 

or which do not acquire large masses via the supersymmetric Higgs mechanism) particles 

in Hand ii are, in addition to a single combination of vli and Dli, the d-type fields dl-I and 

dl-I, which, mixing with the ordinary down-type quarks (as well as with the colour triplets 

belonging to D(6, 1, 1)), will play an important role in our discussion on the d-type mass 

matrix. At first, let us discuss the standard charged fermion3 mass terms arising from the 

3 The neutral fermion sector has been studied in detail in refs.[4,5]. 
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superpotential W, that is without assuming any VEV for the RH sneutrinos. Later, we 

shall give the new terms, due to < vc >=/= 0. 

The first term in eq.(3) gives rise to the standard masses for the ordinary fermions 

(plus Dirac masses for the neutrinos), which lead to the naive mass relations discussed in 

the introduction: 

(4a) 

( 4b) 

where Vu =< h0 >, Vd =< h0 >, and r, r' (~ 3) are the renormalization parameters 

appropriate for comparing the quark and the lepton masses at a low mass scale, 1-" = 1 

GeV. We shall take vu/vd = tanf3 = mt/mb ~ 30, corresponding to mt(J.t=1 GeV) = 150 

GeV and to a physical mass mt(phys) ~ 100 GeV. The .X2 -term produces a mass term 

equal to .X2 ,i < <Po >= Xi, ( i = 1, 2, 3 labels the different generations), mixing the RH 

component of the ordinary down-type quarks dRi with dfi. Furthermore, the third and the 

fourth terms of W lead to identical masses for the mixed states D3 dii and D3 dii, given by 

G = .X 3 < Dl-I >= .X3 Mc. The equality of these mass terms holds in virtue of our condition 

.X 3 = .X 4 and of the assumption < vl-I >=< Dl-I >- M 0 . Notice, however, that in contrast 

to the flipped SU(5) ® U(l) model, in the present case the D and F flatness does not 

necess~rily imply the equality of the VEVs of Hand H [3]. Finally, the Ag-term generates 

the following diagonal mass term of order of the weak scale: D3D3 Ag < <Po >= X 9 D3D3. 

All these contributions lead then to the standard results for the charged fermion masses, 

which, up to negligible corrections of order 0( v /M a) "' 10-14 , give the naive mass relations 

in eq.(2). However, here we wish to point out that in the presence of possibly large VEV s 

for the scalar RH neutrinos,< vf >, (i = 1, 2, 3), the resulting mass matrix for the cl-type 

colour-triplet particles allows us to construct an "effective" mass matrix for the ordinary 

down quarks, which yields mass relations modified with respect to those in eq.(2). In fact, 

the .X8-term produces mass terms like the following: 

3 

L .X~j < vj > (dRiD3) 
j=l 
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which mix the right-handed states dRi with D3. In what follows we shall use As = ,\1 

( =r Me/vd), a condition obtainable in the embedding of the model in S0(10). Of course, 

we do not consider also the consequences of possible non-vanishing VEVs of the left-handed 

(LH) sneutrinos, since, the < Vi > 's being at most of the order of the electro-weak scale, 

they could only have negligible effects on the standard fermion masses, suppressed by 

( < v > /Ma) :::; 10-14 . On the other hand, < vc >,being the VEV of a doublet under 

SU(2)R, but a singlet under SU(2)L, can be as large as Ma. 

The mass terms listed in the previous paragraph allow us to write the following tree­

level mass matrix4 for the d-type (colour-triplet) fermions: 

dLi Jc 
H 

dRi (~d X 

de 0 H 

jj3 G 

= (Md A) - o r (6) 

where the block sub-matrices are such that Md = r Me is 3 x 3, X and S are 3 X 1 column 

vectors, A_ (X; S) is 3 x 2, and r is 2 x 2. Notice that this mass matrix is non-symmetric, 

as a consequence of the discrete symmetry ii ---+ - ii imposed on the superpotential W, 

and because only the scalar partners of the RH neutrinos can develop a large VEV. As 

usual, in order to evaluate the mass eigenvalues of a non-hermitian mass matrix, one must 

consider5 the matrix MT M, whose eigenvalues are just the positive masses squared. In 

our case, we get: 

(7) 

which yields the following "effective" 3 x 3 mass matrix for the three ordinary down-type 

quarks: 

(8) 

4 The SUSY protection of the gauge hierarchy ensures the absence of large (~ Mw) 

mass contributions generated radiatively [8]. 
5 For simplicity, we assume all elements of our matrices to be real. 
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The inverse matrix in this equation may be approximately evaluated by noticing that 

AT A+ r 2 is diagonal up to very small correction terms of orders 0( v /M a) and 0( < vc > 

v/Mf;). Therefore, 

(AT A+r2)-1 ~ a-2 (~ ~) ' 

where z = [1 + (ISI/G?J-l and ISI = o=~=l Sl) 112
• Then, eq.(8) gives: 

(9) 

where (XXT) and (SST) represent the matrices whose (i,j) elements are just the prod­

ucts xixj and sisj' respectively, and I is the 2 X 2 identity matrix. Since the terms 

proportional to (XXT) are suppressed by "' (v/Ma)2 , they may be neglected and our 

final effective mass matrix can be written in a very simple and convenient way: 

2 T{ · 1 T} 
Md(eff) ~ rMe I- ISI2 + G2 (SS ) rMe, (10) 

where we have used Md = r Me from eq.( 4b ). Because of the form of eq.(lO), it is natural 

to consider the "naive" result M~(eff) = MJ Md = r 2 (M'[ Me) as the unperturbed mass 

matrix squared, and the second term, proportional to (SiSj), as the perturbation. At this 

point it is helpful to use a vector basis where the charged lepton mass matrix, Me (for 

simplicity, assumed to be real and symmetric), is diagonal; e.g., we may write: 

where E is an orthogonal matrix. In this new basis the column vector S is correspondingly 

transformed into: 

where, besides the condition -\8 = -\1 , we have used the obvious fact that the 3 x 3 matrix 

-\1 is also diagonalized by the orthogonal matrix E: ET ,\1 E = r Me/vd; V and V' represent 

the column vectors of the VEV s of the RH sneutrinos in the initial and in the new basis, 
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respectively. IT we neglect any possible (s)neutrino mixing in the RH sector6
, we may say 

that V'= ETV contains just the VEVs < vf >, (l = e, J.L, r). In this case, S' is given by: 

( ) (

me< v~ >) 
S' = : mp. < v~ > 

d m <VC> T T 

(11) 

and our final effective mass matrix may be written as: 

(12) 

This formula, which gives the leading term of the correction to the naive result of eqs.(2) 

and ( 4b) as a function of the three VEV s < vf >, is our first result. 

At this point we wish to impose the condition that the successful mass relation between 

mb and mr is not modified. Generally speaking, this could mean that all the correction 

terms along the third row (or column) in the second term of eq.(12) must be smaller than 

(rmr )2
• However, it may be more instructive to give here a specific example, which, while 

preserving exactly the relation m 6 = r mr, allows the fitting of the s-quark mass, and 

consequently gives a prediction for < vc >. Since we do not want to affect the third­

generation fermion masses, and since we do not pretend to solve the puzzle concerning 

the masses of the first generation, the structure of the "correction" mass matrix in eq.(12) 

(ex S' S'T) suggests that the simplest choice might be to assume only < v~ >=/= 0 (so that 

only S~ =/= 0), in which case M~(eff) is diagonal and gives directly the following mass 

eigenvalues: 

md = rme, 

m 8 = v'Z rmp., 

mb = rmr. 

(13a) 

(13b) 

(13c) 

This shows, in fact, that with respect to the naive results of eq.(2), only the second mass 

relation is changed, and allows us to evaluate < v~ > by using the observed value for m 8 : 

< v~ > ~ >.3 v (mb) 
Ma ms mt 

1 - (~)2 , 
rmp. 

(14) 

6 In any case, our results do not depend in an important way on this assumption. 
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where we have used: ISI = s2 = (r mJ.I/vd) < V~ >' G = ).3 Ma, and Vd ~ v(mb/mt)· 

Notice that, as it might be expected, < v~ > would vanish if the naive mass relation 

m 8 = r mJ.I had been successful. In particular, choosing >. 3 = 0.1, and with mt/mb ~ 30 

(at J.t = 1 GeV), eq.(14) gives: 

(15) 

This result is very interesting; it means that, in order to modify correctly the second 

generation fermion masses (and fitting therefore m 8 ), < v~ > must be of the order of 

Ma =< v~I >. In this case the SU(4) 0 0(4) gauge group would not be broken down to 

the Standard Model only by the Higgs fields H and ii, but also by the VEV of the scalar 

component of the RH matter supermultiplet < F(2 )(4, 1, 2) > =< v(J.I) ?"' O(Ma). The 

possible consequences in the neutrino sector of allowing these large VEV s for the scalar 

component of the right-handed (RH) neutrinos, will be analysed elsewhere [9]. 

Table Caption 

The superfield content of the model. The various supermultiplets are labelled by their 

transformation properties under SU(4) 0 SU(2)L 0 SU(2)R, (i is the generation index). 
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Table 

SU(4)®SU(2)L ®SU(2)R 

F, = (4,2,1) = (:), 6l (;), 

F, = ( 4,1,2) = ( ~: J,ffi ( ::}, 

H = (4,1,2) = (~~J Ef>(~~J 
dH ; eH 

H = (4,1,2) = (:D, ffi( :t J 

h = (1,2,2) = (:: ~: J 

D = (6,1,1) = D3 Ef> D3 

<I> m= (1,1,1), m= l, ... ,ng + 1 



r .•. 




