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ABSTRACT 

A formalism for the diagnostic analysis of time series from nonlinear 

physical processes is developed. The dynamics of nonlinear systems can be 
characterised in terms of response functions. The properties of delayed 

nonlinear mappings and nonlinear autoregression are discussed. A response 

function representation is adopted and a formalism is developed which uses 

higher order time series moments to estimate their values from the data. 

The properties of the formalism are illustrated by three examples. First, 

the accuracy of the method and its ability to identify the order and form 
of the mapping is demonstrated using a delayed logistic map. Then Wolf's 

annual sunspot number, which is theoretically predicted to be a delayed 

logistic map, is analysed and discussed. Finally, data from a driven 

electronic anharmonic oscillator which exhibits period doubling and chaotic 

behaviour is analysed and discussed. 

1 



INTRODUCTION 

There are a large number of physical systems which exhibit nonlinear and 

chaotic behaviour. Naturally one wishes to characterise the data and 
analyse the physics underlying the process. However, the temporal 

evolution of these systems renders the quantitative analysis of such data 
extremely difficult in general. Many of the analysis techniques applied to 

experimental data are based on the linear time series analysis methods such 
as the correlation [1-3] and its Fourier transform the spectral density 
[4-9} or alternatively on maximum likelihood methods [10, 11]. In the 
latter case one has to guess the form of the model and fit the data to that 
model and the number of parameters that can realistically be fitted is 

severely limited [10]. Much effort has been devoted to the application of 

linear time series techniques and the interpretation of the results from 
the analysis using these techniques. Such analyses are straightforward but 

are difficult to interpret and are inconsistent and their use should be 
questioned. When considering the problem of prediction and forecasting 
from the observed time series [11-13] local predictors [14] or 
autoregressive models [2] with a small number of parameters are usually 

employed. Although such models can replicate aspects of the observed 
qualitative behaviour of any particular set of data they can be 
inconsistent and fail to yield the detailed quantitative information 

required for the development of empirical theories. 

In this paper the focus is on the analyses of single sequences of time 

series data in terms of nonlinear response functions. 

Much attention for the past decade has been directed to the iterative map 
[15] 

x(t) = f (x(t-1)) 

and more recently the delayed logistic map [16] 

p. 
x(t) = a(O)x(t-1) (1-x(t-1)) + E a(i)x(t-O"i) 

(7.=1 
1 
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where p is the memory of the mapping. 

In this work the general mapping 

N p 
x(t) = t 1 t 

n=1 n! u1=1 

and the nonlinear autoregression representation 

N p 
x(t) = r(t) + t 1 t 

n=1 n! u
1

=1 

are considered. A formalism, based on statistical moments, is developed 
that can estimate the nonlinear response function values gn(u

1
, ... ,un) from 

experimental data. 

A numerical simulation is used to demonstrate the ability of the formalism 

to accurately determine the response values for an initial value chaotic 

map with memory but no noise. The formalism is then used to analyse two 

experimental data sets. The first data set to be analysed is Wolf's annual 
sunspot number which has been hypothesised to be governed by a delayed 

logistic. map [17]. The second data set to be analysed is the observed 
voltage values from a nonlinear anharmonic electrical resonator which is 

known to follow a bifurcation route to chaos [4, 18]. 

GENERALISED AUTO REGRESSION AND CHAOS 

Time series analysis is primarily concerned with the modelling of the 
linear properties of random functions. The most general linear 

relationship between adjacent time steps in terms of the history of the 
sequence {x(t)} and the response function g

1 
(t) is the convolution equation 

p 
x(t) = t g

1 
(u1)x(t-u1) + r(t) 

u1=l 

3 
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where r(t) is an independent externally induced noise term. Equation (1) 
is often called an autoregressive representation [2]. The autoregressive 
representation assumes that {x(t)} contains both deterministic and 
stochastic components. In this work it is assumed that the process has a 
finite memory of duration ~ units and this should not be confused with the 
apparent memory of the data which may seem infinite. 

Given a time series sequence of observations x(1), ... ,x(t) = {x(t)} then a 
typical representation would be 

x(t) = 8 (t) + r(t) (2) 

where 8(t) is considered to be a deterministic function and r(t) a 
stochastic or noise function. Equation (2) represents a decomposition of 
the observed series into two theoretical components which one tries to 
separate and estimate from the data. The techniques used to analyse the 
data should in principle be able to discriminate between the origins of the 
different phenomena [19] but there will not be a unique solution to this 
decomposition. 

When the mapping is nonlinear and when there is no noise, then, x(t) may be 
written in terms of a Volterra series expansion. That is, in terms of the 
time history of {x(t)} and the response functions [20] gn(u1, ... ,un). In 
discrete form a nonlinear mapping may be defined as 

N ~ 
x(t) = I: 1 I: 

n=l n! u1=1 
(3) 

which may be seen to be a form of Volterra series and is a straightforward 
generalisation of the linear autoregression method given in equation (1). 
Equation (3) represents a mapping between the sequence of data points 
without any noise term. 

Taking absolute moments of Equation (3) we have that 
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m 
< ~ x(t-rj)x(t)> 
j=1 

N l.l 
= I: 1 I: 

n=1 n! a1=1 

m n 
< ~ x(t-r.) ~ x(t-0'.)> 

j=1 J i=l 1 

This gives a set of simultaneous nonlinear integral equations with 

Mxx(r1,o) 

Mx2x(r1,r2,o) 

= • 

(4) 

(5) 

with ri, O'j>O. These equations can be solved for the unknown response 

values gn(a1, ... ,an) using standard matrix methods [21]. The formalism 

developed here is applicable when the moments of {x(t)} are well defined. 

The map x(t+l) = f(x,t), often associated with chaotic dynamics [15], this 

map can be seen to be a special case of the above. For example, consider a 

process {x(t)} where the memory can be characterised with only one 

coefficient, such that 

x(t) 
N l.l 

= I: 1 I: 
n=l n! a1=1 

l.l n 
I: gn (a 1 ' · · · ' an) ~ 

0' =1 j=1 n 

6(0'.=1) x(t-a.) 
J J 

Then this may be compared to the generalised bifurcation formalism [15] 

5 
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N 
x(t) = t b(p) xp(t-l) 

P=l 

and by inspection the coefficients b(p) may be related to the response 

functions by 

p 

b(p) = !._ gp(a1, ... ,ap) 1r 6(ai=l) . 
p! i=l 

(7) 

(8) 

In the limit the response functions gp(a1, ... ,ap} have been reduced to a 
simple delta functional form. This describes the system in terms of 
nonlinear gain parameters b(p), but because of the delta functions, 6(ri}' 

this representation does not describe the dynamics of the process. It is 
usual to consider the data to have an infinite memory; however, if the map 
x(t) ~ x(t+l} is thought of as an input output system and if the nonlinear 
system is approximately memoryless then the coefficients b(p} represent the 
nonlinear gain for each power p. Alternatively it may be that the 
nonlinear process has a finite memory, but that the data are observed at 

intervals which are long compared to the response times of the process. In 

that case the data points {x(tl} are actually disconnected and any 
characterisation obtained will be of an envelope of spot values for which 
the causal link has been broken. The data should be collected at a time 

interval that is short or comparable with the response time so that the 
physical properties of the process may be identified, characterised and 

analysed. 

The mapping given in Equation (3) is not in its most general form as the 
effects of 'noise' have been neglected. Such 'noise' may arise because of 

the stochastic nature of the driving force, or because of instrumentational 

effects, or because more than a single process is being observed. It is 

usual to assume that {r(tl} is drawn from a Gaussian white noise 
distribution and is independent of the deterministic mapping {x(tl}, in 

this case 
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N ll 
z(t) = r(t) + t 1 t 

n=1 n! a1=1 
(9) 

where {z(t)} is the observed sequence of data. That is, the observed time 
series {z(t)} has been theoretically decomposed into a deterministic 
component {x(t)} and a stochastic component {r(t)}. The estimated values 
of the mapping gn(a1, ... ,an) will of course be dependent on the choice of 
{r(t)} and its properties. The response functions gn(u1, ... ,an) will not 
be unique and are unlikely to yield detailed quantitative insight into the 
physics underlying the process. 

Taking absolute moments of {z(t)} we have that 

m 
< '11' 

j=1 
z(t-r.)z(t)> = 

J 

N ll 

"' t 

m 
< '11' z(t-rj)r(t)> 
j=1 

+ t 1 t 
n=1 nl u1=1 (J =1 n 

m 
gn (a 1' · · · 'u n) < '~~' 

j=1 
z(t-r.) 

J 

n 
'11' {z(t-ui)-r(t-ui)}> 

i=1 (10) 

The set of simultaneous equations given by (10) have to be solved for the 
mapping. values gn(u1, ... ,an); in addition, they must be solved for some 
properties of the stcchastic distribution {r(t)}. 
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The set of equations to be solved is 

Mzz(l,O) 

Mzz(Tl,O) 

Mzr(O,O) 

Mzr (r 1 , 0) 

1.0 

= 

Mzz(O,C7l) .•........•. MZNZ(O,C7l' ••• ,C7N) 

* * Mzz ( r 1, C71) . . • . . • • . . . • MzNz ( r 1, C71, ••• , UN) 

(11) 

* where the Mzizj (r1, ... ,ri,u1, ... ,uj) contain mixed terms between {r(tl} and 
{z (t)}. 

Equation (11) may be considerably simplified if, without loss of 
generality, it is assumed that {r(t)} is a zero mean Gaussian white noise 
process and that {x(tl} is statistically independent to {r(t)}. Under this 
approximation we may write, for example, the equations for the N = 2 
quadratic map case as 
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Mzz(1,0) 1.0 Mzz(o,u1) Mz2z(o,u1,u2) Mrr(O) 

Mzz(r1,0) = * 0.0 MZZ(r1,u1) * Mz2z(r1,u1,u2) 8 g1 (U1) 

Mz2z(r1,r2,o) * * 0.0 Mzz2(r1,r2,u1)Mz2z2(r1,r2,u1,u2) g2(u1,u2) 

where the adjusted moment values are given by 

* Mzz2(r1,u1,u2) = Mzz2(r1,u1,u2) 

-{MZ(r1)6(u1=u2)+MZ(u1)6(r1=u2) + MZ(u2)6(r1=u1)} Mrr(O) 

* Mz2z(r1,r2,u1) = Mz2z(r1,r2,u1) 

-{MZ(r1)6(u1=r2)+MZ(r2)6(u1=r1)} Mrr(O) 

* Mz2z2(r1,r2,u1,u2) = Mz2z2(r1,r2,u1,u2) 

+{2Mrr(O)-Mzz(r1,u1)6(r2=u2)-Mzz(r1,u2)6(r2=u1) 

-Mzz(r2,u1)6(r1=U2)-Mzz(r2,u2)6(r1=U1)}Mrr(O) 

(12) 

(13) 

which may be solved by substitution iteration or maximum likelihood methods 

for the values of Mrr(O) and gn(r1, ... ,rn). As the variance of the noise 

Mrr(O)tends to zero, equation (11) reduces to equation (5). 

NUMERICAL ANALYSIS EXAMPLE OF A CHAOTIC SEQUENCE 

In this section the results from a numerical experiment are presented where 

· the properties of the nonlinear system are known. A numerical experiment 

is used so that the accuracy and range of appropriate use for the method in 

estimating the nonlinear response values and their predictive power can be 

assessed. 

The data sequences were generated using the convolution equation 
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{14) 

In this delayed logistic map example a random initial condition is selected 
for the sequence and some 2000 points of data, {x{tl} are generated. The 
data {x(tl} were then used to estimate the nonlinear response values. The 

estimated nonlinear response values g1 {r1l and g2 (r1 ,r2) are then compared 

against the known responses gl (r1 ) and g2{r1,r2 ), hence the accuracy and 
range of appropriate use of the method may be established. The accuracy of 
the nonlinear response function estimate is determined by the root mean 
square (rms) difference between the known and estimated nonlinear response 
values. The accuracy of the predictive power is determined by the 
normalised root mean square {nrms) difference between the actual and 
predicted output time series sequences. 

Where the rms value is determined for the first order or linear response, 
using 

and for the second order or quadratic response 

where ~ is the memory of the process. 

The normalised root mean square difference between the original data set 

{x{t)} and the predicted data {xp{t)} is 

T 
= {! E (x(t) - xpJ!l] 2 }~. 

T t=1 x{t) 
nrms 
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and the normalised absolute mean difference is 

T 
namd = .!. I: 

T t=1 lx(t) - xp (t) I 
X (t) 

where p denotes predicted in this case. 

The delayed logistic map used in the present example is 

P.' 
X(t) = 3.8 X(t-1) + I: gi (r1) X (t-r1) 

0'1=1 

2 -3.8 X (t-1) -

with an initial value x(O) = 0.07839, and a finite memory of p.'=6. The 

response functions used are 

and 

( 15) 

(16) 

(17) 

respectively, and these may be seen as perturbations to the logistic map. 

The moments of the sequence of data, {x(t)}, are then estimated. From 

these moments the response values deduced using equation (5). The 

autocovariances are estimated up to a maximum delay of rmax = 8. Equation 
(5) is then solved with N = 2 and for fixed delay values of p. = 1, 2, ... ,8 

respectively. In Table 1 the results of an analysis of the generated data 

are presented. As can be seen from the sample statistics in Table 1 the 
method correctly identifies the duration of memory of the mapping. In 

Table 2 the sample statistics between the original sequence and the 

modelled sequence are given. It should be emphasised that all of the 
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nonlinear response values, for g
1 

(r1) and g
2

(r1,r2) are solved 

simultaneously. 

In this example it has been demonstrated that the moment formalism is able 
to correctly and accurately identify the order and form of the nonlinear 
mapping. The response values are a model of the time series data points 
and their utility is as a pragmatic tool with which predictions of future 
behaviour may be obtained rather than any insight into the nature of the 
process. To gain insights and understanding of the physical process the 
experimental design should be modified, where possible, such that the 
causal relationships may be established [21] . 

In order to test the predictive ability of the model coefficients two 
sequences of data were generated using the same initial condition, one 
sequence is generated using the estimated response values g

1 
(r1) and 

g2 (r1,r2) and the other sequence generated using the actual response values 
gi (r1) and g2(r1,r2 ). Figure 1 shows a sample of the predicted values 

{xp(t)} together with the observed sequence of data {x(tl}. In Figure 2 a 
plot of the common logarithm of the absolute difference between the two 

series, ie lxp(t) - x(t) I, is given. As can be seen the divergence is 
exponential until the amplitude of the differences is the same as the 

envelope of {x(t)} at which point chaos sets in and the limit of forward 
prediction has been reached. The gradient of the diverging difference is 
related to the Lyapunov exponent [1, 22]. 
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TABLE 1: ANALYSIS OF ESTIMATED RESPONSE FROM DELAYED LOGISTIC MAP 

Estimated rms Estimated rms 
Maximum Area of Difference Volume of Difference 
Delay Linear Linear Quadratic Quadratic 
Considered Function Function Function Function 

1 3.884316 0.07236 -3.870614 0.06591 

2 3.457699 0.4330 -3.3098321 0.2947 

3 3.0929590 0.7235 -2.8170385 0.3948 

4 2.6065230 0.5598 -2.1616390 0.3085 

5 3.817648 0. 7762 -3.7900739 0.3290 

6 3.8680091 3.885x10-8 -3.8569214 3.926x10-4 

7 l. 889077 0.3190 -1.195642 0.1165 

8 -0.27239 0.2542 l. 71113 0.07773 
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TABLE 2: ANALYSIS OF TIME SERIES GENERATED USING THE ESTIMATED 
NONLINEAR RESPONSE VALUES 

Maximum Normalised Normalised 
Delay Root Mean Absolute Hean 
Considered Square Difference 

nrms natnd 

1 0.014267 0.0096923 

2 0.010465 0.0066788 

3 0.0073871 0. 0041336 

4 0.00648116 0.00369744 

5 0.00293309 0.00166184 

6 2.148x1o-9 6. Ollx1o-10 

7 0.0040784 0.00098934 

8 0.00826889 0.00193236 

The formalism given by equation (5) has accurately identified the correct 

form of a nonlinear mapping when there is no noise present. The response 

values estimated from the data are able to predict the future time series 

values with a precision that is dependent on the Lyapunov exponent of the 

initial value problem. In practice the value of ~ and the order N have to 

be determined in the analysis and may be considered as free parameters. 

The solution of equation (5) is, however, very sensitive to the value of ~ 

and the order can be identified from a plot of {x(tl} with {xp(t)} for 
deviations from a straight line which can indicate the presence of higher 

order terms. 

Before the present work there was no exact method for isolating an 

individual nonlinear mapping and estimating its values. The above example 
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has demonstrated that it is possible to correctly identify the order, form 
and values of a nonlinear mapping in terms of response functions and to use 
the estimated response functions to predict the future behaviour of {x(tl} 

to the limit defined by the intersection of the Lyapunov curve with the 

envelope of time series sequence. 

WOLF'S SUNSPOT NUMBER 

It has only been in recent years that nonlinear time series have been 

studied either systematically or in detail. Although many different 
approaches are being attempted, few have yet demonstrated utility and 
consistency where real data are concerned [11] . The development and 

testing of emerging techniques is aided by the availability of benchmark 
data sets on which the methods can be applied and assessed for their 

modelling and predictive ability. Wolf's sunspot number is such a 

benchmark data set [11] . 

The cycle of solar activity is evident in a plot of the mean number of 
sunspots observed on an annual basis. Several periods have been 

identified, but the 11.5 year cycle is the dominant one and formed the 

basis of much of the early understanding of solar and solar-terrestrial 
physics. The sunspots are conv~ctive cells near the surface of the sun's 

photosphere and in themselves do not represent a fundamental aspect of 

solar physics. However, the sunspot number is a suitable index that is 

easy to observe and which summarises the surface activity on the sun. The 

existence of sunspots has been known for 3000 years and its cyclic 

behaviour was established in 1843. Wolf made extensive investigations into 

the available historical astronomical records and organised the 
international effort to monitor the annual sunspot number, which now bears 

his name. The reliability of the sunspot number deteriorates with history 

prior to 1850 and is essentially unusable before 1710. 

In the present work the sunspot number from 24 solar cycles, from 1710 to 

1975, are used to characterise the annual sunspot number with nonlinear 

response values. These estimated response values are then used to predict 

the sunspot number in the 25th solar cycle, from 1976 to 1987. These 

predicted values are then compared against the observed sunspot numbers. 

In addition to the statistical aspects of model identification and 
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prediction the estimated response function values may be used to confirm if 
the annual sunspot number is a chaotic sequence. Yoshimura, in 
magnetohydrodynamic work [17] indicated that the sunspot number should be 

of a delayed quadratic logistic map form, that is, that there should be 

linear and quadratic nonlinear terms and that the quadratic response 
function should be diagonally dominated. The estimated values g1 (r1) and 
g2(r1,r2) represent a characterisation of the deterministic map form the 

data {x(t)}. The predictive power of this characterisation which together 
with the noise {r(t)} is limited by the amplitude and form of the noise 
component. This is because the value of the estimated response functions 
will not be unique and the values are dependent on the assumed properties 
of the probability distribution. These are inherent weaknesses in the 
analyses of single series of data. 

From the annual sunspot numbers, the linear and quadratic response values, 
g1 (r1) and g2(r1,r2l are estimated using equation (12) where again~ and 

Mrr(O) are to be determined in the analysis. 

Table 3 shows the values of the normalised root mean square differences 
between the 265 observed and modelled sunspot numbers for a range of fixed 

values of memory 9 s ~ s 14 and noise variance 0.0 s Mrr(O) s 3.0. 
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TABLE 3: NRMS Difference Values for the Sunspot Analysis 

Fixed NRMS for variance of the noise Mrr(O) values 
Delay 
Value 0.00 0.01 0.10 1.00 1.25 3.00 

11. 

9 1.050 1.058 1.064 1. 097 1.103 1.066 

10 l. 047 1.055 1.051 1.042 1.103 1.281 

11 1.066 1.074 1.054 1.069 1.076 1.213 

12 1.026 1.027 1.024 1.035 l. 039 1.085 

13 1.116 1.110 l. 083 1.066 l. 066 1.067 

14 1.066 1.065 1.053 1.077 l. 081 1. 073 

On the basis of James' criteria [23], there is a shallow minimum which 

spans several time delay and variance values. For values of Mrr(O)~ 5.0 

the residuals diverged to infinity. The James' criteria can be used to 

estimate the standard error of the minimum as a function of the rate of 

divergence of the residuals in each dimension. 

Table 4 shows the values of the normalised root mean square difference 

between the observed sunspot values from 1976 and the values predicted 

using the response functions estimated from the first 265 values. 
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TABLE 4: NRMS Difference Values for the Predicted Sunspot Numbers 

Variance NRMS for fixed delay values 
"' of Noise 

Mrr(O) 9 10 ll 12 13 14 

0.00 0.165 0.132 0.426 0.272 0.241 0.303 

0.01 0.133 0.220 0.435 0.435 0.149 o. 734 

0.10 0.174 0.132 0.364 0.272 0.206 0.206 

1.00 0.239 0.115 0.307 0.210 0.442 0.228 

1.20 0.257 0.109 0.304 0.219 0.456 0.246 

1.25 0.263 0.108 0.302 0.223 0.461 0.246 

1.30 0.268 0.109 0.301 0.227 0.466 0.245 

3.00 0.737 0. 753 0.314 (I) (I) (I) 

where eo means greater than 1010 

Again there is a broad minimum, centred at 1-' = 10 and Mrr(O) = 1.25, that 
spans a range of delay values, however, that is not surprising given the 

sample size. The standard error quoted on the annual sunspot number is 5% 

is a relative value for each observed number and this is not inconsistent 

with the value of 1.25 estimated for the whole sample of data. Figure 3 

shows the modelled and observed sunspot number, and Figure 4 shows the 

predicted and observed sunspot number using the response values estimated 

when iJ = 10 and Mrr(O) = 1.25. As can be seen in Figures 3 and 4 the 
sunspot numbers are both modelled and predicted well, in addition, Figure 4 

shows the sunspot number predictions extended up to 1991. The predicted 

annual sunspot number values are more accurate than previous linear and 

nonlinear autoregressive analyses [11]. For example, Figure 4 also shows 

the sunspot number predicted for 1991, given the data from 1710 to 1990. 

That sunspot value [24] was made using McNish's method [25] and agrees with 

the value for 1991 made with the formalism developed in this work which is 

effectively a 16 year prediction from 1975. 
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Figure 5 shows the response function values g1 (r1l and g2(r1,r2) estimated 

when~ = 10 and Mrr(O) = 1.25. As can be seen the quadratic response 
values, g2(r1,r2), are diagonally dominated and so confirms Yoshimura's 
prediction of the form of the mapping being a delayed logistic map. 

CHAOTIC BEHAVIOUR OF A DRIVEN NONLINEAR OSCILLATOR 

Nonlinear electrical resonators are known to be a valuable means to 
investigate the properties of dynamic nonlinear systems. A simple series 
RLC nonlinear resonator is known to follow a bifurcation route [18] to 
fully developed chaos is studied. The nonlinear element in the circuit is 
a variactor diode, which under forward voltage conditions acts as a 
nonlinear voltage dependent capacitor. Several investigators have explored 

the phase space with spectral density methods [18, 26, 27] and have noted 

that the phase space has distinctly different regions. As yet these 

regions, have not yet been thoroughly experimentally investigated nor 

theoretically explained. Linsay [18] , established the period doubling 
route to chaos and Testa et al [26] used spectral density measurements to 

confirm that the bifurcation diagram was that of a logistic map and that 
the convergence of the bifurcation sequence of voltages at a fixed driving 
frequency followed Feinbaurn's universal scaling law [28]. In the present 

work the voltage values {x(tl} observed across the inductive and capacitive 

components are analysed using the formalism developed in equation (11). 

The nonlinear resonator circuit is a series array of a resistor, inductor 

and capacitor (RLC), in which the capacitor, a Motorola MV2108 variactor 

diode, ~s the non-linear component. The circuit was driven sinusoidally by 
an AIRMEC 304 frequency synthesiser which has an output impedance of 500. 

The voltage across the capacitive and inductive components was considered 
as the output of the circuit, as in previous experiments using a circuit of 

this type [18, 29]. The time series sequences of voltage were recorded 

using a Gould DSOl604 20 MHz oscilloscope. The resonator circuit was as 

shown in reference [18], and the values of the components used were, 

resistance 1800, inductance 120~H and the capacitance of the diode is given 

approximately by 

19 



C{Vc) m CO 

{l - VC/~)~ 

where c
0 

= BOpF, ~ = 0.6V is the contact potential and ~ is the junction 
gradient, which varies from 0.5 for an abrupt junction to 0.33 for a graded 

junction. 

At low drive voltages the circuit behaved as a linear RLC circuit, as the 
drive voltage was increased, the circuit displayed the frequency 
multiplications observed by other investigators. As in previous 
investigations the bifurcation mode of 'phase' could be determined from 
displaying the input drive voltage versus the output voltage on the 
oscilloscope in the x-y mode and from the power spectral density of the 
time series displayed on the spectral analyser. The Lissajou figures 
displayed on the oscilloscope contained a number of loops equal to the 
bifurcation mode of 'phase' excited. Once a particular mode of phase space 
had been established, the real-time series input and output voltage signals 
were then captured by the digital oscilloscope and used to estimate the 
linear and non-linear response functions of the resonator circuit. 

The frequency of the driving signal was set at l.95MHz, and the voltage 
increased until a saturated chaotic state was obtained. The time series 
sequences of input and output voltage were captured and downloaded for 
analysis. The time series auto and cross moments of varying orders are 
estimated from a 1000 point sample of this time series data set, and from 
these the linear and quadratic response function values can be determined 
by the solution of equation (12), using standard matrix methods. 

The order of a delayed logistic map is N = 2 and so the linear and 
quadratic response values were estimated from the representation 
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and where the variance of {r(t)}, Mrr(O), and the memory of the mapping, 

1 s ~ s 10, are to be determined in the analysis. 

Table 5 shows the values of the normalised root mean square differences 

between the observed and modelled voltages for a range of fixed values of 

memory 1 s ~ s 10 and variance 0.0 s Mrr(O) s 0.01. 

TABLE 5: NRMS Difference Values for the Electrical Circuit 

Fixed NRMS for variance of the noise Mrr(O) values 
Delay 
Value 0.000 0.001 0.002 0.003 0.005 0.010 

~ 

1 8.182 8.196 8.190 8.190 8.191 8.193 

2 0.353 0.349 0.347 0.348 0.344 0.388 

3 0.281 0.225 0.207 0.232 0.256 0.789 

4 0.195 0.229 0.242 0.261 0.322 0.752 

5 0.147 0.229 0.237 0.436 0.246 0.349 

6 0.183 0.228 0.238 0.523 0.952 l. 842 

7 0.103 0.658 0.695 0.695 1.587 1.085 

8 0.082 0.280 0.254 0.254 0.882 CD 

9 0.094 0.176 0.620 0.620 5.790 CO 

10 0.200 1.020 0.280 CO CO CO 

(where CD means greater than 1010 ) 

The least residual is for a noiseless mapping, ie when Mrr(O) = 0.00, 
however using the James criteria the width of the minimum is broad. Figure 

6 shows a sample of the voltages observed and the voltages modelled using 

the estimated response functions clearly there is good agreement between 

the values. The response values estimated with the 1000 points of data are 

then used to predict the future behaviour of the voltage using the 

convolution 
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given the initial conditions {x(tl} for (1000-~) s t s 1000. The predicted 

values are then compared to the observed values in order to determine the 

nonlinear response functions' ability to determine the future behaviour. 

Table 6 shows the values of the normalised root mean square differences 

between the observed values and the values predicted using the nonlinear 

response functions estimated from the first 1000 points of data. Figure 6 

shows a sample of the observed and modelled voltages, clearly there is good 

agreement between the values. 

TABLE 6: NRMS Difference Values for the Predicted Points 

Fixed NRMS for variance of the noise M (0) 
Delay values rr 
Value 0.000 0.001 0.002 0.003 

I" 

1 1. 078 1. 07 8 1. 07 8 1. 078 

2 0.153 0.155 0.157 0.162 

3 0.132 0.138 0.132 cc 

4 0.107 0.134 0.136 cc 

5 0.098 0.176 0.181 cc 

6 0.098 cc cc cc 

7 0.083 cc 00 00 

8 0.059 0.390 00 00 

9 0.074 0.302 00 00 

10 o. 078 cc 00 00 
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The forward prediction is clearly more sensitive than the modelling. 
Figure 7 shows the predicted voltages for ~ = 8 and Mrr(O) = 0.000, 
together with the observed voltage values. The linear and quadratic 
response values at this point are given in Table 7. 
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Table 7: Estimated linear and quadratic response function values for the resonator circuit 

tl=1 tl=2 tl=3 tl=4 tl=5 tl=6 tl=7 t1=8 

gl(tl) 1.503 -0.602 -0.134 -0.403 0.138 0.019 0.432 -0.504 

g2(tl,t2) t2=1 t2=2 t2=3 t2=4 t2=5 ~=6 ~=7 ~=8 

t1=1 0.204 -0.621 0.144 0.570 -0.478 0.023 -0.137 0.095 

t1=2 -0.621 1.362 -0.495 -0.674 0.755 -0.195 0.005 0.140 

t1=3 0.144 -0.495 0.713 -0.381 -0.258 0.376 -0.049 -0.109 

t1=4 0.570 -0.674 -0.381 1.241 -0.533 -0.358 0.460 -0.141 

tt=5 -0.478 0.455 -0.258 -0.533 0.367 0.164 -0.382 0.121 

tt=6 0.022 -0.195 0.376 -0.358 0.164 0.298 -0.553 0.325 

tt=7 -0.136 0.055 -0.049 0.459 -0.382 ! -0.553 0.896 -0.337 

tt=8 0.095 0.140 -0.109 -0.141 0.120 0.325 -0.337 0.147 



The estimated response values accurately characterise the properties of the 
data, see Figure 6, and correctly predict the behaviour of the voltage, see 
Figure 7; they do not, however, represent a logistic map as inferred by 
for example, Testa [26] . 

As mentioned above, the phase space of the electrical resonator has several 
different regions and that the different regions will have different 
solutions to the equations of motion. If this is the case then the 
response functions estimated in one region should not be able to predict 
the time series behaviour in another region. To test this hypothesis the 
driving voltage was reduced by three orders of magnitude and the frequency 
set at 2.5MHz. In this region of phase space the circuit acts as a linear 
RLC resonator. 

The first, ~ = 8, values of the observed time series were used as the 
initial conditions for the prediction using the response functions 
estimated at fully developed chaos. Figure 8 shows a sample of the 
observed voltages and voltage values predicted using the response functions 
estimated at fully developed chaos. Figure 9 shows a similar comparison 
when the circuit is driven with white noise. As can be seen in both cases 
the estimated response functions yield reasonable predictions and the 
sample statistics are NRMS = 0.45 for the sinusoidal case and NRMS = 0.68 
for the white noise case in Figure 9 indicated that the predicted values 
are good. Figure 9 also shows that the fundamental response of the 
varactor diode is shorter than l~s, which is also evident if the input and 
output voltages are compared [29], and there is no evidence of the time 
constant 1 = 2~/w, invoked by Rollins and Hunt [30] to explain the finite 
memory, recovery time, of the diode at resonance. 

Figure 10 shows the predicted time series values for another sample of 
white noise data the NRMS = 3.27 value indicates that the predictive power 
is poor for that case. As can be seen there are intermittent regions of 
the predicted sequence which 'remember' the form of the time series 
sequence used to estimate the response functions. 

Thus, the estimated response functions are not consistent in their ability 
to predict the behaviour in different regions of phase space. They are 
local functions which are dependent on the form of forcing function used 
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when they were estimated. As this is the case, they should not be used to 
make inferences about the underlying physics of the process but may be used 
to characterise a particular data set and perform local predictions. In 

order to understand the underlying physics it is better, where possible, to 
modify the experimental design and obtain time series sequences of input 
and output data. The response functions estimated in that case are more 
global and are not dependent on the form of forcing function [24, 21]. 

CONCLUSIONS 

The results presented in this paper can be summarised as follows. A 
formalism based on the Volterra series has been developed that will enable 
the identification and study of nonlinear systems of arbitrary order under 
the influence of a stochastic process. A set of nonlinear integral 
equations were developed in terms of statistical time series moments of the 
physical observable. An absolute moment form of the equation set was then 
used to demonstrate that it is possible to extract and isolate nonlinear 
response functions when the input data are drawn from a general nonlinear 
stochastic process. The numerical example used in this work was chosen to 

demonstrate the attributes of the formalism, in that is is able to 

accurately identify the form of the nonlinear mapping between time series 
points. Two sets of experimental data were then analysed using a mixed 

linear and quadratic form of mapping, because the data sets were predicted 
to be of a logistic map form by previous workers. The linear and quadratic 
response functions of Wolf's sunspot number were estimated from the time 

series moments. The form of the estimated response functions confirms 
Yoshimura's prediction that they should be governed by a delayed logistic 

map. These estimated response functions were then used to predict Wolf's 
sunspot number value from 1975. The predicted values were found to be 
better than previous linear and nonlinear autoregressive fits to the data 
[ll] . The response functions for a series RLC circuit were then estimated 

from the time series voltage values. The linear and quadratic response 
functions estimated were able to predict the behaviour of the resonator 
under fully developed chaotic conditions and in a linear region of 
operation using the same form of forcing function and one white noise 

forcing function but not a second white noise sample. The response 
functions were not of a delayed logistic map form as inferred in previous 

work. This work has demonstrated that the formalism developed in equations 
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(5) and (11) can be used to characterise a particular sequence of data, 
however, the response functions estimated are local and forcing function 
dependent. This work has demonstrated that a single set of estimated 
response function values cannot characterise a wide region of the phase 
space of nonlinear physical situations. For this reason the analysis of 
single sequences of data are unlikely to yield insight into the fundamental 
physics underlying a nonlinear process. Where possible input and output 
sequences of data should be obtained and analysed. 
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FIGURE CAPTIONS 

Figure 1: 

Figure 2: 

Figure 3: 

Figure 4: 

Two sequences of data, using the same initial condition, one 

generated using the estimated response values, the other using 

the actual response values. 

Plot, using logarithmic scale on the y axis, of the absolute 

difference between the predicted and observed time series 

shown in Figure 1. 

Observed and modelled annual sunspot number for the years 

1710-1975. The modelled values were calculated from the 

response function values estimated from this data. 

Observed and predicted annual sunspot number for the 25th 

solar cycle. The predicted values are calculated from the 

response functiQn values estimated by the formalism, from the 

1710-1975 sunspot data. 

Figure Sa: First order response function values g1 (r1) estimated by the 

formalism from Wolf's sunspot data. 

Figure Sb: Second order response function g2 (r1,r2) estimated by the 

formalism from Wolf's sunspot data. 

Figure 6: · A sample of the observed and modelled output voltage from the 

resonator circuit. 

Figure 7: 

Figure 8: 

Observed and predicted output voltage from the circuit. The 

predicted values are calculated from the response function 

values estimated by the formalism, from a 1000 point sample of 

time series data. 

Observed and predicted output voltage from the circuit in the 

linear region. The predicted values are calculated from the 

response function values estimated, by the formalism, in a 

fully developed chaotic region. 
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Figure 9: 

Figure 10: 

BB39A 

Observed and predicted voltage output from the circuit when 
driven by a noise source. The predicted values were 
calculated from the response function values estimated, by the 
formalism, in the fully developed chaotic region. 

Observed and predicted voltage output from the circuit when 
driven by a noise source. The predicted values were 
calculated from the response function values estimated, by the 
formalism, in the fully developed chaos region. 
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Figure I : Two sequences of data, using the same initial condition, one 
generated using the estimated response values, the other using the 

actual response values 
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Figure 2 : Plot, using logarithmic scale on the y a~: is, of the absolute 
difference between the pred1cted and observed time series shown in figure 1 
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Figure 3 : Observed and modelled annual sunspot number for the years 

1710-1975. The modelled values were calculated from the response 
function values estimated from this data 
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Figure 4 : Observed and predicted annual sunspot number for the 25th solar cycle 
The predicted values are calculated from the response function values estimated 

by the formalism, from the 1710-1975 sunspot data. 
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Figure Sa: First order response function values g 1 (t1) estimated by the 
formalism from Wolf's sunspot data 
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Figure Sb : Second order response function g 2 ( t 1 , t 2 ) estimated by the 
formalism from Wolf's sunspot data 
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Figure 6 : A sample of the observed and modelled output voltage from 
the resonator circuit 

Observed 

Predicted 

Time (JJ. sec) 

-,.. 

\ 

Figure 7 : Observed and predicted output voltage from the circuit. 
The predicted values are calculated from the response function values 

estimated by the formalism, from a 1000 point sample of time series data 
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Figure 8 : Observed and predicted output voltage from the. circuit in the linear 
region. The predicted values are calculated from the response function values 

estimated, by the formalism, in a fully developed chaotic region 
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Figure 9 : Observed and predicted voltage output from the circuit when driven by 
a noise source. The predicted values were calculated from the response function 

values estimated, by the formalism, in the fully developed chaotic region 
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Figure 10: Observed and predicted voltage output from the circuit when driven 
by a noise source. The predicted values were calculated from the response 

function values estimated, by the formalism, in the fully developed chaos region 






