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Abstract

Starting from the definition of monopoles as topological obstructions,
one can formulate a universal principle for deriving monopole interactions in
any gauge theory whether in classical or quantum mechanics. In this paper,
using loop space techniques developed earlier for the classical monopole,
equations of motion are derived also for quantum monopoles in nonabelian
gauge fields. An additional gauge symmetry appears as a degeneracy in
solving the Euler-Lagrange problem, so that starting say from an SU(N)
symmetry, a ‘parity doubling’ of the symmetry to SU(N) x SU(N) is.ob-
tained. A beginning is made in exploring the resultant dynamics.
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1 Introduction

Through the work of Diracl!l, Lubkin?), Wu-Yang!®, Coleman(¥! and others, it is
now well-known that monopoles occur “naturally” as topological obstructions in
many gauge theories with compact gauge groups. However, it is still perhaps not
widely recognised that the dynamics of monopoles is then uniquely determined
as a consequence of the topology. Intuitively, that this is the case can be seen as
follows. The assertion that the particle carries a monopole charge is synonymous
with the statement that the gauge field has a certain topological configuration
in the spatial region surrounding that particle. If the particle moves, therefore,
the field around it will have to rearrange itself so as to maintain a configuration
consistenit with the particle at the new position still carrying the same monopole
charge since this charge, being topological, is by continuity conserved. Hence, it
follows that the field must be coupled to the monopole position in some specific

manner, or that there is an intrinsic interaction between them.

The problem may be formulated more precisely as follows. Suppose we take

the (free) action of a field-particle system as:
2= 3+ K (1)

where A% depends only on the field variables and .49, only on the variables
describing the particle, and stipulate further that the particle carries a monopole
charge, which according to the argument above means that there is a constraint
relating the field and particle variables. If we now extremise (1) under this
constraint defining the monopole charge, the equations of motion will no longer
be free equations of the field and particle separately, but coupled equations with

interactions between the particle and the field.

Now, this is not the conventional manner in which interactions between fields
and particles are formulated. Usually, one introduces into the action in addition

to (1) an interaction term depending on both the field and particle variables,
thus:

A= AL+ Ay + A, (2)

so that in extremising the full action A with respect to the dynamical variables,
one obtains explicitly through A; coupled equations containing interactions.
This conventional formulation involves, first, grafting a new concept of interac-
tion on to the original concept of a free action, and, second, introducing a degree
of arbitrariness into the problem through the choice of the interaction term A;.



Of the two formulations, that of monopole interactions outlined above would
seem to be much the more elegant, following, as it did, directly and uniquely
from the definition of the monopole charge as a topological obstruction and, in
the memorable words of Dirac, “one would be surprised if Nature had made
no use of it.”(!! In order to answer the question whether Nature has actually
availed herself of this possibility, we have first of course to ascertain what sorts
of interactions are implied by the above procedure for monopoles, so that we may
check the result against experiment. This involves solving a variational problem
which is not entirely straightforward since the gauge potential A, usually used
to describe the field has to be patched in the presence of monopoles, with the
patching conditions depending on the monopoles’ positions, so that a direct
attack using A, as variables becomes rather intractable. For this reason, some

new tactics will first have to be devised to bypass this difficulty.

The problem for the classical monopole was first solved for the abelian theory
in 1976/, by an ingenious indirect method, and again directly in 1986, The
interactions of a monopole were found here to be exactly the dual to those of a
classical source of the field, namely those described by the Maxwell and Lorentz
equations. Hence, the abelian theory being dual symmetric in the sense that
both the Maxwell field and its dual:

Fow = L€ F* (3)
are gauge fields each derivable, at least locally, from a potential:
F,=408A4,-08,A, (4)

“F,=08,A,-08,A, (5)

and that a monopole of F,, (*F,,) can equally be considered as a source in the
dual field *F,,(F,, ), the above result can be regarded as just an alternative, yet
apparently inequivalent, derivation of the standard electromagnetic interactions

conventionally formulated in terms of an interaction term in (2) of the form:
Ar=ce [ 4,dv*, (6)

where Y is the world-path of the particle. In this case, therefore, one can claim,
if one is so inclined, that monopole interactions as formulated above do occur
in Nature.

The result for the corresponding problem for the classical monopole in a

nonabelian Yang-Mills field, solved in 1986 using loop space techniques, is more



intriguing. The theory has then ostensibly no dual symmetry in that given a
Yang-Mills field F,, derivable from a gauge potential A,:

Fpu = 6vAu a apAu + ’Lg[A“, AV]7 (7)

the dual field defined as in (3) is not in general a gauge field derivable from a

potential; namely, no A, need exist for which:
*Fy = 8,4, — 8,4, +1ig[A,,A,)]. (8)

Furthermore, in contrast to the abelian case, a monopole in a nonabelian theory,
defined as a topological obstruction in the same way, bears no apparent resem-
blance to a source in the gauge field. Indeed, even their charges are different,
with the charges of a monopole being labelled by homotopy classes of the gauge
group and those of a source by representations of the same. Nevertheless, the
dynamics for the monopole as deduced from the constrained action principle out-
lined above is found to be still almost dual to that of a classical Yang-Mills source
as contained in the so-called Wong equations, which are obtained as the classical
limit of the standard Yang-Mills equations. However, this result, though intrigu-
ing, is not of much use in answering the practical question of whether monopole
interactions actually occur in Nature, since Yang-Mills theory is almost never
applied to classical particles in practice. We are therefore pushed further in this

paper to investigate the same problem for quantum particles.

To warm up, we shall solve the quantum problem again first for the abelian
theory. As in the classical case, we shall find that the equations governing the
dynamics of a monopole, as deduced from (1) under the constraint defining the

monopole charge, are exactly the dual of the Maxwell equation:
avF“y = —47"812’-7#7/’, (9)
and the Dirac equation:

(20" — m)Y = ed MY, (10)

governing the dynamics of a source. In other words, the monopole equations
turn out to be just those obtained by replacing in (9) and (10) the source charge
e by the monopole charge €, F,, by its dual *F,,, A, by fi“ as defined in (5),
and the source wave function 3 by the wave function ¥ describing the monopole.
Bearing in mind then that the system is dual symmetric in the sense detailed

above, one concludes that, in the quantum theory also, the constrained action



principle for abelian monopoles leads to interactions which occur in Nature,
since it may be regarded as just an alternative to the conventional approach of

defining electromagnetic interactions through an interaction term:

Ar=e / dzP A", (1)

in the action (2). The new approach, however, has the novel feature of giving
the result uniquely as a consequence of the definition of the monopole charge
without relying on an equivalent of the so-called minimal coupling hypothesis

required in the conventional approach for choosing the interaction term (11).

There is another notable feature in the result. In extremising the free action
(1) under the constraint defining the monopole charge, the system acquires, as
a degeneracy in the solution of the Euler-Lagrange problem, and in addition to

the original gauge symmetry under the transformations:

P — (1 +ieA)yp, A, — A,— O.A, (12)
a further local gauge symmetry represented by the transformations:

b — (1 +1iéA)d, A, — A, - 8,A. (13)

The full symmetry is thus extended to a local U(1)x U(1) where U(1) represents
a second U(1l) symmetry carrying a parity opposite to that of the first. This
phenomenon which we shall have occasion to discuss further will be referred to

in the future as a chiral doubling of the symmetry.

The abelian theory being dual symmetric, the above solution of the Euler-
Lagrange problem was not technically difficult, nor was the result obtained en-
tirely unexpected. For the nonabelian theory, however, the lack of a dual sym-
metry made both the answer to the analogous questions much more intriguing
and the steps leading to it technically much more complicated. As in the solution
to the classical problem mentioned above, because of the patching complication
in the gauge potential A,(z) as well as in the field tensor F,, (z), one is led to
reformulate the problem in loop space, which being co-dimensional and there-
fore highly redundant in its description, requires some nontrivial development in
techniquel”. The results we have obtained in this paper on the nonabelian the-
ory are therefore not so easily summarised. We can state nevertheless that the
equations of motion governing the dynamics of quantum nonabelian monopoles
are again uniquely derived from the same principles as before, though now in

loop space. Under some assumptions, these loop space equations reduce to an
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almost local form in which the monopole field ¥(z) is coupled to to a vector
field A,(x) in exactly the same way that an ordinary Yang-Mills field ¢(z) is
coupled to the ordinary Yang-Mills potential A,(x). However, this 4,(z) is not
the A,(z) in (8) since it has a relationship to the dual field *F},, which is differ-
ent to the standard Yang-Mills relation (7) between the potential and the field.
Furthermore, it has been shown that as in the abelian theory, a chiral doubling
emerges of the local gauge symmetry arising from a degeneracy in the solution of
the Euler-Lagrange problem. Thus, starting with a local SU(N) gauge symme-
try, we shall arrive at a symmetry of SU(N) x S IT(‘N ) where S WN ) represents
a second SU(N) symmetry carrying a parity opposite to that of the first. State-
ments of the results in detail, however, will have to be given in later sections

after a fuller development of the technology.

In this paper, we shall concentrate on the development of the theory and
the derivation of the equations of motion, the physical consequences of which,
however, have not yet been fully investigated. For this reason, only a very
preliminary discussion will be given in the last section on the question whether

nonabelian monopoles actually occur or are likely to occur in Nature.

2 The Quantum Theory of Abelian Monopoles

To set the stage for an attack later on the target problem of monopoles in a
general Yang-Mills theory, let us first investigate the specially simple abelian

case,.

We recall that for the classical monopole, we chose:
1 v
AS, = ~w—7rfd4:cFW(:c)F“ (), (14)
with F,, satisfying (4), and
A8, = —m/dr, (15)

with
dr = VdY?, (16)
for the action in (1), which was to be extremised under the constraint:
dy*
8. F¥{(g) = —47ré/d1'—}:i—(7-—)64(m - Y(7)), (17)
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the last being a differential version of the topological condition asserting that
there is a monopole charge ¢ all along the particle world-path Y (7). Indeed, in-
terpreting the abelian field as the usual Maxwell field, and hence € as a magnetic
charge, the r.h.s. of (17) is then just the magnetic current.

Suppose now that our monopole is to be described instead by a wave function

¥(z), then we would choose the free particle action as usual to be:
Mg = - [ di(e)0,7* — m)b(a). (18)
Instead of the constraint (17), we propose the following:
8, F*(x) = —4n&(2)7"d (=), (19)

in which we have just substituted for the classical current in (17) the quantum

current.

This last equation requires some care in its interpretation in that it is still
supposed to be a topological condition defining the monopole charge, albeit in
a differential form. Hence, if we were to integrate (19) over a finite volume, we
would still expect to obtain, for the monopole charge contained in that volume,
always some discrete quantised value, say 4mén for n an integer, which it will not
be in general if (z) is a continuous wave function. For this reason, we believe
that a fully consistent interpretation will be obtained only when one regards
(z) as a quantised field, so that the integral of the quantity on the right of (19)
will give 47é times the number of particles inside that volume, which will then
be discrete for any volume. In this paper, however, we shall work only with the
first quantised theory.

To find the equations of motion, we have now to extremise (1) under the
constraint (19) with respect to the field variables A,(z) and the particle vari-
ables 1,5(:1:) As explained in the introduction, direct variations with respect to
A, (z) are difficult because of patching. A useful tactic that we have learned in
the classical case is to adopt instead of A,(z) as field variables the field tensor
F,.(z), which, being gauge invariant, is also patch independent. The beauty in
doing so is that, by virtue of the Poincaré lemma, the constraint (17) that we
wish to impose ensures that, except at the monopole position, F,, is a gauge field
derivable from a gauge potential as per (4), thus removing exactly the intrin-
sic redundancy in F,, () which would otherwise be inadmissible as alternative

variables. We propose now to adopt the same tactic also in the quantum case.



At first sight, the efficacy of such a tactic may appear dubious. We know
already from the Bohm-Aharonov experiment that F,, is inadequate to describe
the electromagnetic interactions of a charged particle in quantum mechanics
which require the explicit introduction of a gauge potential. It seems thus fool-
hardy to give up A,(z) in favour of F,,(z) as variables in trying to derive the
laws of motion of a magnetic monopole which we expect to behave just as the
dual of the electric charge. On closer examination, however, this is soon seen
not to be the case. The wave function ¢-(z) describing the monopole, which
though carrying a magnetic charge is electrically neutral, is actually invariant
under the usual gauge transformations rotating the phase for which A4, acts as
the connection or parallel transport. What one needs, therefore, for describing
the Bohm-Aharonov type of phase effects for ¢(z) will not be 4, but presum-
ably some other potential A, bearing the same relation (5) to the dual field *F,,
as A, bears to the original Maxwell field F),,. We are therefore not losing out
in giving up A,(z) in favour of F,, (z) as variables - the only question is how,
in solving the variational problem for the equations of motion, a dual potential
will be recouped to take its place. As we shall see, this will occur in a natural

manner in consequence of a degeneracy in the solution.

In terms of F,,(z) and 9(z) as variables, the variational problem then be-
comes very easy. Introduce for each component of the constraint (19) a Lagrange

multiplier A,(z), one forms the auxiliary action:
A = L0+ [ @e)(@){0F(=) +treb(a)r (=)}, (20)

which is to be extremised under all variations of F,,(z) and (z). Extremising

A’ w.r.t. F,(z), we obtain:
F*¥(z) = =27e"?[0,A,(z) — 0,20 ()], (21)

and w.r.t. g(z):
(187" — m)(z) = 4N, () H(2). (22)
The first equation (21) says that:

Flu(z) = 4n[8,2u(2) — OuA(2)), (23)
or that *F,, is a gauge field derivable as per (5) from a potential:

A,(z) = 47 (), (24)



while the second (22) also reduces in terms of A into a familiar form:

(07" — m)(z) = EAur"P(=). (25)

Indeed, as anticipated in the introduction, these equations are just exactly the
dual of the standard Maxwell and Dirac equations for an electric charge moving
in an electromagnetic field.

In spite of its simplicity, the above derivation has two very interesting features
both of which have, as we shall see, parallels in the nonabelian case. First,
although we have started by eliminating the gauge potential A, as variables, a
new quantity ji“ has emerged in the form of the Lagrange multiplier A, which
couples obligingly to the field and the particle wave function in exactly the
manner that a gauge potential should. Second, although we have formulated the
variational problem entirely in terms of F,, and ¥ both of which are invariant
under the original gauge transformations (12), a new local gauge symmetry
(13) has arisen by virtue of the degeneracy in the solution of the Euler-Lagrange
problem. This new symmetry can be seen directly in the equations of motion (23)
and (25), or else in the auxiliary action (20) as follows. Under the transformation
(13), A’ in (20) acquires three new terms, the first from the transformation of
the wave function +(z) in the particle action (18), which cancels with another
coming from the constraint term due to the change in the Lagrange multiplier

Au(z) multiplied by the current. Finally, there is the term:
_ ﬁ [ d*28,A(2)8, P (z), (26)

coming again from the variation in A,(z) in the constraint term. Integrating
(26) by parts w.r.t. 8,, one easily sees from the antisymmetry of *F,, (z) in its
indices that this term vanishes, implying thus the invariance of A’ in total. As
we shall see, an invariance of the constrained action will also be obtained in a

quite analogous fashion in the nonabelian theory.

3 Formulation of the Nonabelian Theory

The first step is to write down explicitly the free action (1). For the field, the
standard Yang-Mills action is:

0 __ 1 4 e
AL = —m/d z Tr(F,, (z) F*(z)) (27)



which is considered as a functional of the gauge potential A,(z) through (7).
However, in the presence of monopoles, A4,(z) will have to be patched, and to
avoid the difficult problem of variations with respect to such patched A4,(x), we
seek again to replace them as field variables by patch-independent quantities.
The field tensor adopted for the abelian theory will no longer be suitable in the
nonabelian case since F),, is here only gauge covariant, not gauge invariant, and
hence still patch-dependent. For this reason, techniques were developed in which
the problem was recast in a loop space formulation entirely in terms of patch-
independent loop variables!”). Since these techniques have already been applied
with success to solve the problem for the classical nonabelian monopolel®, we

are tempted to adopt them here also for the quantum case.

The tactic employs as field variables the quantities:

)

FM(CIS) =i —1(0)66#( ) (

C), (28)
where ®(C) is the Dirac nonintegrable phase factor or Wilson loop. For each

parametrised loop passing through a reference point Py = {£5}:

C:{¢(s): s=0-—2m ¢0)=¢(2m) =) (29)
we define a phase factor ®(C) as:

d€ (8)

8(C) = Prexpig [ dsdu(£(s) =" (30)

where P, denotes ordering with respect to s, say from right to left, and F,(C|s),
defined for each C and s, is its logarithmic loop derivative. Thus geometrically,
F,(C|s) may be interpreted as a sort of loop space connection giving the change
in the phase of ®(C) in moving from point to neighbouring points in loop space.

In terms of ordinary space-time variables, F,(C'|s) takes the form:

FL(Cls) = 855, 0)Fun(€()®o (5,02, (31)
where by definition:
Bolsn,o1) = Prexpig [ dsAu(e(e) o (32)
Using (31), the Yang-Mills action can then be written as:
A= ~(axR)™ [6C [ ds Te(FL(Cls)FH(Clo))(de(s)/ds) 2, (33)

9



where

/ 5C... = / l}d"g(s')..., (34)

and N is a normalisation constant:

F= * I (s, (35)

8'#s
This is the form of A% we need in terms of F,(C|s) as variables.

Next we turn to the free action of the particle carrying the monopole charge.
Our experience with the abelian case suggests that we again represent the par-
ticle by a wave function 9 (z) and specify the action again by (18). The actual
form of the wave function, however, requires a closer scrutiny. In analogy to the
abelian theory, 1;(:1:), though carrying a monopole charge, is — say in chromody-
namics — “colour neutral”, and should not therefore transform under the usual
“colour” gauge transformations. However, we have seen in the section above
that as the theory develops, the wave function of the abelian monopole picks
up a transformation with respect to a new gauge symmetry, behaving then as
a charged representation of that symmetry. So, in a similar manner, we expect
that in the nonabelian theory, the wave function of a monopole may also pick
up a transformation with respect to a new gauge symmetry and behave as a
representation of that symmetry, neither of which properties however are we yet
ready to specify until we have first dealt with the constraint defining the charge
of the monopole.

We turn now to that crucial constraint under which the free action (1) is to
be extremised to give interactions between the field and the monopole. We have
learned from earlier work®h(?) that this is most naturally expressed in loop space,
which is fine, since we already had the intention above of working in loop space
in any case. We have learned further that the constraint can be stated either
in a global version in terms of the loop space holonomy, or else in a differential

form in terms of the loop space curvature, defined as:!

) ) .
GulCls) = Farrss FUC1s) = g PACIS) +islFu(Cle), RACla)l.  (36)
n ref. [6] and [7], a G, (C; s, §') was defined depending on two points s, s’ on the loop C.
This is actually unnecessary since for s # s, the quantity represents merely the holonomy Oy

over a loop T in parametrised loop space which corresponds only to a reparametrisation of the
zero surface at the loop C. Because Oy is by definition independent of the parametrisation of
I, G4 (C; s, 8') is then automatically zero when s # o',

10



The two approaches are equivalent and can be used alternatively depending
on convenience. In the present case, our aim is to generalise the analogous
constraint (19) for the abelian theory, which was in the differential form in
ordinary space-time. This suggests that we employ here also a differential version

of the constraint, but now in loop space.

To see what specific form this constraint should take, let us recall the anal-

ogous constraint for the classical casel®!:

dY*(1) d€”(s) .4
LD srie(s) - v(r)  (37)

G (Cls) = —47r§/drm(0|s)e“,,p,

where x(C|s) takes values in the gauge Lie algebra. In terms of ordinary space-

time variables,

¢’ (s)

GulCls) = 83 (5,0)6uup DaF(E(s))Be(s, 0 2, (38)
where D, is the ordinary covariant derivative:
Dy = 9, —ig[Au(=), ], (39)

and ®¢(s1,$2) as defined in (32) is an element of the gauge group, being the
parallel “phase” transport from s; to s;. One sees then that for the abelian
theory, where x(C|s) = 1, the constraint (37) reduces simply to (17). For
the nonabelian theory, (38) does not, strictly speaking, apply on the monopole
world-path, since A, which occurs in the covariant derivative D, does not exist
there. Nevertheless, accepting (38) at face value, we may rewrite (37) similarly

as:

D,"F™(z) = —4rj / dTK(T)%T(T)s‘*(z —Y(1)), (40)

with:
K(1) = ®c(s,0)x(C|s)®5" (s,0). (41)

In analogy to (17), one may then interpret the r.h.s. of (40) as the nonabelian
monopole current, and §K(7) as some sort of effective monopole charge. Notice
that in contrast to the original topological monopole charge defined as a ho-
motopy class of the gauge group, this new effective charge gK is an element of
the gauge Lie algebra. Both charges are conserved, but whereas the topological
charge is conserved simply by virtue of continuity, the effective charge §K is
conserved due to the specific form of the dynamics as defined by the constrained
action principle, and will for this reason be referred to as the Noether charge in

what follows.

11



Suppose now we proceed to the quantum case. We would be tempted then,
as in the abelian theory, to replace the classical current on the right of (40) by

a quantum current, say:
D,'F*(z) = —4xg((z)y* T ()™, (42)

where 7; represent the generators of the gauge Lie algebra. The quantum
“monopole current” on the right of (42) would transform like an element of
the algebra as it should if the monopole wave function ¥(z) transforms like a
representation of the algebra and T; are matrices representing the generators
in that representation. This suggestion is however not quite correct since, the
monopole being colour neutral, its wave function % should not transform at all
under the usual Yang-Mills gauge transformations U, and if it does transform
as a representation of the gauge algebra, it should do so only under a new type
of, say, U-transformations. Hence, as it stands, the Lh.s of (42) is covariant but
the r.h.s. invariant under U-transformations, while under U-transformations,

the L.h.s. is invariant but the r.h.s. covariant.

We can correct the above discrepancy in (42) as follows. Introduce at each
space-time point & two local frames for the gauge Lie algebra, one transforming
under U- and the other under U-transformations. Let w(z) be the matrix which
transforms from the U-frame to the U-frame at z. Then simultaneously under

a U-transformation:
P(z) — (1 +igA(z))y(z), (43)
and a U-transformation:
P(z) — (1 +igA(2))d(2), (44)
the matrix w(x) will transform as:
w(2) — (1 + igh(2)(@)(1 - igh(z)). (45)
Instead of (42), we then write:
D, F¥(z) = —4r§[d(z)w(z)y*Tiw ™ (z)d (z)]7, (46)

which will now have correct transformation properties under both U- and -
transformations, being covariant under the first and invariant under the second

type of transformations.

12



Returning now to loop space, we then write in analogy to (37) the defining

constraint for the monopole charge as:

G (Cls) = —4nj / A4 26,0 (B ()00 (s, 07 T:05 (5, 0) (2)}
B gua (s, (a7)
where
Qc(s,0) = w(é(s)) ®c(s,0) (48)

is the operator for parallel phase transport from the U-frame at the reference
point & = £(0) = £(27) to the U-frame at £(s) along the loop C = {£(s)}.
The constraint (47) is then what we wish to impose on variations in the dy-
namical variables when extremising the (free) action to deduce the (interacting)

equations of motion of the field-monopole system.

Both the action and the defining constraint for the monopole have now been
expressed in term of the patch-independent loop variables F,(C|s) suitable for
our purpose. These variables, however, have one great disadvantage in that, be-
ing labelled by the parametrised loops C as well as points on them as denoted by
the parameter s, they are much more numerous than the conventional variables
A, (z) which are labelled only by points in space-time. Since A,(z) are known
already to be sufficient for a full description of the Yang-Mills field, this means
that the loop variables must be highly redundant, and before they can be used
exclusively to reformulate the theory, this redundancy has to be removed by
imposing the appropriate infinite number of constraints on them. The beauty in
the present problem, as also in the parallel problem in the classical casel®), is that
the constraints required for removing the redundancy are exactly the conditions
(47) that we wish to impose in any case for dynamical reasons. That this is so
has been demonstrated in ref.[7]. The situation is then closely analogous to the
abelian case in the preceeding section where the constraint (17) on F),, guaran-
tees via the Poincaré lemma that the gauge potential A,(z) exists everywhere
except at the monopole position, which allowed us then to employ the redun-
dant set F,,(z) as field variables instead of A,(z). Similarly, for the nonabelian
theory, it can be shown that there is an extended Poincaré lemma which asserts
that the conditions (37) or (47) on F,(C|s) guarantee that a potential A,(z)
bearing the appropriate relations (28) and (30) to F,(C|s) exists everywhere
except at the monopole position, thus again removing the redundancy from the

loop variables.

13



With the question of redundancy then resolved, we can now formulate our
problem as follows. The equations of motion are to be derived by extremising

the action:
A = ~(niy? [s0 | " ds Tr(F,(Cls)F*(C|s))(dé(s)/ds) 2
~ [ d2d(@) (07" — m)i(2) (49)

with respect to the variables F,(C|s) and v(z), under the constraint (47).

4 Chiral Doubling of Gauge Symmetry

In the process of specifying the constraint defining the monopole charge in the
preceding section, we were led to the conclusion that the wave function 1/;(:::)
describing the monopole should belong to some representation of the gauge
algebra, but transforming under transformations other than, and in some sense
dual to, the usual Yang-Mills gauge transformations. This is intriguing, and
we think nontrivial, since a monopole charge was originally defined only as a
homotopy class of the gauge group, having thus no apparent similarity to a
source charge of the theory which is labelled by a group representation. The
assertion that now a monopole also belongs to a group representation means
the theory has acquired a more dual symmetric appearance than it at first
possessed. Thus, for example, we could put the monopole wave function z/.)(:z:)
in chromodynamics into a fundamental triplet representation, in which case it
would look almost dual to a quark which is also in a triplet. A hint that such
a state of affairs may obtain was already apparent in the classical nonabelian
theory where the monopole was found to obey equations almost dual to those for
a source, and where, in addition to the original topological charge, the monopole
was seen to acquire through the invariance of the dynamics a conserved Noether
charge §K(7) taking values in the gauge algebra. It now begins to look that
also in the quantum theory, the dynamics may also end up with a near dual

symmetry.

However, what we have found so far would not mean too much if the U-
transformations under which the monopole wave function % (z) transforms as
a representation do not constitute a symmetry of the dynamical system, and
it is now our purpose to investigate whether such a symmetry indeed exists.

We are encouraged to believe that this may be the case by our experience in
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the quantum abelian theory of section 2 where the U-symmetry appears as a
degeneracy in the solution to the Euler-Lagrange problem while extremising the
action. However, it should be stressed that whereas the abelian theory is known
to be dual symmetric which made a ﬁ-symmetry an inevitable consequence of
the ordinary U-symmetry, the nonabelian theory has no dual symmetry so that
the discovery of a U-symmetry for nonabelian theory would be far from trivial

and ought by no means to be taken for granted.

Let us first remind ourselves how various quantities in the theory transform
under U- and U-transformations. Consider first U- transformations, i.e. ordinary
Yang-Mills gauge transformations. The loop variables F,,(C'|s) we have adopted
to describe the field are by construction invariant under U-transformations up
to a constant (i.e. z- independent) phase rotation at the reference point ¢o.
This last rotation is trivial to handle, and in what follows it will be ignored —
in other words, we shall henceforth restrict ourselves for convenience to only
those gauge transformations which leaves the phase at the reference point o
invariant. It follows then that G, (C|s) occurring in (47) which is defined in
terms of F,(C|s) is also U-invariant. Next, the monopole wave function 3(z)
is also invariant under U-transformations, the monopole being colour neutral.
Finally, the factors Q¢(s,0) which occur in the constraint (47) are also invariant
under U for although ®¢(s,0) in (48) transforms under U by a phase rotation
at {(s), thus:

®c(s,0) — {1+ igA(£(s))}®c(s,0) (50)

this is cancelled in ¢(s,0) by an inverse transformation in w(z), as per (45).
Hence, the whole variational problem as formulated in the preceding section is
invariant under U-transformations, from which we conclude that the dynam-
ics of monopoles must, not surprisingly, also have the usual Yang-Mills gauge

symmetry.

Next, under U-transformations, we want 9(z) to transform as (44) and w(z)
as (45). The transformation laws of the other quantities under U have yet to be
specified, and the idea is, if possible, to choose them such as to exhibit an overall
symmetry. In principle, we could make the field variable F,(C|s) transform
under U, but we would rather not do so. From our experience in the abelian
theory, we anticipate the final symmetry to be a chiral doubling of the original
U-symmetry, namely U x U, so that the wave function ¥(z) of a source which
carries no monopole charge should not transform under a U-transformation just

as the monopole wave function is invariant under U. If so, for consistency, the

15



Yang-Mills gauge potential A,(z), and hence also F,(C|s) defined in terms of
it through (28) and (30) should also be U-invariant. From this, it follows that
®¢(s,0) is U-invariant too, and that Q(s,0) defined in (48) should transform
as:

Qc(s,0) L5 {1+ igA(£(s))} 0 (s,0)- (51)

This leaves the r.h.s. of (47) U-invariant as it should, since we have already
specified that F,(C|s), and hence also G, (C|s) to be invariant under U.

Applied to the action A° in (49), we obtain that under the U-transformation
(44):

AL 04§ [ deb(e)0, A=)y 9 (=), (52)
the action acquires an additional term. Now, in the conventional formulation
of the theory for a Yang-Mills source, such an increment of the matter action
under a U-transformation also occurs with 't/;(:c) here replaced by the source
wave function (z). There, this extra term is cancelled by another coming from
the interaction term in the action analogous to (11) due to the transformation
of the gauge potential A4,(z). Here, we have no interaction term in the action,
whose function has now been usurped by the constraint defining the monopole
charge. Hence, the effect of the increment in the action (52) will have to be
balanced by one from the constraint itself. This was the case in abelian theory
(section 2), where it was the Lagrange multiplier A (z), playing the role of a dual
potential A,(z), which transforms under U so as to maintain overall invariance.
Therefore, we expect that also in the present case, we shall have to look for
a transformation in the Lagrange multiplier for the constraint to balance the

variation (52) in the action.

Introduce therefore the Lagrange multipliers L**(C';s), one for each of the

constraints in (47) and form the auxiliary action:
A= A+ [ 60ds Te(L#(C;5){Guw(Cls) — JuClo)}), (53)

where J,,(C|s) is just the r.h.s. of (47):

Tu(Cls) = ~4m5 [ @2 ()2 (5, 0 T2 o, 01 (@)} 2 s4(o (o)),
(54)
The equations of motion are now to be obtained by extremising A’ w.r.t. un-
constrained variations of F,(C|s) and t¥(z). We know already that under U-
transformations, both the action (49) and the constraint (47) are invariant so

that L#(C;s) can be left invariant too. Our aim then is to seek further an
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appropriate U-transformation of L¥*(C; s) so as to leave A’ also invariant under

U-transformations.

We propose that under the transformation U in (44) L**(C;s) should trans-

form as:

I*(C;s) L I*(C;8) + AL¥(C; s), (55)
where:
ALP(Ci0) = e 056, 0) g 0o(e-, 02, (o0)

and R is a normalisation constant to be specified later. In the formula (56),
the factor Q¢(s-,0), as indicated by the symbol s_, is to be taken as the value
approached from below in s. This means (for € > 0):

Qe(s-,0) = lim Qc(s — € 0). (57)

The reason for this will be apparent later.

Let the change in A’ under U of (44) be represented by:

AA = AA + AA, + AA,, (58)
where:
A4 = § [ d2B(2)0.A(e)rd(2), (59)
AL = — / §Cds Te(AL™(C; 8)J,u(Cls)), (60)
AA, = / §Cds Te(AL™(C; 8)G, (Cs)). (61)

Then substituting into A4} the change ALW(C ;8) given in (56), we have:

e B L) gy

Ay = T2 [ 5Cdscuup e S (E(s)v"

56“( )
where we notice that, apart from the factors d¢P(s)/ds and d¢”(s)/ds which
depend on the tangent to the loop C at = = £(s), the rest of the integrand is a
function only of the space-time point z = ¢(s), and can therefore be taken out
of the integral over C. The integral can thus be easily performed by averaging
over all directions of the tangent to the loop C at that point:

B(s (s
/ 50@1%5—)‘12—9 = igP° / §Cds(d¢(s)/ds)?, (63)
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giving for (62):

—% / dz($(2)9,A(2)r"9(z)) / §Cds(dé(s)/ds)28% (= — €£(5)). (64)

Choosing the normalisation constant R in (56) to be:

Al =

R= 37" / 8§Cds(dé(s)/ds)26%(z — E(s)) (65)

ensures that AA} will exactly cancel in (58) the increment AA, from the free

action A°.

For the whole A’ in (53) to be invariant under U-transformations, we now
want A4, to be zero. That this is indeed the case can be seen as follows. We

first show that the loop space curvature G,,(C|s) can be written as:

. 6 g ' '
Guw(Cls) = 61'1_1'% 551\(3){6 1/2(“17"-5 ){F"(C’Is)gAV—Fv(C’Is)g,\,‘}@uz(‘n‘,7r—€ )}
(66)
here:
o O(ta, 1) = Prexpig [ dt [ dsF,(Cyls) 26 (67)
2y41) — texng‘/t1 /0 Sify t|$ Bt )

P; means ordering w.r.t. ¢, increasing in our convention from right to left, and

for C as given in (29), one defines:

G = {8(s) = ("(s) ~ &) + &, s=0—2m, t=0—n}.  (68)

One sees that by construction, C; varies, for t = 0 — w, from the zero loop at
the reference point &, for ¢t = 0 to C; = C for t = 7. Hence, if we choose to
call the path traced out by C; in loop space £, (which means of course a surface
swept out by C, in ordinary space-time), the quantity O(¢2,%;) in (67) is just
the parallel transport from ¢, to ¢, along the path ¥ in loop space. Now, it is
not hard to see that:

Wyl
{MG(w,t)}Q (mt') = igF,(Cls) (69)

for any t/, for, since C, = C , the derivative is with respect to the upper end-

point of the integral in {. Alternatively, one can obtain (69) by writing:
O(m,t') = Og(m,0) O5'(¢',0) (70)
in the notation of ref.[7], then using the relation there:

Ox(t,0) = 27'(C) (71)
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to express O(m,t') as:
O(m,t') = ®71(C) &(Cy). (72)
Hence we have:
)
O(m,t) O (m,t) = —{&7Y(C
om0} 07 ) = - O
which, from the definition (28) of F,,(C|s), is (69) as desired. Similarly, we have:

@("’t')asf(s)

Applying (69) and (74) to the r.h.s of (66), one then easily obtains the result
G, (C; 8) as claimed.

®(C)}, (73)

O Y(m,t') = —igF,(C|s). (74)

Substituting (56) and (66) into (61), we obtain:

A Al 1 pypo -1 6A(£(3)) df,(S)
AA3=§/6Cdse Tr{ﬂc (a1 0) 5y 8 Qo (s-,0) =5 2

51'1—.0 5§A(3) —— {07z, — ) F,(C|s)gr, — F,(C|38)gr,} O *(mr,m — e')}} ,» (75)

with Q(s_,0) defined as in (57). Assuming next that both the limits e — 0 and

¢ — 0 can be taken outside the integral, we obtain, on integrating by parts
w.r.t. £(s):
1

A Hvpo 62A(£(8)) - dfa(S)
AA; = eléu—l-.lof 6CdsTr{Q (s —¢,0)e ————6&‘(3)6{”(3)00(8 €,0) P

O~ (m,m — €){Fu(Cls)gan — Fu(Cls)gru}@*(m,m — )}, (76)

which by contracting indices with g, and g,, in the second factor gives two

terms with factors of the form:
P (O Iy 0 \({0)
Pl —— 2 —_ (77)
s (o)eer(s) € aEH(s)8E9(s)
both of which vanish by symmetry. We conclude therefore that AAQ is indeed
zero, or that our monopole-field system as embodied in the action A’ of (53)

admits U-transformations as a gauge symmetry.

We note that the arguments presented in the preceding paragraphs, though
considerably more elaborate, are basically very similar to those for the abelian
theory given at the end of section 2. We are thus led to the very intriguing and
rather surprising result that although there is no dual symmetry in the Yang-
Mills theory and monopoles start out there as very different objects from sources,
the theory nevertheless experiences a chiral doubling of the gauge symmetry in
close analogy to the dual symmetric abelian case.
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5 Equations of Motion

According to the formulation of section 3, the equations of motion of the monopole-
field system are to be obtained by extremising the action (49) w.r.t. the field
variables F,(C|s) and the particle wave function %(z) under the constraint (47).
Equivalently, they are obtained by extremising the auxiliary action (53) w.r.t.

unconstrained variations of the same variables.
In A’ of (53), only the following two terms depend on the wave function %(z):
== [ d'2d(@) (0" — m)(e) ~ [ 6Cds Te(L#(C;8)Tu(Cls)),  (78)
with J,,(C|s) as given in (54). Varying then A}, w.r.t. z(m) and putting the
coeflicient equal to zero, one obtains as one of the equations of motion:
(107" = m)P(2) = §Au(2)r"P(2), (79)
with:
A,(2) = 4 [ 8045 upe2o(5,0)27 (C50)05'(5,0) itz — (). (50)

One sees that equation (79) is exactly the dual of the ordinary Yang-Mills equa-
tion for a colour source moving in a gauge field described by a potential A,(z).
A new space-time local quantity fi,‘(m) which we may call the dual potential has
emerged to take the place of the ordinary potential A,(z), and this A,(z) is
indeed given in terms of the Lagrange multiplier L,,(C;s) as we anticipated.
Moreover, under the U-transformation (44), it is easily shown using (56) and
(51) that A,(z) transforms as:

Au(@) — Au(z) - 8uA(z) +ig[A(2), Au(2)], (81)

exactly as a gauge potential should, and leaves therefore the equation (79) in-

variant. The equation is invariant also of course under U-transformations.
Next, the terms of A’ in (53) depending on the field variables F,(C|s) are:
Ay = —(anN)™ [ 6Cds TH(F.(Cls)F(Cls))(de(s)/ds)
+ / §Cds Te(L* (C; 8)G,n (Cls)). (82)

Substituting (66) into the second term of (82), and integrating by parts w.r.t.
§¢*(s) before taking the limit € — 0, we obtain:

AL = —(4rN)! / §Cds Te(F,(C; s)F(C; 8))(dé(s) /ds)~?

~ [ 8Cds s [( . gf(s)“"(c*‘)> (Fu(Cls)gn — Fu(Clo)gn)| -(83)
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Varying the above expression w.r.t. F,(C|s) and putting the variation equal to

zero, we obtain another of the required equations of motion as:
)

86.(s)

As for the other equation (79) the equation (84) is also invariant under both U-

and U-transformations, as can be seen in the second case by using (56) with due

F,(Cls) = —(4x ) (df})) Lu(Css) (84)

care in taking the limit ¢ — 0 only after performing the differentiation w.r.t. £(s)
as was specified above. Notice that we have actually two equivalent forms (36)
and (66) for the loop space curvature G, (C|s), either of which can in principle
be used in the derivation above. However, had we used (36) instead we would
have obtained a form of the equation of motion which is not explicitly covariant,

and more work would have been necessary to arrive at a covariant form.

Together then with the constraint equation (47), the equations (79) and (84)
represent the complete set of equations governing the motion of our monopole-
field system, and all the equations have been shown to be invariant or covariant
under both U- and U-transformations. We have therefore already achieved the

prime objective we have set ourselves at the beginning.

These equations, however, are unfortunately a little unwieldy in that they
are expressed in terms of unfamiliar field variables in loop space, the physical
significance of which is a little hard to appreciate. We seek therefore to recast
the equations, if possible, into a more transparent form in terms of more familiar
space-time local variables, as was done with the corresponding classical equations
in ref[6] leading to interesting conclusions. We have already done so for two of
the equations, namely (79), where the field appears only in terms of the space-
time local “dual potential” A,(z), and (47), which was shown to be equivalent
to the space-time local equation (46). We shall try to do the same now also for

the remaining equation (84).

We note first that by the antisymmetry of L,,(C;s) in its indices p and v,
the equation (84) implies the Polyakov equationl®:
)
@S—)Fu(olﬂ =0, (85)
which is just Yang-Mills equation written in loop space notation. Indeed, if we
substitute for F,(C|s) the formula (31) and using the fact deducible from (32)

that:
) ” iy !
{_‘Sf“(s) ‘I’C(S,O)} ®;°(s,0) =1igA,(€(3)), (86)
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we have instead of (85)

dﬁ“(S)

D*Fu((s)) 2 = 0, (87)

which is to hold for all C' and s, and hence for all d¢¥(s)/ds. This will be true
if and only if the Yang-Mills equation:

D'F,(z) =0 (88)

is satisfied for all z.

More generally, to write the original equation (84) in terms of ordinary space-

time local variables, we write it first as:

F,(C|s) = —(4nN) (di(:)) 65:5(3)

(25"(5,0)06(s,0) L, (C; 8)25 (5,0)0%(5,0)) .
(89)
We can then rewrite (89) as

re(e(a) %) — (ar) (dé( )) 77 8 (5, 0)021 (5,0) x

{07 (2006100 Lon (€391 05 (5,00} = (B0 5,0) Lon(C30) 05 50

x Qc(s,0)25'(s,0), (90)

with:
Lw(C;8) = jeun L7 (C5 9), (91)

and:
n(6(e) = { gorstic(,0)} 05(,0), (92)

which by the definition (48) of Q¢(s,0) and the ordering convention in the
definition (32) of ®¢(s,0) is a local quantity depending only on the point £(s),
explicitly expressible in fact as:

M) = (Bw(e)w™ (2) + igw(2) A, (2)w ™ (2). (93)

Hence, multiplying both sides of (90) by (dé°(s)/ds)é*(x —&(s)) and integrating
w.r.t. C and s, we obtain, using (80) and (48):

F*(z) = " w™(a) {0 A, () — [n.(z ]} (94)
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Equivalently, we can rewrite (94) as:
Fulz) = (@) { DyAy — Duds }u(=), (95)

with:

D, = 6# = ["lu(‘c)’ ], (96)
being the covariant derivative w.r.t. the connection n,(z). Both equations (94)
and (95) involve only quantities local in ordinary space-time, and either can be
taken as the third equation of motion in addition to (79) and (46). However,
because of the complications of patching, their meaning is subject to the same

reservations as were mentioned in the derivation of (46) in section 3.

The equation (94) or (95) is covariant w.r.t. U-transformations since on the
r.h.s. only w(z) and w=(z) transform under U in accordance to (45). Under U,
however, the Lh.s. is invariant but the r.h.s. does not seem to be an invariant
quantity. This would be surprising if it were true since the equations were
derived from (84) which was shown already to be invariant. The reason for this
apparent discrepancy is that the U-transformation on L#*(Cj; s) has been defined
in loop space with a certain limiting convention which is not easily represented
in ordinary space-time local notation. When handled with care, however, the
correct transformation properties will obtain, as can be seen as follows. Starting
from the formula (80) for 4,(z), we deduce using (51) and (55) that the change
in A,(z) under the U-transformation (44) is given by:

AA,(2) = ig[A(z), Au(z)) + lin%/6Cdseﬂ,,p,e°‘ﬂp”ﬂc(s,0)ﬂal(s —¢,0)

SA(£(s)) —17, 97 () d€s(s) o4
WQC(S — 6,0)05 (S’O)T_S;—‘S (z — £(s)). (97)

On letting ¢ — 0, this yields the standard transformation law for A,(z) as
exhibited in (81). Consider next the derivative 8,4,(z). Usually, one would
expect that under a U-transformation, the change in 8,4,(z) would just be
8,AA,(z). However, this is not what obtains if one applies the rule of taking
first the derivative before taking the limit ¢ — 0 as stipulated above. It can
easily be seen from (97) that one obtains instead:

A{9,Au(2)} = 0,AAL(2) + [nu(2), BA(2)], (98)

with an extra term. With this extra term in the transformation of the derivative
of A,(z), it can then easily be checked that the equations (94) and (95) are indeed

invariant under U-transformations. The occurrence of an extra term in the
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transformation of the derivative of fi“(:c) presumably means that the equation
(95) and its U-transformation which were originally defined in loop space are
not really local in space-time in the usual sense. Their true significance in space-
time language and the mathematical structure underlying them have yet to be
clearly understood.

Nevertheless, being much simpler than their loop-space counterparts, the
local-seeming equations (79) and (95), together with the original constraint
equation (46) are likely to be of use for a first exploration of monopole-field
dynamics. For example, by comparing (79) with the corresponding equation for
a Yang-Mills source, which is of the same form, one deduces that the monopole
wave function 9 is coupled to the ‘dual potential’ /1“ in exactly the same way
that a source wave function % is coupled to the ordinary potential A,, though
with a coupling § instead of a coupling g. The equation (46), on the other hand,
though seemingly also the dual of the usual Yang-Mills equation:

D,F*(z) = —4mg[th(z)y" T (z))", (99)

is in fact quite different in structure in that the covariant derivative D, in (46)
is still defined as (39) in terms of the ordinary potential A, and coupling g just
as in (99), not the ‘dual potential’ /1,, and coupling § as one would expect for
exact duality. Further, the equation (95), which may be regarded as the dual
equivalent of (7) in giving the ‘dual field’ *F),, in terms of the ‘dual potential’
A,,, involves in addition the potential A, and the coupling g, spoiling thus again
exact dual symmetry. At a preliminary level, therefore, it would appear that a
primary difference between the dual and standard Yang-Mills theories is in the
gauge-boson self-coupling. Apart from duality, the gauge-boson’s coupling to
matter is similar in the two cases, but its self-coupling is not. In the standard
theory there is just one coupling constant coupling the gauge-boson both to
matter and to itself, whereas in the dual theory, the gauge-boson couples to
itself with one coupling constant g, but couples to matter with another § which
is related to g via the Dirac quantisation condition!, which for the SO(3) theory
reads as follows:

9§ =n/4. (100)

This difference in coupling is probably the first signature to look for when asking
the practical question whether monopole interactions as deduced above do or do

not occur in nature.
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