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Abstract 

In this report we examine a domain decomposition technique for the numerical solution of some semi­

conductor devices. The domain decomposition method employed here is non-overlapped and is based 

on a variant of the simple shooting method. A number of different one-dimensional examples are 

given. The study reported here can be easily extended to two and three-dimensional semiconductor 

simulations. 
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1 Introduction 

Although the numerical simulation of semiconductor devices in two dimensions is well estab­
lished, many of the numerical techniques used are not suited to implementation on parallel 
computers. Divide-and-conquer algorithms have been demonstrated most suitable for such 
simulations on coarse-grain parallel computers. Ideally, one would require that the computa­
tional domain split into a number of subdomains, yielding a family of independent subprob­
lems of lower computational complexity. These independent subproblems are then combined 
to generate the solution for the whole computational domain. In a parallel implementation 
this combination will result in data communication between subproblems. This takes place 
only when the family of independent subproblems has been solved. The nature of domain 
decomposition [2] dictates that this communication is only between neighbouring subprob­
lems. This has the advantage of reducing the total communication time within a network of 
processors, assuming each subproblem is being solved in one processor. The consistency of the 
subproblem solutions with the original problem is ensured by imposing interface conditions 
between these subproblems. 

The current domain decomposition method is based on the concept of simple shooting 
method [4], and we employ a fixed point iteration technique developed in [2) to solve the dis­
cretised interface operator equation. The interface operator equation represents the interface 
problem. Its discrete version is usually represented by a full matrix but is not constructed 
in our approach. Some preliminary results for p-n junctions were reported in [3]. In this 
report, the algorithm is tested using a series of one-dimensional semiconductor devices. The 
study also provides some insight into the extension of the method to two-dimensional and 
three-dimensional simulations. 

2 The Mathematical Model 

The classical drift-diffusion differential equations governing the electrical behaviour of semi­
conductor devices [1] are given by 

ap 1 
- = --V'·J - R at q p 

an = .!.v.Jn- R 
at q 

(1) 

(2) 

(3) 

where 1/J denotes the electrostatic potential, JP and Jn the hole and electron current concen­
trations respectively, R the net recombination rate, q the electronic charge, f the permitivity 
of the device material, r the doping function, p the hole concentration and n the electron 
concentration. 

The currents are derived from the Boltzmann transport equation and are given by 

(4) 

(5) 
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where Dp and Dn are the diffusion constants for holes and electrons respectively, and J,Lp and 
JLn are the mobilities for holes and electrons. Introducing the quasi-Fermi potentials </>p and 
<l>n defined by 

p = nie(t/>p-t/J)/VT 

n = nie(t/J-t/>n)/VT 

(6) 

(7) 

where VT is the thermal voltage (VT = J(Tjq), K is the Boltzmann's constant, T is the abso­
lute temperature, and ni is the intrinsic concentration of electrons in the device. Substituting 
(6) and (7) into the current equations (4) and (5) yields 

(8) 

(9) 

For a junction in an off state, there is no current flowing through the contacts and it is 
sufficient to model this situation with Poisson's equation (1). For computational reasons the 
equations and variables are scaled to obtain dimensionless quantities. The symbols of the 
above unsealed variables are adopted as the symbols of the scaled variables in the subsequent 
scaled equations. Therefore for one-dimensional devices in the off state, we require the solution 
of the following scaled two-point boundary value problem: 

E (10) 

subject to the Dirichlet boundary conditions 1/'(0) = V0 and '1/1( w) = Vw. Here we have 
measured 1/1 in units of thermal volts, x in units of the De bye length ( £2 = fl(T / q2ni ), 

Q(x, 4>) in units of ni. The source term is given by 

where f(x) is measured in units of ni. Assuming Boltzmann statistics and suppose the scaled 
thermal equilibrium condition pn = 1 holds at the contacts, we obtain the scaled quasi-Fermi 
potential boundary values [1] as 

</>p(O) = Vo + ln ( -f(0)/2 + V(f(0)/2)2 + 1] (11) 

and 

<l>n(w) = Vw -ln [r(w)/2 + V(f(w)/2)2 + 1] (12) 

As the device is in the off state (11) and (12) fix the values of the quasi-Fermi potentials 
throughout the device. 

3 The Numerical Scheme 

3.1 The Domain Decomposition Method 

We adopted a non-overlapped domain decomposition at the level of the physical problem. 
The subdomains are joined only at the interfaces to form the global domain. Hence each of 
the subproblems can be completely decoupled from the others. This is particularly suitable 
for the coarse-grained parallel computational environment. In this report, we concentrate on 
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the nonlinear elliptic boundary value problem (10). The domain n is subdivided into s + 1 
subdomains with the following s + 1 related nonlinear elliptic boundary value subproblems, 

d2u1c 
dx2 + Q(x, u~c) = O, u~c(xlc_t) =Aie-l! u~c(x~c) = A1c {13) 

with x0 = 0 and x,+I = w, u1{0) = 1/1(0) and u,+I(w) = 1/l(w). Suppose u1c = u~c(x; ..\)denotes 
the solution of (13) in Xic-1 < x < x1c, where ..\ = [At A2 · · · A,]. In order to have unique 
values of 1/l'(x~c), k = 1, 2, · · ·, s, we require a vector ..\ such that the following vector defect 
equation is satisfied, 

{14) 

The continuity of the function 1/1 across the interfaces is implicit in {13). The vector defect 
equation represents the reduced interface problem and guarantees the continuity of 1/1' across 
the interfaces. H..\= ..\* is a root of D(..\) = 0, then the function 

{ 

ALt X= Xk-1 

1/l(x) = u~c(x;..\*) Xk-1 < x < x1c, k = 1,2, · · ·,s + 1 

Ak X= Xk 

(15} 

where Ai) = V0 and A:+I = Vw, is a solution of (10). The method can be considered as a 
variant of the shooting method [4). In the two subdomain case, the defect equation is a scalar 
equation involving one interface and thus only one unknown. In the multidimensional case, 
the Jacobian matrix J(..\) = D'(..X) is a symmetric tridiagonal matrix [2]. 

3.2 Solution of the Interface Problem 

In order to solve the interface problem, i.e. the defect equation, without computing the matrix 
coefficients of the Jacobian matrix, a fixed point iteration technique is applied. The vector 
defect equation is rewritten as 

..\ = G(..\) =..\-aD(.\) a -:fi 0 (16) 

and we employ the scheme 

,x(m+l) = ,x(m) - amD(..X(m)) m= 0, 1, 2, · · · (17) 

Here am is an adaptive parameter [2] given by 

IID(,X(m-l))lh 
Gm := llm-1 I!D(..\(rn))- D(..\(m-1))112 (18} 

In order to evaluate D(..X(m)), we need to solve the s + 1 subproblems as given by (13). 
Since the subproblems are nonlinear, applying Newton's iteration scheme to (13) leads to 

( 
d2 + 8Q) ( (v) _ (v-1)) __ d2 u1c (v-I)_ Q( (v-1)) 

d 2 a ulc ulc - d 2 x, ulc (19} 
X U1c X 

Here v denotes the number of the Newton iteration loops for the solution of a subproblem, 
and clearly v = v( m, k ). A second order finite difference technique is used to discretise (19) 
leading to a set of tridiagonal equations and we use U1c to denote the discrete approximation 
of Ulc. We take u~O) = U~c(x; ,x(m-1)) and iterate untili!Ut) - ut-1)llt < 6. Our experience 
shows that v is usually 1 except when m = 1 if 6 is chosen as 0.01. In choosing this 6, one 
can minimise the computational work involved in the Newton iterations. 
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3.3 Performance Monitor 

Let N denote the total number of nodes in the entire computational domain. One work unit is 
defined as the computational work required to perform one Newton iteration on a mesh with 
N- 2 unknowns. Also, let N~~; be the number of nodes in k-th subdomain, k = 1, 2, · · ·, s + 1 
and M be the number of updates in order to obtain a converged solution _x(M) along the 
interfaces by using the fixed point iteration scheme given by {17). Suppose there is a set 
of s + 1 concurrent processors and that the connectivity is the same as the layout of the 
subdomains, then it is possible to estimate the total computing time by using the following 
total work unit count 

M 

T = L ma.x {~-;v(m,k)} 
m=l 1 ~"~•+1 -

{20) 

where v(m, k) is the number of Newton iterations required to solve the k-th subproblem 
during the m-th update of the interfaces. Clearly, when s = 0, i.e. no interface, we have 
T = E~=l v( m, 1) in which case the number of Newton iterations is the total work unit count. 

4 Some Basic Devices 

In the following numerical tests, we have used silicon as the semiconductor material of which 
the permitivity is e = 1.1 x 10-16F(JLm)-1 • The ambient temperature is assumed constant at 
300°Kandthusni = 1.48x1o-2(JLm)-3 • Taking!(= 1.38xlo-23J°K-1 andq = 1.6x1o-19C, 
we can evaluate the normalisation constants. 

A series of different sizes of devices with different doping functions are described in this 
section. We look at basic devices, including p-n junctions, p-i-n junctions and thyristors, but 
excluding transistors. The reason being that an extra Dirichlet boundary condition applied 
at the emitter immediately decouples the problem into two independent p-n junctions [1]. 

4.1 p-n Junctions 

A p-n junction consists of a p-layer and an n-layer with a transition region between the two. 
It is the basic structure found within all more complex semiconductor devices. It also has 
a variety of functions on its own, such as current rectification, amplification, switching, and 
oscillation. A linearly graded junction can be defined by the doping function 

(21) 

where Na is the acceptor concentration and Nd is the donor concentration. By taking Na = Nd 
and w = w1' + w2 , the doping profile is symmetric about x = w/2, otherwise the profile is 
non-symmetric. 

In order to understand more about the present numerical scheme, we have constructed 
two other doping profiles such that the acceptor and donor concentrations are equal to N. 
These two doping profiles which result in p-n junctions, are given by 

(22) 
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(23) 

where m1 =~InN, m2 =~InN, and the width of the device is w = Wa + Wd. Both of the 
w 0 wd 

diffused layers in (22) and in (23) have Gaussian-type distribution. rn(x) gives a symmetric 
doping profile about x = w/2 and r 12(x) gives a symmetric doping profile only when w0 = wd. 

4.2 p-i-n Junctions 

A typical p-i-n junction is the microwave power limiter. It consists of a p-type diffused layer 
with an acceptor concentration of Na, width w0 , at one end, and an n-type region with a 
donor concentration of Nd, width Wd, at the other end. In between the two regions, there is 
a central n-type with a donor concentration of N, of width Wb. The total width of the device 
is w = Wa + Wb + wd. The doping function of a typical p-i-n junction is given by 

(24) 

where m1 = ~ln(Na/Nb), and m2 = ~ln(Nd/Nb)· Both diffused layers have Gaussian-type 
w 0 wd 

distributions. 

4.3 Thyristors 

Thyristors are high-power switching devices that are widely applied in power controlling and 
conversion equipment in the field of power electronics. A thyristor has a p-n-p-n four layer 
structure with two main electrodes connected to outer p and n layers and a control gate 
connected to either of the intermediate layers. In transient calculations [1], the following 
hypothetical diode is always used to prepare initial data to the thyristor calculation, 

(25) 

whereas the actual thyristor has the following doping function which only differs in one sign 

(26) 

Here 

The total width of the device is w = Wne + Wpb + Wnb + Wpe. All diffused layers have Gaussian­
type distribution. 

5 Numerical Examples 

In the following section we present the results from a number of numerical experiments using 
the techniques and test problems described above. 
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Table 1 shows the series of examples to be tested. The various dimensionless quantities 
are multiplied by their respective normalisation constants to give the corresponding· physical 
values. All tests were performed using double precision and solved on the entire domain 
without decomposition as a standard set of results for comparison with the subsequent domain 
decomposition results. We use superscript S to denote a symmetric doping profile. Table 2 
shows the total number of grid points N and the corresponding mesh size h used in each tests. 

Where the computations performed on the entire domain, the stopping criterion used 
was llq,(v)- q,(v-1)112 < 17, where \If is the discrete approximation of 1/J. In the case of domain 
decomposition, the stopping criterion was 11-X(m) _ _x(m-t)ll 2 < TJ. Here TJ is chosen as 0.5x 10-10 

to avoid getting too close to the machine accuracy of double precision arithmetic which is 
usually around 12 digits. 

The initial approximation, i.e. _x(o) was \11( c) == ( 1/J(O) + 1/J( w ))/2 where c satisfies r( c) = 0, 
otherwise it was taken as either min{ t/'(0), 1/J( w)} when r < 0 or max{ 1/J(O), 1/J( w)} when r > 0. 

r(x) 1/J( 0) 1/J(w) wL other widths acceptor/ donor 
XVT (Jtm) (Jtm) concentration (Jtm)-3 

rro 0 10 180 w1 L == 30, w2L == 150 Nan; = Ndni == 1480 

r1o 0 10 180 w1L = 10, w2L = 130 Nani = Ndni = 1480 

rrt 0 10 180 None Nn; == 1480/(1- e-1) 

rr2 0 10 180 WaL == WdL = 90 Nan; = Ndni = 1480 

rl2 0 10 180 WaL = 70, WdL = 110 Nani == Ndni = 1480 

r2o 0 10 3.5 WaL = 2, WbL = 1 Nani = 109 , Nbni = 103 

Wd = 0.5 Ndni = 4 X 107 

r3o 10 0 700 WneL = 27.5, U!pbL = 37.5 Nueni = 109 , Npbni = 2 X 107 

WnbL = 510, WpeL = 125 Nubni = 40, Npeni = 2 X 107 

W0 JJL = 60 

r31 10 0 700 Same as Problem rJo Same as Problem r3o 

Table 1: Definitions of the test problems. 

I Doping I Mesh 

r1o(x) N= 91 181 361 721 1441 

ru(x) h== 2.000 1.000 0.500 0.250 0.125 

rt2(x) 
r2o(x) N== 141 281 561 1121 2241 

h= 0.025 0.0125 0.00625 0.003125 0.0015625 

r3o(x) N== 701 1401 2801 5601 

rat (x) h= 1.000 0.500 0.250 0.125 

Table 2: Meshes used for the test problems. 

We examine the convergence of each test by recording the total work unit T and the number 
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of iterations M to update the interfaces assuming a constant mesh size in each subdomain. T 

is only compared with the standard results because M only records the number of iterations to 
update the interfaces. This number of iterations can be reduced or increased with a different 
type of fixed point iterations. In the following tables "N.A." means not applicable the given 
number of grid points cannot be shared equally among the subdomains and "oscillation" 
means the error IIA(m) - )_(m-t)ll2 is oscillating instead of decreasing. 

5.1 p-n Junctions 

We first present the results of the simple p- n junction using profiles rf0 , rf1 and rf0 . These 
are the symmetric forms of the profiles with the junctions at x = w /2. 

The results for Problem rf0 are shown in Tables 3 and 4. For s + 1 = 2, 4, 6, 10, 20, 30, 
the sub domains are evenly distributed with the restriction that x = w /2 is an interface. For 
s + 1 = 3, 5, 9, 15, the subdomains are evenly distributed with no interface lying inside the 
depletion layer. 

91 
N 

181 361 721 1441 I 
2 1 1 1 1 1 
4 N.A. 8 7 7 7 
6 11 11 10 11 11 

10 17 17 16 16 15 
20 N.A. 29 30 26 22 
30 oscillation 130 108 87 69 

3 8 8 7 8 8 
5 15 15 14 14 12 
9 29 30 24 24 20 
15 358 124 100 81 75 

Table 3: M for Problem rf'0 • 

The results for Problem rf'1 are shown in Tables 5 and 6. Again fors+ 1 = 2, 4, 6, 10, 20, 30, 
the sub domains are evenly distributed with the restriction that x = w /2 is an interface. For 
s + 1 = 3, 5, 9, 15, the subdomains are evenly distributed with no interface lying inside the 
depletion layer. 

Finally the results for Problem rf'2 are shown in Tables 7 and 8. For s + 1 = 2, 4, 6, 10, 
the sub domains are evenly distributed with the restriction that x = w /2 is an interface. For 

s + 1 = 3, the subdomains are evenly distributed with no interface lying inside the depletion 
layer. 

The initial approximations of the above three problems at the point x = w /2 are the exact 
solutions at that point. Therefore it is expected to have M = 1 for two subdomain cases with 
the interface chosen at x = w /2. 

For a given number of subdomains one would expect that the number of iterations M 
will be independent of the number of mesh points N. This is borne out in Tables 3,5 and 7. 
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s+1 N 
91 181 361 721 1441 

1 11 13 13 13 13 

2 4.449 4.475 4.986 4.993 4.997 

4 N.A. 3.933 3.967 3.983 3.992 
6 2.989 3.078 3.123 3.310 3.322 
10 2.038 2.374 2.437 2.469 2.385 
20 N.A. 1.654 1.847 1.704 1.530 
30 oscillation 4.162 3.799 3.231 2.776 

3 5.213 5.274 5.304 5.651 5.659 
5 4.393 4.497 4.549 4.549 4.188 
9 3.742 4.034 3.585 3.585 3.204 
15 20.787 8.480 7.432 6.275 6.074 

Table 4: T for Problem rro· 

However one should note that M appears to become more variable ass increases. As expected 
M increases as the number of subdomains increases. 

The total work unit r is intedned to be independent of the number of mesh points N and 
this is demonstrated in Tables 4, 6 and 8. As the number of subdomains increases T decreases. 
This continues until a certain number of subdomains is reached whereby T begins to increase 
again. A possible reason is that there is at least one subdomain lies entirely inside the depletion 
layer. Since the change in 1/J' from outside the depletion layer to inside the depletion is very 
rapid it is difficult to solve the vector defect equation. The depletion layer for problem fro 
is approximately 80 < xL < 100. Hence for s + 1 = 30, there are six subdomains inside 
the depletion layer. The depletion layers for problems rf1 and rr2 are larger than that for 
problem rro· In these examples we see that the maximum number of subdomains required to 
achieve a minimum r decreases. 

These results seem to confirm the analysis of the method for symmetric junctions. The 
second set of tests performed were on the unsymmetric form of the junctions. 

The results for the unsymmetric form of Problem f 10 are shown in Tables 9 and 10. For 
the upper parts of the tables, the subdomains are evenly distributed without any interface 
restriction. For the lower parts of the tables, the interfaces are chosen at xL = 70 when 
s + 1 = 2, at xL = 70 and 125 when s + 1 = 3, at xL = 35, 70, 97.5, 125, and 152.5 when 
s + 1 = 6, and at xL = 35, 70, 92, 114, 136, 158 when s + 1 = 7. 

The coordinate at xL = 70 has f 10(70/L) = 0 ancl ,P(70/L) = (,P(O) + ,P(180/L))/2. 
With the choice of initial approximation at xL = 70 as described previously, we have actually 
obtained the exact solution at that point. Therefore one would expect M = 1 for a two 
subdomain case with its interface chosen at xL = 70. The depletion layer for Problem f 10 

approximately satisfies 60 < xL < 80. For thoses cases where the depletion layer contains an 
interface, e.g. s + 1 = 5, 10, no converged solution is obtained unless a very accurate inital 

approximation is used at the interface, e.g. s + 1 = 3. From Table 10, minimum values of r 
occur at s + 1 = 6. In order to avoid any sub domain lying entirely inside the depletion layer, 
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91 ;1 361 721 1441 I 
2 1 1 1 1 1 

4 N.A. 8 7 7 8 

6 11 11 11 10 12 

10 24 24 21 18 15 

20 N.A. 31 31 28 24 

30 oscillation oscillation 364 221 173 

3 7 7 7 8 8 

5 13 13 13 13 13 
9 30 34 31 23 23 

15 259 115 94 84 60 

Table 5: M for Problem rf1 . 

s+1 N 
91 181 361 721 1441 

1 11 13 13 13 13 

2 4.449 4.972 4.986 4.993 5.496 

4 N.A. 4.179 3.976 3.983 4.491 

6 2.989 3.240 3.278 3.145 3.654 

10 2.876 3.134 2.925 2.656 2.484 

20 N.A. 1.788 1.894 1.801 1.727 

30 oscillation oscillation 12.256 8.573 7.088 

3 4.888 5.274 5.304 5.651 5.992 

5 4.011 4.302 4.351 4.376 4.578 

9 3.843 4.564 4.345 3.516 3.867 

15 15.449 8.112 7.240 6.602 5.281 

Table 6: r for Problem rf1• 

Is+ 11 N I 
91 181 361 721 1441 

2 1 1 1 1 1 

4 N.A. 9 9 9 10 

6 22 20 19 19 17 

10 293 167 133 99 125 

3 22 11 11 11 12 

Table 7: M for Problem rf2 • 
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s+1 N 
91 181 361 721 1441 

1 15 15 15 15 15 

2 5.933 5.966 5.983 5.992 5.996 

4 N.A. 4.916 4.958 4.979 5.239 

6 5.191 5.022 4.930 5.296 5.149 

10 28.135 17.950 15.209 11.949 15.006 

3 7.269 7.251 7.292 8.310 8.655 

Table 8: T for Problem rr2· 

91 181 361 721 1441 I N 

2 7 7 7 8 9 

4 N.A. 12 11 11 11 

5 oscillation oscillation oscillation oscillation oscillation 
6 26 26 24 19 20 

8 N.A. N.A. 243 222 119 

10 oscillation oscillation oscillation oscillation oscillation 

2 1 1 1 1 1 

3 N.A. 7 6 6 7 

6 N.A. N.A. 14 13 12 

7 N.A. 15 13 14 13 

Table 9: M for Problem f 10• 

we can only have a maximum of nine subdomains. 
The convergence results for Problem f 12 are shown in Tables 11 and 12. The lower blocks of 

the tables are divided into three parts. In the top part, the subdomains are evenly distributed 
without any interface restriction. In the middle part, the interface is chosen at xL = 70 when 
s + 1 = 2, and at xL = 70 and 126 when s + 1 = 3. The depletion layer is isolated in the 
bottom part such that for s + 1 = 3, the interfaces are chosen at xL = 50 and 100 and for 
s + 1 = 4, the interfaces are chosen at xL = 50, 100, and 140. 

The coordinate at xL = 70 has f 12 (70/L) = 0 but does not imply ,P(70/L) = (1/J(O) + 

1/J(180/ L ))/2. Therefore M ::/; 1 for a two sub domain case with its interface chosen at xL = 70. 
The general discussion on the relations between M, N, and s + 1 applies here. The depletion 
layer for Problem r 12 approximately satisfies 50 < xL < 100 and the maximum number of 
sub domains as shown in the tables is three. Finally, from the results for Problems r 1o and 
f 12 we observe that if there is an interface inside the depletion layer, e.g. Table 9, then we 
need a good initial approximation or the exact value of 1/J at that point in order to obtain 
a converged result. Usually one can provide a good approximation but not the exact value 
based on the doping profile. On the other hand, if a good initial approximation cannot be 
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91 181 361 721 1441 I 
N 

I 1 I 11 13 13 13 

2 7.416 7.458 7.978 8.488 8.994 

4 N.A. 4.916 4.958 4.979 4.990 

5 oscillation oscillation oscillation oscillation oscillation 

6 5.348 5.508 5.423 4.634 4.817 

8 N.A. N.A. 36.279 36.650 22.515 

10 oscillation oscillation oscillation oscillation oscillation 

2 5.461 5.480 6.100 6.100 6.108 

3 N.A. 5.782 5.808 5.821 6.215 

6 N.A. N.A. 4.421 4.253 4.072 

7 N.A. 4.369 4.613 4.446 4.265 

Table 10: T for Problem rlQ. 

91 181 361 721 1441 I N 

2 16 15 14 13 13 

3 70 56 78 76 62 

4 oscillation oscillation oscillation oscillation oscillation 

2 7 8 8 7 7 
3 117 72 61 77 101 

3 16 15 13 16 15 

4 36 31 28 26 26 

Table 11: M for Problem rt2· 

provided, then converged solution cannot be achieved, e.g. Tables 9 and 11. 

5.2 p-i-n Junction 

The convergence results for Problem r 20 are shown in Tables 13 and 14. The doping profile 
of this problem is non-symmetric. For the upper parts of the tables, interface restriction is 
applied. For the lower parts of the tables, the depletion layer is isolated. The interface denoted 
as N .A. is the standard test result, i.e no domain decomposition. The general discussion on 

the relations between M, N, and s + 1 applies here. This problem has a very large depletion 

layer, 1.6 < xL < 3.2, which occupies almost half of the entire device. The maximum number 

of subdomains as shown in the tables is two. Furthermore the convergence result is not 
convencing compare with the standard result. Therefore the present algorithm is not suitable 
for devices which have a depletion layer of width equal to or larger than half of the width of 

the device. 
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91 181 361 721 14411 
N 

I 1 I 16 16 16 16 

2 19.281 18.397 17.950 16.976 17.488 
3 33.236 30.983 44.086 45.540 39.944 

2 12.742 13.397 12.811 12.822 12.828 
3 53.865 36.464 33.526 39.730 52.594 

4 oscillation oscillation oscillation oscillation oscillation 

3 10.079 9.737 9.451 12.028 11.598 
4 12.944 11.777 11.306 11.624 10.259 

Table 12: T for Problem r12· 

I s + 1 I Interfaces I 
141 281 561 1121 2241 I N 

2 1.5 18 18 18 17 17 
2 1.6 19 19 19 21 18 
2 1.7 23 23 22 21 20 

3 1.0, 2.2 oscillation oscillation oscillation oscillation oscillate 

3 1.6, 3.2 28 25 24 23 22 

Table 13: M for Problem f2o· 

5.3 Thyristor 

The convergence results for Problems r 30 are shown in Tables 15 and 16. In the upper parts 
of the tables, the subdomains are evenly distributed without any interface restriction. The 
lower parts of the tables have the depletion layers being isolated, i.e. the interfaces are chosen 
at 130, 270, 400, and 540. The general discussion on the relations between M, N, and s + 1 
applies here. The depletion layer approximately satisfies 560 < xL < 640. Previous discussion 
on the location of interfaces and depletion layers applies here. The numerical results show 
that the maximum number of subdomains is around seven. 

The convergence results for Problem f 31 are shown in Tables 17 and 18. The subdomains 
are evenly distributed without any interface restriction. It has two depletion layers situated at 
a large distance and approximately satisfy 0 < xL < 90 and 560 < xL < 660. The maximum 
number of subdomains as shown in the tables is around seven. 

The results suggest that there should be no sub domain within a depletion layer. It is 
obvious that in order to avoid any sub domain lying inside a depletion layer, the maximum 
number of subdomains must be less than wfwt where Wt is the width of the depletion layer. 
For simple junctions such as those given above, it is possible to estimate Wt and its location 
based on the doping profile. 
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141 281 561 1121 22411 
N 

I 1 I N.A. I 19 20 20 20 

2 1.5 18.755 19.376 19.402 19.987 21.136 

2 1.6 18.345 18.943 19.971 21.155 21.163 
2 1.7 22.986 22.552 22.077 22.096 22.105 

3 1.0, 2.2 oscillation oscillation oscillation oscillation oscillate 

3 1.6, 3.2 19.489 18.633 18.247 19.636 19.647 

Table 14: r for Problem r 20 • 

701 1401 2801 5601 I N 

2 31 31 30 30 

4 31 31 31 30 

5 37 36 37 36 

7 66 56 52 48 
10 oscillation oscillation oscillation oscillation 

5 31 31 31 30 

Table 15: M for Problem r3o· 

6 Conclusion 

A non-overlapped domain decomposition method ha.s been applied to the numerical solutions 

of some semiconductor devices in one dimension. The physical domain ha.s been decomposed 
into a number of disjoint subdomains and we have examined the behaviour of the number of 

iterations M and the total work unit T with respect to the number of sub domains. We have also 
examined the relation between the subdomains and the depletion layers. The work suggests 

that the current numerical scheme does not allow any subdomain to fall into a. depletion layer. 
We have the following two major properties based on the numerical results : 

• Suppose a. p-n junction ha.s a. depletion layer of width w, and a total width of w, and 
suppose there is no interface inside the depletion layer, then the maximum number of 

subdomains to be used in the current non-overlapped domain decomposition method 
must be less than wfw,. 

• Suppose there are C depletion layers in a junction, each of width w,, I = 1, 2, · · ·, C situ­
ated a.t sufficiently large distance from each other, and suppose there is no interface inside 

the depletion layers, then the maximum number of subdomains to be used in the current 
non-overlapped domain decomposition method must be less than wf max19!::.d w,}. 

It is also suggested that should there be a.n interface within a depletion layer, the initial 

approximation a.t that interface must be very close to the exact solution a.t that point for 
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701 1401 2801 5601 I 
N 

I 1 I 29 29 29 

2 27.960 27.980 28.990 29.495 

4 13.940 13.970 14.734 14.742 

5 12.528 12.564 13.181 13.191 

7 12.888 11.522 11.262 10.988 

10 oscillation oscillation oscillation oscillation 

5 12.731 12.769 13.469 13.478 

Table 16: T for Problem fao· 

I ·+11 
N 

56011 701 1401 2801 

2 31 30 30 30 

4 31 31 31 30 

5 37 36 37 36 

7 61 55 52 48 

10 oscillation oscillation oscillation oscillation 

Table 17: M for Problem f3t· 

the algorithm to converge. The depletion layer governs the splitting of the physical domain. 
In order to overcome the current problem, we propose to examine the use of a fixed point 
iteration method with a preconditoner. 
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701 1401 2801 5601 I 
N 

I 1 I 29 29 29 

2 27.960 27.980 28.990 29.495 

4 13.940 13.970 14.734 14.742 

5 12.727 12.763 13.181 13.191 

7 12.180 11.380 11.262 10.988 

10 oscillation oscillation oscillation oscillation 

Table 18: T for Problem r31 · 
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