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Abstract 

The validity of using QCD perturbation theory to generate dynamically the parton 

distribution functions of hadrons, starting from a valencelike input at low Q2 , is 

discussed. In particular, we consider the prescription of Barone et al who evolve 

from Q2 = 0, and that of Gliick et al who start evolution from Q2 ~ (2AqcD )2
• 
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1 Introduction 

Recently, there has been significant interest in deriving parton (quark and gluon) 

distribution functions of hadrons by dynamically evolving from very low resolution 

scales [1,2]. The basic idea is to utilize the fact that, at low resolution, hadrons 

appear to be a collection of valence quarks. The details of the QCD dynamics allow 

one to generate the gluon and sea components which are known to be present at 

higher resolution scales. Such a program appears attractive since the input is 

reasonably well defined, and much of the work is entrusted to perturbative QCD 

(pQCD ). Compare this with conventional approaches where one does not appeal 

to the valencelike structure of hadrons at low resolution and is therefore left with 

the task of constructing an input to the QCD evolution which must be extracted 

from the data, e.g. see refs.[3]. 

In this note, we wish to emphasise that great care must be taken when using 

pQCD evolution from low Q2 low resolution scales, and that previous attempts are 

seriously flawed. In any perturbative calculation, one must be sure to sum all of 

the relevant diagrams, and which class of diagrams is relevant depends upon the 

kinematic regime under consideration. Often, it is not sufficient to work to lead­

ing order in the coupling, a., because there may well be large logarithmic factors 

present which seem to destroy the usefulness of a. as an expansion parameter. The 

need to sum an infinite subset of the perturbative expansion is quite commonly 

encountered in pQCD calculations, in particular when calculating the dynamical 

evolution of the distribution functions. We first will briefly review the traditional 

calculation of the distribution functions, in particular for deeply inelastic scatter­

ing (DIS) where the spacelike virtuality of the photon ( -q2 = Q2
) provides the 

resolution scale. 

In the parton model (where inter-parton correlations are negligible) the fac-
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torisation of the DIS cross section into a hard (perturbative) p1ece and a soft 

(non-perturbative) piece is straightforward- Bjorken scaling is predicted. As is 

well known, the violation of scaling is a consequence of QCD corrections to the 

basic part on model. The naive 0( a.) corrections to the basic parton model come 

from the diagrams of fig.(l ). However, a calculation of these diagrams reveals the 

presence of logarithms rv ln( Q2 1 p.2
) (for fixed a.), where the scale p.2 is introduced 

to provide an infra-red cutoff. For large Q2 , the presence of terms 0( a.ln Q2
) 

seems to destroy the validity of a perturbative expansion. Fortunately, we are 

able to sum up the infinity of diagrams which possess a logarithm for each a •. 

In an axial gauge, the contributors to this sum are the ladder diagrams, e.g. see 

fig.(2). We are able to relate the distribution functions at some scale Q2 to their 

value at another scale Q~. Our ignorance regarding the soft physics is contained 

in the input at Q~. The choice of Q~ must be sufficiently large to ensure the valid­

ity of the subsequent evolution procedure. In the language of the parton model, 

it is the Dokshitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP) evolution 

equations which perform this summation [4). In terms of the light-cone operator 

product expansion (OPE), this summation is performed via the renormalisation 

group equation, which relates the Wilson coefficients at different values of Q2 (and 

hence the moments of the structure functions) [5]. 

One might attempt to start the pQCD evolution from some low resolution 

scale: care must be taken. As one moves to lower scales, the presence of non­

leading logarithmic terms will be felt more and more, as will higher-twist terms. 

Eventually, as Q2 ---+ A~0D, pQCD will breakdown as a meaningful expansion. In 

the language of the OPE, the light-cone expansion becomes less useful as Q2 falls, 

since the dominant contribution is no longer on the light cone. In the next section, 

we concentrate on the parton model picture of pQCD evolution and discuss how 
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one expects the DGLAP equations to fail at low Q2
• We discuss the modifications 

to DGLAP evolution advocated by Barone, Genovese, Nikolaev, Predazzi and Za-

kharov (BGNPZ), who claim to generate the parton content ofhadrons by evolving 

from Q2 = 0 [1). We conclude that significantly more work is needed before one 

can claim to have even a reasonable phenomenological model of evolution from 

Q2 = 0. We also comment on the procedure of Gliick, Reya and Vogt (GRV), who 

evolve from Q~ ~ 0.3 Ge V2 [2). 

2 QCD Evolution 

Let us show how the summation of leading logs is performed. Consider the tree 

level process shown in fig.(l ), where a quark from the parent hadron radiates a real 

gluon. As is well known, one encounters singularities in the cross section which 

must be regularised by taking into account the virtual corrections of fig.(l ). The 

final result is renormalisation scheme dependent, it is leads to a modified quark 

distribution function given by: 

The conventional 'plus prescription' is used to describe the effect of the vir­

tual graphs and the non-logarithmic terms are determined in the massive gluon 

regularisation scheme. The quark masses are neglected. 

As the gluon mass vanishes, we have a logarithmic divergence. This can be 

absorbed into a redefinition of the input, i.e. q(y) ----+ q(y, p.2 ) where p.2 is some 

factorisation scale. The perturbative expansion is only valid if Q2 is sufficiently 
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large, i.e. it is usual to insist that Q2 » A~cD· The presence of ln Q2 terms indi­

cates that we should treat all terms which are O((a.lnQ2 )n) on an equal footing. 

They should be summed to ensure sensible results. Performing this summation, 

and neglecting all those terms which do not lie within the LL approximation leads 

to the DGLAP equations [4): 

8qi(z, Q2
) 

8lnQ2 

8g(z, Q2
) 

8lnQ2 

The splitting functions, Pij, determine the probability for radiating a parton of 

type i from a parton of type j. For the process we considered, the LL form for Pqq 

lS 

P,.(z) =~cl~:)+. (4) 

The strong ordering of transverse momenta is inherent in these equations, and is 

the approximation which results in selecting the ln Q2 terms which are essential 

for large Q2
, i.e. 

(5) 

is assumed. If one calculates the splitting functions to leading order (LO), then 

one is selecting all terms which have one logarithm for each a., this is the leading 

logarithmic (LL) approximation. A next-to-leading order (NLO) calculation of the 

splitting functions would result in the inclusion of the next-to-leading logarithmic 

(NLL) terms, i.e. those which are O(a~lnn-t Q2 ). An example of a diagram which 

contributes to the quark structure function in the NLL approximation is shown in 

fig.(3). 

It is clear that as Q2 falls, the DGLAP equations run into serious difficulties. 

BGNPZ attempt to modify the evolution, so that it remains finite all the way 

down to Q2 = 0. Let us outline their modifications. Note that we do not simply 
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reproduce their prescription, rather we present it what we believe to be a more 

transparent way. 

By appealing to the work of Gribov (6], they do not permit the coupling to 

become infinite as Q2 ---+ 0. Rather, they introduce some low momentum scale 

which causes the coupling to freeze at low Q2
, i.e. they replace the leading order 

coupling with 
2 411" . 

a.(Q ) = ,8oln((Q2 + k5)/A~cD)' (6) 

The scale k~ is fixed by the requirement that it leads to the experimentally observed 

pion-nucleon total cross section, i.e. k0 ::::::: 0.44 GeV. In this case, a./11" remains 

small enough that perturbation theory may hopefully still apply. 

The inclusion of quark masses is also necessary as Q2 ---+ 0, as is the inclusion of 

a gluon mass (which serves the purpose of regularizing the gluon propagator, and 

confining the gluons ). These are physical masses which determine the scale J.£ 2 in 

the ln( Q2 
/ J.£2 ) factor. In this way, they avoid pushing the physics below "' AQcD 

into the definition of the input. 

To simplify things, it is assumed that one need only consider the radiation of 

gluons from quarks, i.e. the splitting functions P99 and Pq9 are neglected. This 

will be valid providing the gluon distribution function is sufficiently small, which 

will be the case for not-too-small :c. 

Since partons which are radiated with very low transverse momenta occupy a 

large transverse region of configuration space, it is possible that interference terms, 

like the one in fig.( 4) may become important. To this end BGNPZ introduce a 

factor which is related to the two-quark form factor of the valencelike hadron. This 

factor is very powerful in regularizing the DGLAP kernel as Q2 ---+ 0. 

With the above modifications and simplifications in mind, the BGNPZ pre-
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scription corresponds to using the following evolution equations: 

8qi(x, Q2
) 

8lnQ2 

8g(x, Q2
) 

8lnQ2 

(7) 

(8) 

The freezing of o:. is understood to be operative and the modified splitting func-

tions are: 

V x Q2 4Q2 {[1 + (1 - x )2]Q2 + x4m~} 
( ' ) 3 x[Q2 + (1- x)m~ + x2m~J2' 

j>gq(1- X). 

(9) 

(10) 

The ggN vertex function is introduced to incorporate destructive interference 

terms, i.e. long wavelength partons probe the colour singlet hadron and hence 

decouple, it is given by 

(11) 

where Rch is the charge radius of the nucleon ("' 0.8 fm). 

Evolution is performed using the above equations starting from Q2 = 0 assum-

ing the nucleon to consist of three valence quarks only, i.e. their input valence 

quark distribution is determined by the three-quark light-cone wavefunction via 

qi(x) j d2knd2kt2d2kt3b(Lkti) 

x j dx 2 dx 3 6(1- x- x2 - x3) lw(xi, k~JI· 
XX2X3 

(12) 

They conclude that their results are relatively insensitive to the choice of wave­

function, making both Gaussian and dipole ansatze. Clearly the attraction of 

this approach is that the distribution functions appear to be totally calculable in 

pQCD. The inherent dependence upon the nucleon size is contained in the initial 

wavefunction, and is the only non-perturbative parameter needed. 
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Of course, for high enough Q2
, one must regain the traditional DG LAP equa­

tions. The Pqg and P99 splitting functions are turned on at Q2 = 0.5 Ge V2
, where 

they expect the ggN vertex function to be close enough to unity and neglect of the 

quark and gluon masses to be justified. 

In the original paper, the QCD evolution is not presented in a way that is 

quite so analogous to DGLAP evolution as the description above. Using the above 

description of the BGNPZ model, it becomes evident that a number of serious 

problems arise. 

Inherent in the DGLAP approach, and the BGNPZ modification, is the as-

sumption of strong ordering in transverse momenta. There is no justification in 

making this assumption if Q2 is small, since the LL approximation is no longer a 

good one. The evolution kernel should depend upon the transverse momentum of 

the radiating parton, as well as on the radiated parton. 

An example of an evolution equation which does not make the strong ordering 

assumption is the Balitsky, Fadin, Kuraev and Lipatov (BFKL) equation, which 

enables one to sum the diagrams relevant in the small z domain of QCD [7]. We 

emphasise that the construction of an evolution equation necessitates that one 

is able to: (1) classify the set of diagrams which need to be summed, and (2) 

derive those diagrams using basic building blocks (which determine the evolution 

kernel). The BFKL equation is designed to operate in the small-:z: region, and the 

presence oflarge logarithmic terms in 1/:z: (which can be classified) necessitates the 

construction of an evolution equation which can be expected to sum the dominant 

terms in the perturbative series. The BFKL equation has the structure: 

(13) 

where F(z, k2 ) must be integrated over k2 to determine the gluon structure func-

tion. 
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Away from small x, we expect the appropriate set of evolution equations to be 

of the form: 

(14) 

Since there are no large logarithms to sum we have no idea which set of diagrams 

ought to be considered in deriving the kernel. The BGNPZ prescription amounts 

to summing a rather arbitrary subset of diagrams, i.e. at low Q2 there is no reason 

to single out those diagrams which are within the LL approximation. 

So, in the absence of any large logarithmic factors we are unable to single 

out any particular subset of the perturbation series and have no real hope of 

constructing a set of equations of the form determined in eqn.(14). To be consistent 

therefore, we ought to use a. as the expansion parameter. The inclusion of the 

non-logarithmic terms (in eqn.(l) for example) is now imperative, for they are no 

longer negligible relative to the ln( Q2 
/ j.i2 ) term. Let us make this more explicit. 

Ignoring the factor V(x, Q2
) (and the running of a.), the BGNPZ prescription 

gives, for the quark distribution function, logarithmic terms which are of the form 

and 

as the argument of the splitting function tends to zero and one respectively. This 

is a direct consequence of assuming the strong ordering of momenta, i.e. one 

integrates the quark virtuality over the range 0 < k! < Q2
• The true limits lead to 

a different logarithmic variation of the structure function, as expressed in eqn.(l); 

Thus for the BGNPZ prescription to make any sense one should abandon the 

strong ordering assumption and keep all terms in the splitting function calcula­

tions, using a. as the expansion parameter. We no longer know how to derive 
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the evolution kernel. It should be recognised that there exist large logarithms in 

(1- z ), which should be summed in order to ensure sensible behaviour as z---+ 1. 

Compounding the problems further, since a. is so large we expect (so far 

uncalculated) NLO contributions to be significant. This point was realised in the 

slightly different case of LL and NLL evolution by GRV [2]. They emphasised the 

importance of considering NLL corrections when evolving from a.~ 0.9. 

All our discussions so far have been confined to leading-twist processes. There 

are also higher-twist (HT) contributions (fig.(5)), which will depend upon the 

multi-parton distribution functions. There is no reason to neglect HT corrections 

at low Q2
, and it seems reasonable to expect that their inclusion would lead to an 

enhancement of the momentum carried by the u quarks relative to the d quarks 

within the proton, (i.e. uu pairs couple with spin-1, and ud pairs with spin-0 or 

spin-1, assuming a completely flavor symmetric quark distribution at some scale, 

then higher-twist corrections result in a lifting of the degeneracy of the spin-1 and 

spin-0 states within the proton. The higher level is the spin-1 state and it follows 

that the flavor symmetry is broken with u quarks carrying a larger fraction of the 

proton energy than one might naively expect [8]). Thus, even to first order in a 8 , 

the inclusion of HT terms seems a necessary supplement to the BGNPZ approach. 

We have so far emphasised the technical difficulties which one encounters when 

attempting to evolve from low Q2 (especially Q2 
rv 0). There is also a more 

fundamental difficulty, within the modified pQCD approach of BGNPZ, which is 

concerned with the absence of any dynamical scale serving delineate asymptotic 

freedom from confinement. As a clear example, consider the following discussion. 

In the case of the photon structure function, it is reasonably well established by 

experiment that the photon (structure function) at low Q2 resembles (that of) the 

p0 (up to factors of aem) [9]. This leads to the vector meson dominance hypothesis. 
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Physically, one can understand such an effect in terms of non-perturbative QCD. 

If the photon radiates a low-pT qij pair then gluon emission is favoured by the 

largeness of the coupling ( a.(p~)) and the pair bind non-perturbatively to form 

a vector meson. In the BGNPZ model, it is perfectly reasonable to emit a gluon 

from a valence quark with a low PT (i.e. compared with the PT of the qij pair 

discussed in the context of the photon). However, it is assumed that no strong 

binding occurs subsequently between the gluon and valence quark, which would 

appear to be in contradiction with the existence of a vector meson contribution to 

the photon structure function. 

The resolution of this paradox could be provided if one assumes that the non-

perturbative physics is added, by hand, at the outset. It is unlikely that the 

BGNPZ modified perturbation theory, with non-perturbative physics added inde­

pendently is equivalent to traditional QCD, where the onset of non-perturbative 

physics is signalled as the dynamical scale Q2 tends to AQCD· We point out that 

the work of Gribov is intended to account for confinement within a QCD-like 

framework- it is not simply manifest by freezing the coupling [6]. 

To conclude, let us say a few words on the approach of GRV [2]. Since they start 

evolution at Q2 ~ 4A~cD' the LL approximation may well be useful. Indeed the 

dominance of the leading logarithmic terms is supported by the NLL calculation, 

which (although seen to be significant) results in a small correction to the LL 

result (for the structure function F2 ). However, the fact that the data seem to 

indicate the onset of suppression due to the non-pertubative form factor 

( 
Q2 )A 

Q2 + v2 

for Q2 as high as 1 Ge V2 is worrying, and may well signal the importance of HT 

effects below this Q2
• This should not be surprising, since a conservative choice 

for v2 would be 0.3 GeV2 and the Regge intercept (.A) is 1/2 for valence quarks, 
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giving a suppression factor of (at least) 0.9 at Q2 = 1 Ge V2
, falling to (at least) 

0.7 at Q2 = 0.3 GeV2
• 

It may well be that the G RV approach is unreasonable for Q2 < 1 Ge V2 and is 

only designed to produce a structure function which fits the data at Q2 ~ 1 Ge V2 

(and hence beyond). If this is the case then one is left with one of two conclusions. 

Firstly, it may be that, through a judicious choice of (valencelike) input, one is 

able to fit the high-Q2 data more-or-less by accident (if this is the case no benefit 

over more traditional structure function analyses can be claimed). Secondly, given 

the clear importance of the form factor suppression at low Q2 , one must conclude 

that the higher-twist terms are effectively de-coupled from the leading-logarithmic 

leading-twist terms, the origin of the de-coupling would then need to be explained. 

Finally, although G RV claim to make serious small-:c predictions we feel this 

to be wholly unjustified. The presence of large logs in 1/:c cannot be ignored 

in a perturbative analysis and one must therefore use the BFKL equation (with 

appropriate shadowing corrections [10]). The small :c regime of QCD is a subject 

of much controversy, and we await the data which will soon come from HERA to 

clarify the situation. 

Acknowledgments 

I should like to thank Frank Close and Dick Roberts for useful discussions. 

11 



References 

[1] Barone et al, Torino preprints DFTT 14/92 (to appear in Z.Phys.C); DFTT 

8/92 (to appear in lnt.J.Mod.Phys.A). 

[2] M.Gliick, E.Reya, A.Vogt, Z.Phys. C48, 471 (1990); C53, 127 (1992). 

[3] P.N.Harriman et al, Phys.Rev. D42, 798 (1990); J.F.Owens, Phys.Lett. 

B266, 126 (1991). 

[4] L.N.Lipatov, Sov.J.Nucl.Phys. 20, 94 (1975); V.N.Gribov and L.N.Lipatov, 

Sov.J.Nucl.Phys. 15, 438 (1972); Y.Dokshitzer, Sov.Phys.JETP 46, 641 

(1977); G.Altarelli and G.Parisi, Nucl.Phys. B126, 298 (1977). 

[5] H.Georgi and H.D.Politzer, Phys.Rev. D9, 416 (1974); D.J.Gross and 

F.Wilczek, Phys.Rev. D9, 980 (1974). 

[6] V.N.Gribov, Lund preprint LU TP 91-7 (1991). 

[7] E.A.Kuraev, L.N.Lipatov and V.S.Fadin, Sov.Phys.JETP 45, 199 (1977); 

Ya.Ya.Balitsky and L.N.Lipatov, Sov.J.Nucl.Phys. 28, 822 (1978). 

[8] F.E.Close, 'An Introduction to Quarks and Partons', Academic Press, London 

(1979). 

[9] Ch.Berger and W.Wagner, Phys.Rep. 146, 1 (1986). 

[10] L.V.Gribov, E.M.Levin and M.G.Ryskin, Phys.Rep. lOO, 1 (1983); 

J.Kwiecinski, Z.Phys. C29, 147 (1985); A.H.Mueller and J.Qiu, Nucl.Phys. 

B268, 427 (1986). 

12 



FIGURE CAPTIONS 

Figure 1 : Lowest order tree level amplitudes which contribute to the quark­

to-quark splitting function, and the virtual graphs which regularise the z -+ 1 

singularities. 

Figure 2 : A typical ladder graph, of the type that must be summed in the leading 

log approximation. 

Figure 3 : A typical contribution which must be considered in the next-to-leading 

log approximation. 

Figure 4 : Interference term between gluon distribution function amplitudes. The 

gluons originate from different quarks. 

Figure 5 : Higher-twist contribution, the calculation of which necessitates an 

understanding of the diquark distribution function. 
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