
;:)
,::;

...
1:1
~
~
Q
-4 0'1
~ ·l'l

0"1

~
..g ,....

~ C'\1

••
0

if. ~
if. I
if. u ,. 0
if. ~

.g

""" 0
(".!

0"1

~
!CI\0
Jl:;Jl:;

••
~
,-I

<11
~
'I')

~ Science and Engineering Research Council
0

~ Rutherford Appleton Laboratory
~ Chilton DIDCOT Oxon OXll OQX RAL-92-076
a:

HUMPF Users Guide

P Cahill R Edgecock S M Fisher C N P Gee J C Gordon
T Kidd J Leake D J Rigby and J H C Roberts

December 1992

Science and Engineering Research Council
"The Science and Engineering Research Council does not
accept any responsibility for loss or damage arising from
the use of information contained in any of its reports or
in any communication about its tests or investigations"

HUMPF Users Guide

P. Cahill, R. Edgecock, S. M. Fisher,

C. N. P. Gee, J. C. Gordon, T. Kidd,

J. Leake, D. J. Rigby and J. H. C. Roberts

18 November 1992

This document introduces users to HUMPF (Heterogeneous Unix Montecarlo
Production Facility). The work was carried out as part of an IBM/SERC
Joint Study Agreement.

Contents

1 Introduction

1.1 What is HUMPF?

2 The job submission system, NQS

2.1 qsub - submit a batch job

2.2 qstat- display status of NQS queue(s)

2.3 qdel- delete or signal NQS job(s).

3 Access to centrally n"lanaged tapes

3.1 The tape command

3.2 Authorising Tape Access .

4 Remote disk files

4.1 NFS - The Network File System

4.2 ftp - File Transfer Protocol . . .

5 Preparing and running a program

5.1 Editors

5.2 Preparing the input for the compiler

5.3 Compiling and Linking .

5.4 Libraries

5.5 The CERN library

5.6 Running the program and tidying up .

5.7 Simple example of a script .

5.8 Unix version dependency . .

5.9 Support for FORTRAN I/ 0 .

1

1

3

3

6

6

7

7

10

12

12

14

15

15

15

15

16

16

16

17

21

22

Chapter 1

Introduction

The Heterogeneous Unix Montecarlo Production Facility (HUMPF) simplifies the
running of particle physics simulation programs on Unix workstations.

Montecarlo is the largest consumer of IBM CPU capacity within the Atlas centre at
RAL. It is likely that the future computing requirements of the LEP and HERA
experiments cannot be satisfied by the IBM 3090 system. HUMPF adds extra capacity,
and can be expanded with minimal effort.

Montecarlo programs are CPU-bound, and make little use of the vector or I/0 capacity
of the IBM 3090. Such programs are therefore excellent candidates to use the spare
capacity of powerful workstations. The main data storage is still handled centrally by
the IBM 3090 and its peripherals. The HUMPF facility is suitable for any program with
a similar profile.

1.1 What is HUlVIPF?

HUMPF is an environment which includes, along with the Unix operating system:

• The Network Queueing System (NQS). CERN has purchased NQS with a license
allowing them to modify and redistribute it to collaborating institutes.

• Access to tapes on VM by the 'tape' command. This is a utility produced by CCD
as part of this project. It uses their Virtual Tape Protocol (VTP) running over
TCP /IP to make centrally managed tapes accessible to Unix machines.

• Access to disk files on VM using the Network File System (NFS). This also runs
over TCP /IP and makes files on a remote machine appear to be part of the local
file system.

• Transfer of complete disk files using 'ftp'. This service is available between Unix
machines and those VAX/VMS and IBM machines which support TCP /IP.

• An up to date copy of the CERN program library.

The tools have been installed on most Unix machines in PPD. Please contact the
authors if HUMPF is not available on your system.

HUMPF makes full use of the data storage facilities accessible from the IBM system.
These include the tape robot accessed via the transparent tape system, and disk space
which is virtually unlimited as mini-disks spend most of their time on tape and occupy

1

physical disk space only when they are accessed. Storing Unix files on VM mini-disks
lightens the systems maintenance load on the Unix side as there is much less data to
back up.

This document is addressed to those who wish to install and run a Montecarlo program
using the HUMPF facilities. Much of the information can also be found in the 'man
pages' (the Unix on-line help system). The document is not meant to be a Unix
introduction, though it does contain some information to help users who are not yet
fluent in Unix.

The NQS batch system is explained below, along with the procedures for accessing
centrally managed tapes. The use of NFS and ftp for transferring or accessing disk files
on different machines is discussed and there is a short section on how to get a program
going.

2

Chapter 2

The job submission system, NQS

NQS, the Network Queueing System, is a network-based batch job submission system
that runs across a wide variety of Unix implementations. Jobs may be processed on the
user's local system or on a remote system. The user may request that a job runs on a
particular machine or class of machine.

A user job is written as a 'shell script', which is the Unix term for a command file. The
script may also contain a header describing the resources needed. The most important
features of three of the NQS commands are described here.

qsub to submit a batch job

qstat to display the status of the batch queues

qdel to delete a batch job

2.1 qsub- submit a batch job

qsub submits a. batch job to NQS. The user will normally give the name of the script
file as an argument. If no file name is specified, commands to be executed in the batch
job are read directly from the standard input (stdin), terminated with control-D (the
Unix end-of-file indicator). If the script requires parameters, the qsub command can be
used without arguments to allow script name and parameters to be entered as a single
command line for the job.

The script file is spooled, so that later changes will not affect previously queued batch
jobs.

If the batch job is successfully submitted, its job-id is displayed on the terminal. A
job-id is always of the form: seqno.hostname, where seqno refers to the sequence number
assigned to the job by NQS, and hostna.me refers to the name of the originating machine.
This identifier is used throughout NQS to identify the job, no matter where it is in the
network.

2.1.1 The environment

The job will, in due course, execute on some machine chosen according to the queue to
which it is submitted and other controls. The script will start execution in the home
directory of that machine, as if the user had logged in to that machine and executed the
script. The owner of the process is the submitter of the job.

3

Several environment variables are set up by NQS for the job.

The variables HOME, SHELL, PATH, LOGNAME (not all systems), USER (not all
systems), and MAIL are set from the user's password file entry, as though the user had
logged directly into the execution machine.

The variable ENVIRONMENT is set to the value BATCH, so that shell scripts and the
user's .profile (Bourne shell) or .cshrc and .login (C-shell) scripts can test for batch job
execution as appropriate.

The variables QSUB_WORKDIR, QSUB_HOST, QSUB_REQNAME, and
QSUB_REQID denote the working directory at the time the job was submitted, the
name of the originating host, the name of the job and the job-id.

2.1.2 Control of output

By default, all stdout output for the batch job is saved in a file whose name consists of
the first seven characters of the job-name (normally the name of the script) followed by
the characters: '.o' and the job sequence number portion of the job-id. This file will be
returned to the machine that originated the batch job in the current working directory,
as defined when the batch job was first submitted. The file is normally sent to its
destination at the end of the job, but can be written directly, allowing it to be read
during execution, if the -ro option is specified.

The stderr file, which receives error messages, is handled in a similar way. It has a file
name including '.e' instead of' .o' and may be written directly with the -re option.

The job script must take responsibility for any other file movements needed between the
submitting and execution machines - only the standard input, output and error files are
moved automatically.

2.1.3 Options in the script file

Options can be specified both in the qsub command line and also within the first
comment block inside the batch job script file. Command line options take precedence,
so embedded options are defaults for the job if no command line value is given.

If the value of an option has two or more tokens separated by white-space characters, the
value must be placed within double quotes as in -a 11 July, 4, 2026 12:31 11 (or
otherwise escaped) such that qsub and the shell will interpret the entire value as a single
character string.

The use of embedded options within a script file is illustrated below:

Batch job script example:

10$-a "!1:30pm" -1!"22:00, 20:00"
#Run job after 11:30,
and set a maximum CPU time of 22 minutes
Send a warning signal after 20 CPU minutes
10$-mb -me # Send mail at beginning and end of
job execution.
10$-q batch! # Queue job to queue batch!

make all

4

2.1.4 Syntax

qsub [option ...] [script_file]

-a time Do not run the batch job before the specified date and/or time.

The syntax accepted for the time parameter is flexible. It is possible to
specify the date as a weekday name (e.g. 'Tues '), or as one of the strings
'today' or 'tomorrow'. Weekday and month names can be abbreviated. The
default 24 hour clock may be overridden by 'am' or 'pm'

Some valid time examples are:

-a 11 01-Jan-1986 12am11

-a 11 Tuesday, 23:00:00 11

-a 11 11pm tues 11

-IT ma:z:time [, warntime] : Set a maximum and an optional warning cumulative
CPU time limit for all the processes that make up the job. If the CPU time
exceeds maxtime, then all the processes in the job will be stopped. The
ability to act on a warning limit is supported only for some Unix systems.
When such a warning limit is exceeded, a signal should be delivered to one
or more of the processes of the runrdng job. The job will stop immediately
on receipt of a signal unless it includes a signal handling routine - see the
'signal' man pages for further details.

-mb Send mail to the user on the originating machine when the job starts
executing.

-me Send mail to the user on the originating machine when the job ends.

-p priority : Assign a queue priority to the job to define the relative ordering of jobs
within the queue. The specified priority must be an integer in the range
[0 .. 63] where a value of 63 defines the highest priority. The relative ordering
of jobs within a queue does not always determine the order in which the
jobs will be run. The scheduler is allowed to make exceptions to the job
ordering for efficient machine resource usage.

-q queue Specify the queue to which the batch job is to be submitted. If no -q queue
is given, the value of the environment variable QSUB_QUEUE is used, or
failing that the system default is taken.

-r job-name : Assign the specified job-name to the job. By default the name is taken
from the name of the script file which was submitted (or STDIN). The
character 'R' always precedes the job-name if it would otherwise begin with
a digit. Job-names are truncated to 15 characters.

-re Write the stderr file directly instead of spooling it at the end of the job.

-ro Write the stdout file directly instead of spooling it at the end of the job.

5

2.2 qstat - display status of NQS queue(s)

qstat displays information about the NQS queues and the jobs they contain.

2.2.1 Syntax

qstat (-a) (-1) (-m) (-x) [queue-name ...] [queue-name@host-name .. .]

Information may be requested for a specific queue or queues. If none is specified the
current state of each NQS queue on the local host is displayed. Queues may be specified
either as queue-name or queue-name@host-name. In the absence of a host-name
specifier, the local host is assumed.

The general state of a queue is defined by two principal properties of the queue, which
qstat displays as part of the queue header. The first property determines whether jobs
can be submitted to the queue. If this has the value ENABLED then jobs can be
submitted. The second property describes the execution state of the queue. When the
queue is functioning normally then it should be either RUNNING if a job is running or
INACTIVE if there is no work for it at the moment.

For each selected queue, qstat displays the queue header followed by information about
jobs in the queue. The following options are available to modify the default, which is a
summary of your jobs:

-a Shows all jobs instead of just yours.

-m Jobs are shown in a medium-length format.

-1 Jobs are shown in a long format.

-x The queue header is shown in an extended format.

2.3 qdel- delete or signal NQS job(s).

2.3.1 Syntax

qdel (-k] job-id ...

qdel deletes one or more queued (not executing) NQS jobs whose job-id is listed on the
command line. Additionally, if the option -k is specified, a kill signal will be sent to the
job if it is running. This will cause the receiving job to exit and be deleted.

The job-id of an NQS job is displayed when the job is submitted, and can be obtained
later by the qstat command.

6

Chapter 3

Access to centrally managed tapes

The Virtual Tape Protocol (VTP) system enables programs and applications running in
workstations to read and write data on magnetic tapes in the main tape library as if the
tapes were mounted on a local tape drive. The communication path is as transparent as
possible between a 'named pipe' on the workstation, and the server software, currently
installed on VM, which actually does I/0 to the tapes1

• Because the named pipe behaves
to the user and applications like a conventional Unix file, it is not normally necessary for
the user to make any changes to the application code to access tapes over VTP.

The system works with any format of tape, since it simply views a tape as a series of
bytes and tape marks. It leaves the problem of formatting the data on the tape to the
application, just as a real tape drive does. An alternative would be to transfer whole
tapes of data onto the workstation disks and process it there. Th.e remote tape system
has all the advantages of record-level I/0: no need to transfer large amounts of data
which will not be used; and high speed positioning within a tape. It is however as fast as
other access methods for bulk transfers.

Both IBM Standard Label (SL) and No Label (NL) tapes are supported. The SL tapes
may have labels in IBM EBCDIC format or the ANSI ASCII format.

3.1 The tape command

Access to tapes via VTP is provided by the HUMPF 'tape' command. The easiest way
to use the tape command is to read or write from a named pipe - which appears to
FORTRAN like an ordinary file. Alternatively, the 'tape' command can read from stdin
or write to stdout (and so may be piped in the Unix style) or it can be used to read or
write directly from or to a normal Unix file.

The 'tape' command works in units of one file. In read mode it reads until a tape mark
is found, and in write mode it writes a single file on the tape.

Access to tapes is controlled at the server end by the Tape Management System (TMS).
You must use TMS, which currently has an interface to VM/CMS but not to HUMPF,
to ensure that the userid you specify on the 'tape' command is allowed to perform the
requested read or write action on the tape with name volid. See section 3.2 below for
details.

1 The server could in principle interface directly to real tape drives. Instead it takes advantage of the
VM 'Transparent tape Staging System', which provides an interface (almost) identical to tapes on real
tape drives, but makes effective use of disk and the 3480 robot to reduce the number of real drives required
and reduce the delays and contention between users associated with using real tape drives.

7

3.1.1 Syntax

tape volid userid {password} [option ...]

Where:

volid The name of the tape you wish to use. This name may be up to 6
characters long.

user id A valid username on the server. This username may be up to 8 characters
long. The user must have the desired level of TMS access to the tape as
explained above.

password : Optionally, the password for the specified userid on the server. The
preferred secUiity method, described below in section 3.2 avoids the need
for passwords. Passwords should not be used in job scripts.

The volid, userid, and optional password must be in that order with interspersed options
as desired. Each option must be preceded by a'-'.

Options -r, -w, -rp and -wp define the basic mode of operation and are mutually
exclusive. -r is the default.

-r Reads from tape to the standard output, or to a named fJe if the -f option
is specified.

-w \Vrites to tape from the standard input: or from a named file if the -f option
is specified.

-rp Reads data from the tape through a named pipe.

-wp Writes data onto the tape through a named pipe.

The following options require values. No space is allowed between the option character
and its value.

-ffname

-llabel

Specifies fname as the name of the file (for -r and -w options) or as the
name of the pipe (for -rp and -wp options). Default values of fname are:

-r stdin

-w stdout

-rp taperead

-wp tapewrite

The type of tape labels to use. Specify -1nl for no label (NL) tapes. Specify
-lsl for standard label (SL) tapes. The default value is -Is I.

-mfilenum : Move the tape to the file with sequential position filenum on the tape
before reading or writing. The default value is -ml which corresponds to
the first file on the tape.

-ndsn Use dsn as the data set name, otherwise the name is taken from fname.

-bblksize The size of the block to be used on the tape. The default value is -b8192.
The blksize may be set from 1 to 65535.

8

3.1.2 Examples

These examples all relate to a tape with a volid 'mytape' and belonging to server userid
'auser' with appropriate tape access (see section 3.2 below).

tape mytape auser

causes the first file on the standard label tape named mytape to be displayed on the
terminal. This is generally not a good idea unless the tape contains a small file of ASCII
data. If it contains 'binary' data then a more useful command would be:

tape mytape auser I od -x I more

which pipes into 'od' to create a hexadecimal dump and then into 'more' to paginate the
output.

The next example shows the use of named pipes. This is probably the most useful style
of working for those who want to read and write data from FORTRAN programs.

tape -rp mytape auser -ftapein &
tape -wp mytap2 auser -ftapeout &
myprog

The first command makes a tape file available for reading. The command line is
terminated by an '&' to run tape concurrently in a background process which is able to
keep the data flowing down the pipe as the program removes data from it. The program
sees a file called tapein in the current working directory, so it may be read by a
FORTRAN program with an open statement like:

OPEN(LUN,FILE='tapein', ...)

The second of the pair of tape commands is similar but allows a tape file to be opened
for writing. After connecting the tapes to the pipes the program (myprog in this case)
can be started. If the program closes the files properly the background tape jobs will be
stopped and the pipes deleted. If the job crashes you will need to do this yourself.

tape mytape auser -foutput

causes the first file on the standard label tape named mytape to be copied in the file
'output'. This could require a lot of disk space on the Unix workstation.

tape -w mytape auser -finfile -nbert

will cause the file 'infile' to be written onto the standard label tape named mytape as the
first file on the tape. The dataset name 'bert' will be used in the file header rather than
'infile'.

cat myfile I tape -w mytape auser -lnl -m2

will write the data from the file 'myfile' onto the NL tape named mytape as the second
file on the tape.

9

3.2 Authorising Tape Access

Access to tapes in the central tape store is controlled by the Tape Management System
(TMS). This section explains how the access check works and how to enable access from
Unix systems.

Before any tape access is permitted, an appropriate TMS protection group must be set
up. The following CMS commands create a new TMS tape protection group named
MYPROT under account 1234, grant control (and implied read and write) access to
userid AUSER, and apply the protection rules to tapes number 888881 to 888888
inclusive.

TMS PROTECT MYPROT ACC 1234 CREATE
TMS PROTECT MYPROT ACC 1234 AUTH GRANT CONTROL USERID AUSER
TMS PROTECT MYPROT ACC 1234 AUTH GRANT WRITE USERID TAPENET
TMS PROTECT MYPROT ACC 1234 APPLY SET 888881 - 888888

Further details of TMS commands are available via the CMS command FIND TMS.

The following discussion relates to a request from a user with a Unix username of
auserJx who wishes to read tape with volid 888888 using the access rights ofiBM
userid auser:

tape -r 888888 auser

The tape command extracts the current Unix username using a secure system call. The
username, userid and volid are then sent to the server.

The server authenticates the IBM userid using the AUTHRTY mechanism on the IBM
mainframe. The nominated IBM userid must authorise the remote username at the
remote host to inherit the tape access privileges as specified in TMS for the IBM userid.

3.2.1 AUTHRTY NAMES Entry Format

The user AUTHRTY NAMES file is checked using the following information and tags:

The (authenticated) username at the remote host :user.
The host from which the request originated :command.
The tape for which access is requested :target.
The mode (read or write) for which access is requested :group.

The tokens TAPER and TAPEW are used to specify read or write access. Checks are all
carried out under the system name TAPENET. The following example entry allows the
remote user 'auserJx' on the system at lP address 130.246.8.1 (the machine
arcu.cc.rl.ac.uk) to access only volid 888888 in Read mode:

:nick.
:system.TAPENET
:command.82F60801
:target.888888
:group.TAPER
:user.auser_ix

10

The present AUTHRTY checking mechanism supports strings of no more than 8
characters, so the lP address must be encoded as a hexadecimal string. The conventional
lP format will be adopted when longer character strings are supported. Meanwhile, an
IBM command procedure HEXNET EXEC U is available to convert between normal
and hexadecimal lP addresses.

Wild characters may be used to simplify AUTHRTY entries. The check for access
(TAPER or TAPEW) and the volid may be replaced with an asterisk to allow any access
to any tape. The AUTHRTY wild character'+' may also be used. For example, an
entry :target.8888++ would allow access to a sub-set of tapes starting with 8888 and
followed by any two characters.

A general entry might be:

:nick.
:system.TAPENET
:command.82F628++
:target.*
:group.*
:user.auser_ix

This will allow the remote user 'auserJx' access to any tape (belonging to AUSER) in
any mode provided the request comes from a machine in the RAL PP domain
(130.246.40.xxx).

11

Chapter 4

Ftenaote disk files

Data on remote disk files can be accessed either by linking to the remote file system over
NFS or by copying the files locally via ftp. For a large file which is being updated
regularly, NFS is probably better, but for a small stable file which is to be read many
times it may be better to take a local copy using ftp. The examples here assume that the
remote files are on VM/CMS, but they could equally be on any Unix, Vax or other
system with NFS software.

4.1 NFS- The Network File System

NFS is a facility for sharing files between machines. It might be used for example to
access a calibration data set stored on a VM mini-disk.

In general, NFS allows a remote tree of files to be grafted into the local file system. The
remote directory replaces an existing local directory, so it is customary to keep an empty
local directory for this purpose. If a non-empty local directory is used, everything in the
directory becomes inaccessible while the remote directory is mounted. A VM mini-disk is
viewed as a remote file tree containing a single directory.

For example:

mkdir -/vm
mount ib.cc.rl.ac.uk:pubxu.211,ro,record=binary -/vm

creates a new directory, vm, below your home directory then mounts the 211 disk
belonging to user pubxu on ib.cc.rl.ac.uk. The disk is mounted read-only in binary mode
(see below), and is assumed to have a read password of ALL so a read password need not
be specified.

The next example unmounts the disk and mounts another disk in read-write mode in
place of it. The mountpw command sends the mini-disk write password before the mount
command is issued. The NFS server on VM will remember the mini-disk/password pair
for about five minutes, during which time the mount command should be issued.

For example:

umount -/vm
mountpv ib.cc.rl.ac.uk:pubxu.215,pass=vriteit
mount ib.cc.rl.ac.uk:pubxu.215,rv,record=binary -/vm

will unmount an existing mini-disk and mount a new one in read-write mode with a
write password.

12

Many Unix versions do not allow ordinary users to monnt a file system nor to export one
(to make it available for monnting elsewhere). This is a potential problem accessing VM
disks, because each desired mini disk must be individually monnted.

There are a few restrictions when files are written to VM mini-disks via NFS. In
particular, it is not possible to create sub-directories on a VM mini-disk. As file names
are more restricted nnder VM than nnder Unix, a file acting as a look-up table is created
on the mini-disk to define the name conversion. A file with a name 'FNAME FTYPE' on
VM which is not in this look-up table is presented to Unix as fnarne. ftype. Use of Unix
file names conforming to VM file naming conventions will generally help (human) users,
but is not necessary.

Unix has no concept of record length in files, so the record length is ignored on reading.
Files are always written with RECFM F LRECL 1, but can easily be modified to a more
convenient record length for reading nnder CMS. For example, a 36000 byte file
'FNAME FTYPE D' will be written with 36000 1-byte records, but is converted to ten
3600 byte records with the CMS command

CHLRECL FNAME FTYPE D 3600

A disk accessed with record=binary can be used as an extension of the Unix filing space
to hold any type of file since data are stored on the VM disk without conversion. The
alternative record=text is suitable for text files which are stored as EBCDIC on VM
and converted to and from ASCII for the Unix side. Text files can of course be stored on
a record=binary monnted mini-disk, but as characters will be represented in ASCII they
will be difficult to work with from VM. If a mini-disk contains some files to be accessed
in binary mode and some in text mode, the disk can be monnted twice as separate Unix
directories.

Unfortnnately it is a feature of the current IBM software that the umonnt request is
ignored, so you have to log on to VM/CMS and tell VMNFS to detach the disks. The
CP command:

SMSG VMNFS 1M QUERY

will display a list of disks known on the VM side, and

SMSG VMNFS 1M DETACH PUBXU.211

will detach PUBXU's 211 minidisk. The need to issue DETACH commands will be
removed when VMNFS version 2.2 is installed.

This feature of the software makes writing disk files rather nnpleasant, because you can
mount the disk for reading many times and VMNFS wlll just get another read link to
the disk - but VMNFS only allows one write link.

VMNFS takes a private copy of a minidisk directory, so the Unix side will not see
directory changes (eg new files written by CMS) after the read link is established. The
command

SMSG VMNFS 1M REFRESH PUBXU.211

instructs VMNFS to take a fresh copy of PUBXU's 211 minidisk directory.

13

4.2 ftp- File Transfer Protocol

It may be preferable to copy frequently accessed files to the target Unix machine if disk
space permits, using ftp. Unfortunately, ftp implementations do vary quite a lot. In
general, is wise to move to the appropriate directory before issuing an ftp command.
The name of the target machine should be given on the command line, for example enter
the command ftp ib. cc .rl. ac. uk to perform transfers to or from the machine with
internet address ib.cc.rl.ac.uk.

When connection has been established, ftp will prompt for a command. Details of
commands may be obtained from the man pages. Useful commands include:

help
cd

print help information
change remote directory
list remote directory ls

ascii/binary
type
get/put
mgetjmput
prompt
quote

select 'ASCII' or 'binary' transfer mode
see whether ascii or binary transfer mode
get/put a file
get/put several files
toggle to switch on or off prompts from mget/mput
send a message to the remote server

quit get out of ftp

The file on Unix is just a string of bytes. The quote command can be used to send a
message to the remote server to say how the file is to be created there. For example to
issue SITE commands on VM:

quote SITE FIX 3600

causes files transferred to VM to be RECFM F LRECL 3600.

It does not appear to be possible to do the same thing when transferring a file to VMS.
Instead after transferring the file it should be converted by using a file such as
CONVERT.FDL shown below:

RECORD
BLOCK_SPAN yes
CARRIAGE_CONTROL none
FORMAT fixed
SIZE 3600

to convert oldJile to new Jile by the command:

$ EXCHANGE/NET/FDL=CONVERT old_file new_file

4.2.1 anonymous ftp

If you just want to take a copy of public files then you can often use a user name
'anonymous' or 'ftp'. Not all installations support anonymous access, and a password
may or may not be requested. Many systems request your real name or network address
instead of a password. If you are prompted for a password when using anonymous ftp to
a VAX/VMS system, try entering a null password (just hit return).

14

Chapter 5

Preparing and running a program

To run a FORTRAN program under Unix, you need to know a little about a shell (Korn
shell, C-shell or Bourne shell) and an editor.

5.1 Editors

Various editors are available. The standard Unix editor vi has only its availability to
commend it. Distributed with the X window software is a simple editor, xedit, which is
easy to use and makes use of the mouse, but will not do very much. The third editor to
mention is emacs from the Free Software Foundation. It is powerful - but as it was
designed to run on the dumbest of dumb terminals needs strange control sequences to
make it do things. You must at least know Control-x Control-c to exit from it. It works
well with X windows and there is an edt emulation available for those unable to retrain
their ageing fingers.

5.2 Preparing the input for the compiler

Common blocks may either be expanded (by PATCHY or some other mechanism) or
'include' files can be used. The C preprocessor can be run by the fortran compiler driver,
giving the interesting possibility to use conditional code without the weight and mystery
of PATCHY /CMZ. Using \#include rather than include also allows you to specify at
compile time in which directory(s) are the files to be included. If you wish to create a
compiled library, each FORTRAN routine should be in a separate file. A file containing
many routines may be split using fspli t - but note that fsplit will not recognise
labelled END statements (which are legal FORTRAN).

5.3 Compiling and Linking

The FORTRAN compiler (f77 on most machines, xlf on the IBM RS6000, fort77 on the
HP9000/700) is not actually a compiler at all but a program which will run the C
preprocessor, the C compiler, the FORTRAN compiler, the FORTRAN optimizer and
the loader. The f77 command is probably the most non-standard command in Unix, and
is also rather tricky as its options have to be passed down to the programs it calls. A
consequence of this is that erroneous options tend to be ignored rather than giving an
error. The -v (verbose) flag will allow you to see what the f77 command is doing. f77
requires a list of files, which it processes according to the part of the filename after the

15

last dot. The .c files are passed to the C compiler, .f files to the FORTRAN compiler,
and .o files are passed straight to the loader. Libraries are introduced by a -1 option., e.g.
-lpacklib which will selectively load routines from the file libpacklib.a. (The lib prefix
is not a typing error!) Useful options to look for in the man pages include:

-c

-g

-0

-static

compile only

debug control

optimization control

ensures static allocation of all variables. For those who have got all their
FORTRAN SAVE statements correct this is not needed- but for the
average HEP code this option is essential as the more modern Unix
compilers often, by default, allocate the space for variables when they are
needed and give them up when the routine is exited.

-cpp run the c preprocessor on .f files.

5.4 Libraries

The .o files may be stored in libraries. Use the ar command to build the library. For
loading several files initially use the -q flag which prevents the program wasting time
checking for duplicate entries. The ar provided with some versions of Unix does not
produce a symbol definition file (index) to the library; instead you build the library by
adding in many files and then index it in one go. Other versions of Unix maintain the
index for you. You should get a message if the library has no index and you try to use it.
Possible commands to build the index are ranlib or ar ts

5.5 The CERN library

The cern library is found in the tree with the root I cern - for example
/cern/pro/lib/libpacklib.ais the production version ofpacklib. Instead of'pro' the
name of that version of the cern program library may be specified instead.

5.6 Running the program and tidying up

The program is by default called a. out and generally lacks the bit which allows it to be
executed. To change this, if the file is called a. out, enter chmod +x a. out If your
program does not run investigate the debugger, dbx, which may have a nice window style
front end on your machine.

When you are happy with your program you can use the strip command on object files,
libraries and programs to remove the symbol table information. This will reduce the size
of the executable file on disk, but also means that a symbolic traceback cannot be
produced should the program abend.

16

5. 7 Simple example of a script

The first line of a script (Unix command file) should contain the name of the shell
program which should interpret it. For example a csh script will start off:

#! /bin/csh

For this reason you can mix Bourne (sh), Korn (ksh) and C (csh) shell scripts as you
wish. Included with humpf are two sets of demonstration scripts, one using the C shell
as this is currently the most com..."'Ilonly used shell in scientific work, and one using the
the Kern shell which, being closer to the POSIX shell, will probably take over.

To prepare the demonstration, issue the following commands (from any shell):

mkdir my_humpf_demo
cd my_humpf_demo
cp -r /usr/local/lib/humpf/*
mv ksh/* .

make a directory fer the ~emo
make it current ct:rectory
copy some files there
a~d move shell scrip~s ~~

mv h~~pf_ccnfigure.decs hw~pf_configure # rename configuration =:~e
rm h~~pf_configure.* # get rid of the rest
cd # return to the parent directory

The text following the # are comments. These are legal only if the commands are
executed from a script and not interactively. The fourth line copies the ksh version of
the scripts. (It could be replaced by mv csh/* . to get the csh scripts instead.) The
fifth and sixth lines rename the appropriate configuration file, and delete the other
configuration files. Files available for the various machines are:

Decstation humpLconfigure.decs
Hewlett Packard: humpLconfigure.hp
RS6000 : humpLconfigure.aix

The following commands will run the demo from the Korn shell:

cd my_humpf_demo
humpf_configure

./humpf_demo 809401 fisher
cd ..

go to your humpf_demo directory
run the configuration file
run the demo
return to the original directory

The second line runs the htimpLconfigure file in the current shell so that the
environment variables it sets are not lost at the end of the script. (The equivalent csh
command is: source humpf_configure)

The third line starts ./ which just specifies the current directory to ensure that
humpLdemo is found correctly (independently of how your PATH environmment
variable is set)

You can clean up afterwards with rm -rf my _humpf _demo which will destroy
my ..humpLdemo and all the files it contains re cursively without asking any questions.

17

The file humpLconfigure for ksh on a Decstation is:

~~ /bin/ksh
set -a

•
I Define environment variables for HUMPF

•
This is the decstation version

Set compiler and flags

COMPILER_NAME=f77
COMPILER_OPTIONS= 11 -g -v1 -assume backslash 11

LOAD_OPTIONS=

•
Set cern library version

CERN_VERSION=pro

Define command to randomise a libarary

RLIB=ranlib

The set -a command on the second line ensures that all variables are 'exported' and so
become 'environment variables' which can be used elsewhere. Note that the variable
assignments have no spaces around the = sign. (The equivalent csh script uses the
setenv command to set environment variables.)

The ksh version of humpLdemo starts:

#! /bin/ksh -p

humpf-demo a script to demonstrate some of the humpf tools

function error_exit
{

}

echo $<0;
exit;

[${#*} -eq 2 J I I
error_exit 'Must have parameters volser and tmsuser'

[${#COMPILER_NAME} -gt 0] I I
error_exit 'Must . humpf_configure to set COMPILER_NAME etc'

The -p flag on the :first line ensures that any script as defined by your ENV environment
variable will not be run, as this could upset the script.

The error_exit function which is defined here is used by the next two statements to
generate an error message and exit. In these two statements, the expression within
square brackets if true satisfies the 'or' condition I I and so the second expression which
is the call to error _exit will not be evaluated. This ensures that the two parameters $1
and $2 have been provided and that the environment variable COMPILER_NAME has
been set by the humpLcon:figure script.

18

The humpLdemo script continues ...

volser=$1 # get the tape number
tmsuser=$2 # the 'owner' of the tape
echo Will use tape $volser via TMS entry for user $tmsuser

. /make_generate # Make the generate program

[-a numbers] && rm numbers # remove numbers file if it exists
./generate
od -x numbers I
ls -lF numbers

rm numbers
mknod numbers p
ls -lF numbers

head
run the program
hex dump the file and take
and have a look at it.

remove numbers file,
replace it by a named pipe,
#and have a look at it.

the head

tape -w $volser $tmsuser -fnumbers & # start background job to w::::-ite tape
./generate # Run generate

./make_libintegrate

./make_integrate
make the me integration lib::a::::-y
make the integrate progr~~

tape -r $volser $tmsuser -fnumbers & # start background job to read tape
./integrate # Run the integrate program
rm numbers # and finally remove pipe file.

After saving and displaying the input parameters, huntpf_derno runs another script,
make_generate, which builds the program called generate ..

The line [-a numbers] && rm numbers is similar to the earlier case with 11 but here
the&:&, i.e. 'and', ensures that rm numbers is only executed if [-a numbers] is true
i.e. if the file exists.

The rest of the script executes the generate program which writes to a flle called
numbers. The beginning of this file is displayed on the terminal as a hex dump. The
numbers file is then replaced by a pipe file of the same name, and the same program run
again after starting up the tape command in the background to write the data from the
pipe on to a tape.

The make_generate script1 is very simple:

#! /bin/ksh -p

make_generate a ksh script to build the generate program
I
$COMPILER_NAME $COMPILER_OPTIONS generate.f -L/cern/$CERN_VERSION/lib -lgenlib I I

exit
mv a.out generate
chmod +x generate

1 The Unix make utility could also be used to build a program rather than such a script.

19

The FORTRAN code generate.£ is shown below:

c

PROGRAM GENERATE
IMPLICIT NONE

INTEGER I,IOS
REAL X,RN32

C Generate 1000 random numbers and store them on a file
c

c

OPEN(10,FILE='numbers',FORM='UNFORMATTED' ,STATUS='UNKNOWN',
+ IOSTAT=IOS)

IF(IOS .NE. O)THEN
PRINT *,'Failed to open file'
STOP

END IF

DD 10 I = 1,10000
X = RN32(I)
IF(I .LT. 10)PRINT *,'Random number is ',X
WRITE(10) X

10 CONTINUE

C Write a flag on the end of the file (a negative nw~ber)
c

WRITE (1 0) -1 . 0

END

The OPEN statement in the FORTRAN opens the file with STATUS='UNKND1f1N' to
ensure that the program will write to an ordinary file or to a pipe. It does not matter
whether the tape program is run first or second and either or both may be run in the
background. 2•

As a single Unix pipe can only transmit data and not control information, a process
reading from a pipe cannot use the END= on the READ statement of a FORTRAN routine
to know when there is no more data.3 As a consequence, the reading program must use
some other means to know when to stop reading. This is not a problem in practice,
because formats such as FZ of ZEBRA have end of file information before the physical
end of file. In the case of this hurnpLdemo, a negative word is used to flag the end of file.

2 The option on the tape command to allow it to create the pipe and destroy it at the end is not used.
In principle it can lead to synchronisation problems if the application program opens the file first with
STATUSzUNKNOWN it will create an ordinary file and the tape command will fail to open a pipe of the same
name.

3 This is only a problem for FORTRAN (which is record oriented in its i/o). In C the routine read
returns 0 as the number of bytes read to signal an end of file when attempting to read from an empty pipe
if no process has the pipe open for writing. This is fortunat e, <•s otherwise the tape command would not
stop when it was reading from the pipe and writing to n tape.

20

5.8 Unix version dependency

Below are listed for some machines:

• the command to compile with a reasonable set of options, including the debugger.
Better performance for stable programs will be obtained by removing debug
options and enabling optimisation.

• whether to escape a'\' character in the FORTRAN source by a second'\'

• the set of libraries to accompany grafXll which is the Xll HIGZ library

• the command to index a library

RS6000(AIX)
Fortran: xlf -g -w -qextname -qcharlen=30000 -NQ30000 \

-NT120000 -NPlOOO -ND20000 -NNlOOOOO
\\
Xll
index

yes
-lXll -lm
ranlib

Decstation (Ultrix, Dec f77 Compiler)
Fortran: f77 -g -wl -assume backslash
\\ no
Xll
index

-1X11 -lcursesX -lm
ranlib

Silicon Graphics
Fortran: f77 -g2 -00 -G3 -stati.:
\\ yes
Xll -lXm -lXt -lXll -lPW
index not needed

Sun (SunOs)
Fortran: f77 -i4 -w -g
\\ yes
Xll -1X11 -lm
index ranlib

Apollo DnlOOOO(Domain)
Fortran: f77 -w -g
\\ yes
Xll -L/usr/lib/Xll -1X11 -lm
index not needed

Hewlett Packard 9000/700(HP-UX)
Fortran: fort77 -c -K -w -g +ppu
\\ no
Xll -L/usr/lib/X11R4 -1X11 -lm
index not needed

21

5.9 Support for FORTRAN 1/0

This section discusses use of FORTRAN binary i/o on different systems.

The Unix file system is not as record oriented as FORTRAN. Unix treats files as a
sequence of characters rather than a collection of records, and record handling is
provided by the FORTRAN run-time system. Care is needed in particular when moving
binary data files between Unix and non-Unix systems.

Below is illustrated a code fragment which writes a binary record, and a hexadecimal
dump (using od -x) of the output which is produced on different systems:

PROGRAM HUMPF_TEST

REAL * 4 F
CHARACTER * 4 NAME
INTEGER * 4 I
DATA F/10.0/,NAME/'FRED'/,I/25/
OPEN(UNIT=10,FILE='TEN' ,FORM='UNFORMATTED' ,STATUS='NEW')
WRITE(10) F,NAME,I
END

Sun 3/160
Dn10000
HP9000/700
RS6000

Decstation

VAX(VMS)
IBM(VM/CMS)

0000 OOOc 4120 0000 4652 4544 0000 0019 0000 OOOc
0000 OOOc 4120 0000 4652 4544 0000 0019 0000 OOOc
0000 OOOc 4120 0000 4652 4544 0000 0019 0000 OOOc
0000 OOOc 4120 0000 4652 4544 0000 0019 0000 OOOc

OOOc 0000 0000 4120 5246 4445 0019 0000 OOOc 0000

OeOO 0300 2042 0000 4652 4544 1900 0000
0014 0000 0010 0000 41a0 0000 c6d9 c5c4 0000 0019

In the Unix systems, the 12 bytes of user data are preceeded and followed by a record
length specifier 0000 OOOc (the byte order is different on the Decstation). In the
non-Unix systems, only a leading record length specifier is present, but extra bytes are
inserted to help in mapping FORTRAN records to file system records. Furthermore, the
representation of floating point and character values differ.

22

Index

access to tapes, 10
aix, ibm version of unix, 21
ar, building libraries, 16
authorising tape access, 10
AUTHRTY NAMES

example entries, 10
format of IP address, 11

authrty names
tape security, 10

batch
job deletion, 6
job status, 6
job submission, 3

binary
file transfer with ftp, 14
record format in VMNFS, 13

Bourne shell, 17

C shell, 17
cancel a batch job (qdel), 6
cern libraries, 16
CHLRECL, change record length, 13
chmod, permit program execution, 16
compiling fortran programs, 15

dbx unix debugger, 16
Decstation workstation, 21
delete a batch job (qdel), 6
detach VMNFS command, 13
direct writing of batch job output, 5
DN10000 workstation, 21
domain, apollo version of unix, 21

editing, 15
editor

emacs, unix text editor, 15
vi unix text editor, 15
xedit unix text editor, 15

emacs, unix text editor, 15
embedded options, qsub, 4
environment variables, 18

batch, 4
ENVIRONMENT, 4
job, 4

23

example
AUTHRTY NAMES entries, 10
AUTHRTY NAMES wild cards, 11
nqs job script, 17
tape command, 9
use of qsub options, 4

executing programs, 16
export, 13

£77 fortran compiler, 15, 21
fort 77 fort ran compiler, 15
file name restrictions, in VM/CMS, 13
file transfer protocol (ftp), 14
fortran

compiler file types, 16
compiler options, 16
£77 compiler, 15
fort77 compiler, 15
i/o, 22
include files, 15
programs, 15
xlf compiler, 15

fsplit, split fortran source, 15
ftp

anonymous, 14
file transfer using, 14

hexnet, IP address conversion! 11
HP 9000/700 workstation, 21
HP-UX, Hewlett-Packard version of

Unix, 21

i/o in fortran, 22
include files, fortran, 15
IP address format, in AUTHRTY

NAMES file, 11

job
deletion, 6
identifier, 3
script example, 17
status, 6
submission, 3

Korn shell, 17

labels, tape, 7
libraries

building, 16
cern, 16
indexing, 16

linking, 15

mail
at batch job end, 5
at batch job start, 5

mount, command to attach remote
disk, 12

mountpw, sending minidisk password
with, 12

name of batch job, 5
named pipe, used by tape, 7
network file system (nfs), 12
network queueing system (nqs), 3

object libraries, building, 16
output from batch job, 4

password
in tape command, 8
vm minidisk, 12

pp domain, ip address, 11
priority, of batch job, 5
program execution, enabling using

chmod, 16
program, running, 16

qdel (delete nqs job), 6
qstat (display job status), 6
qsub

batch job submission using, 3
command syntax, 5
example, 4

query, VMNFS command, 13
query job status, 6
queue, batch job submitted to, 5

ranlib, indexing libraries using, 16
record length, changing under CMS, 13
record structure in fortran, 22
refresh, VMNFS command, 13
rs6000 workstation, 21
running programs, 16

script file, used in batch job, 3
shell

csh, 17
ksh, 17
sh, 17

24

signal a batch job (qdel), 6
splitting fortran source, 15
status, display batch job, 6
stop a batch job (qdel), 6
strip command, 16
submit batch job, qsub, 3
Sun workstation, 21
sunos, sun version of unix, 21

tape
access control via tms, 7
access to over vtp, 7
labels supported by vtp, 7

tape
command syntax, 7

text
file transfer with ftp, 14
record format for vmnfs, 13

time, qsub option, 5
tms

command examples, 10
tape access control via, 7
tape management system, 10

ultrix, dec version of unix, 21
umount, command to detach remote

disk, 12
userid, used in tape command, 8

vi unix text editor, 15
virtual tape protocol, 7
VMNFS, command syntax, 13
valid, used in tape command, 8

wild card in AUTHRTY NAMES
entries, 11

xedit unix text editor, 15
xlf fortran compiler, 15

