
~6? 
£~ e
o~ ~ 
6] ~ ~ Science and Engineering Research Council 

rcr ,, o . 

.. 
0 .. 
:-= 4-1 

,) 'cl 
u 4 
11 Jl 

8 * Rutherford Appleton Laboratory 
~ ~ Chilton DIDCOT Oxon OXll OQX RAL-92-080 

a: 

Initial Experiences in Porting a 
Three-Dimensional Semiconductor 
Device Modelling Program 
to the lntel iPSC/860 
R F Fowler 8 W Henderson and C Greenough 

December 1992 



Science and Engineering Research Council 
'The Science and Engineering Research Council does not 
accept any responsibility for loss or damage arising from 
the use of information contained in any of its reports or 
in any communication about its tests or investigations" 



Initial Experiences in Porting a Three-Dimensional 

Semiconductor Device Modelling Program to the lntel iPSC/860 

R.F. Fowlert, B.W. Hendersont and C. Greenought 

t Mathematical Software Group 
t Parallel Processing Group 

October 1992 

Abstract 

EVEREST is a three-dimensional device modelling package used to study the electrical behaviour of semicon

ductor devices. A set of partial differential equations describing the current flow within the device is solved using 

a mixed mesh of tetrahedral and hexahedral elements. The highly non-linear nature of the equations requires 

that a flexible solution strategy be used to malce the software robust and efficient. Within the solution process 

large sparse non-symmetric linear systems are solved using iterative solvers such as CGS with preconditioning. 

Run times of many hours or even days are required for realistic devices on current workstations. 

EVEREST consists of over I 00000 lines of Fortran and was developed for scalar architectures. The main aim 

of this work was to investigate how such an application could be adapted to run on the iPSC/860. A review of 

some of the possible parallelisation techniques is made. 

Most techniques for the parallel implementation of such mesh based calculations on MIMD machines involve a 

partitioning of the mesh. An extension of an algorithm due to Farhat has been implemented in a pre-processor to 

partition the device meshes used by EVEREST. Aspects of load balancing and the need to minimise the number 

of interface nodes in the decomposition are discussed. Some initial results using the partitioned mesh to perform 

the system matrix assembly are presented. 

Methods that could be used to implement a parallel preconditioned CGS solver on the iPSC/860 are reviewed 

and some performance estimates made using the results of certain BBS tests on this machine. 

Presented at the BECAUSE Workshop, INRIA, Sophia-Antipolis, France, 12-16 October 1992 

Mathematical Software Group 

Computational Modelling Division 

Rutherford Appleton Laboratory 

Chilton, Didcot 

Oxfordshire OXll OQX 





Contents 

1 Introduction . 

2 Semiconductor Device Modelling 

3 Analysis of Workload of Serial Program 

4 Parallel Methods for Device Modelling 
4.1 Domain decomposition methods . 

4.2 Parallel iterative solvers 

5 Mesh Partitioning . . . . . . 

6 Parallelisation of the Matrix Assembly 

7 Performance Estimates for Parallel PCGS on the iPSC/860 

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 

1 

2 

4 
4 

6 

7 

9 

10 

11 





1 Introduction 

As part of the ESPRIT project BECAUSE we have investigated the implementation of a semiconductor 

device modelling package on the lntel iPSC/860. The device modelling software that we have used is 

the EVEREST suite which solves the drift diffusion equations to model general silicon semiconductor 

devices. The purpose of this work was to assess the amount of effort required to move existing field 

modelling codes onto the iPSC machine and to find out the potential benefits available in doing so. 

In the following sections of this paper we first present an overview of the EVEREST software, the 

numerical problem it solves and give some results showing where the CPU time is spent in the serial 

implementation. A short review is then made of the main approaches that could be used for a parallel 

implementation of the Solver Module. Section 5 discusses the problem of mesh partitioning and the 

pre-processor that we have developed for use with EVEREST device meshes. The results of an initial 

version of the Solver module that performs the matrix assembly phase of the calculation in parallel 

are then given in Section 6. We then make some estimates of the expected performance of a parallel 

linear solver based on results of tests that have been run on the iPSC/860. Finally some conclusions 

are given. 

2 Semiconductor Device Modelling 

Semiconductor device modelling can be used to predict the static and dynamic response of devices 

such as diodes, MOSFETs, etc. In particular device designers need to be able to calculate properties 

such as the current flow in the device as a function of the applied voltages on the contacts. From 

such information it is possible to determine important parameters like the current gain of a transistor, 

or its maximum operating frequency. Device simulation also gives insight into exactly where current 

flow occurs and the cause of problems such as "latch-up" in fast switching of CMOS devices. The 

high cost of fabrication of test devices and the constant drive for smaller and faster devices means that 

simulation is a vital tool in the semiconductor industry. 

EVEREST is a software package for the simulation of general silicon semiconductor devices in 

three dimensions and was developed as part of ESPRIT Project 962 [ 1 ]. The software solves the 

following set of time-dependent non-linear partial differential equations over the device: 

fV'2'1/J = -p 

8p 
8t=Y'.Jp-R 

8n 
8t = -Y'.Jn- R 

The hole and electron currents themselves (Jp and Jn) are given by the equations: 

(1) 

(2) 

(3) 

(4) 

(5) 

There are three basic unknowns at each point in space '1/J, n and p, though the code actual works in 

terms of a transformed set of variables '1/J, <l>n and </>p. 'ljJ is the electrostatic potential and </>p and <l>n 
are the quasi-Fermi potentials. The other terms in the equations are given from appropriate physical 

models, and may depend on the solution variables. 

1 



These equations are solved on a finite element type mesh composed ofhexahedral and tetrahedral 

elements, the latter being necessary to allow fornon-rectangular geometries and for adaptive refinement 

of the mesh [2]. The automatic adaption is an important feature since it is very difficult to specify a 

mesh in three dimensions that captures the solution while not using an excessive number of elements. 

The partial differential equations are discretized on the mesh using a finite volume (control region) 

method. The resulting set of sparse equations is highly non-linear and is solved using a Newton

Raphson iteration. Since the computation times involved can be very long (hours or even days for 

fully three-dimensional problems on current workstations) it is important to solve these as efficiently 

as possible. A number of strategies are employed in EVEREST for this purpose, some of which we 

mention here: 

• Continuation - each bias case is solved using the previous solution as the starting guess. If the 

Newton method fails to converge, the bias step is reduced and we try to solve an intermediate 

problem to get a better starting guess. 

• Damping of the Newton updates are made if necessary. 

• Gummel and coupled iterations - the default solution method is to start out using the Gummel 

method, where the three unknowns 1/J, </Jp and <Pn are solved one a time holding the other two fixed. 

When sufficiently close to the solution a fully coupled method, solving for all three unknowns 

together, is used. 

• The linear systems, Ax = b, that arise in each Newton step are solved with pre-conditioned CG 

methods, ICCG for symmetric systems and CGS or Bi-CGSTAB for the non symmetric ones. 

This combination of techniques gives a solution method that is both robust and efficient while not 

requiring excessive memory, e.g. 32 Mbytes is adequate for basic structures. 

3 Analysis of Workload of Serial Program 

As a starting point for understanding the existing code and selecting the parallel method to employ, 

a timing analysis was made of the EVEREST solver module on a selection of problems. While we 

already knew what parts of the code were likely to be most expensive it is useful to have actual figures 

when considering the costs and benefits of particular parallel methods. 

The problems considered included the major device types (field effect and bipolar) with static and 

time dependent solutions. An example with automatic mesh adaption was also included. Table 1 

summarises some of these examples. 

Name Nn Ne Mesh Steps Run time (Sec.) 

MOSt 1416 1040 H 3 565 

MOS4 9755 8320 H 3 10782 

NPN 6582 10490 M 6 88850 

COMBIC 1179 532 H 6 16091 

ADAPT 6582 10490 M I 954 

Table 1: Test problem sizes and run times. Nn and Ne are the numbers of nodes and elements in the mesh, 
which is either made of hexahedra (H) or a mixed mesh (M) of hexahedra and tetrahedra. 

2 



The run times refer to an implementation on a SUN Spare IPC workstation. Up to 1 day of run 

time can be used with a mesh of only 6500 nodes. We note that the run time of the mesh adaption 
example (ADAPT} is very much less than other large simulations. This is because the mesh adaption 

is performed only on the doping profile (which needs no calculation) and the variation in potential, 

which can be found cheaply by solvingjust Poissons equation. Once a refined mesh has been generated 
in this way it is usual to perfonn a number of more expensive calculations on it, as in the NPN test. 
It seems that it is not worthwhile to deal with the complexity of including adaptive refinement in a 
parallel version since this is relatively cheap and can be done as a pre-processing step on a serial 
machine. This would not be the case when adaption on current is included in the package. 

The CPU time on this machine was analyzed in two ways, firstly using the builtin timing routines 

within the program that give infonnation on logical blocks and secondly using compiler generated 
profile infonnation. 

Table 2 gives some typical results from the builtin timing routine. The majority of time is found 

Block MOS1 MOS4 COMBIC NPN ADAPT 

Level1 

Mesh input 1.87 0.69 0.07 0.09 0.03 
Doping input 1.49 0.47 0.02 0.06 0.06 
Initial soln. 11.17 5.64 0.08 2.57 4.10 
Gummel iter. 46.37 38.12 0.05 22.71 22.76 
Coupled iter. 37.19 54.53 0.06 74.48 ne 

Output 1.65 0.47 0.01 0.07 4.02 
Transient ne ne 99.68 ne ne 
Refinement ne ne ne ne 28.01 

Level2 

Linear soln. 40.62 69.22 88.10 82.11 8.02 

Fonn Jacobian/RHS 41.69 22.32 11.11 14.87 33.73 

Level3 

PCGS solver 31.49 61.09 86.66 78.50 ne 
ICCG solver 7.43 6.87 0.02 2.98 7.56 

Table 2: Percentage of time spent is basic blocks of the Solver. The different levels refer to depth in the calling 
tree, so that Level 1 results include time shown in lower levels, etc. 

to be taken up in the formation of the Jacobian matrix and right hand side vector and solution of 
the resultant linear system. This is the case in both static and transient examples, even though the 

higher level calling blocks are different. These two parts are most dominant in the longer runs when 
they account for up to 99.2% of the total time. Hence a parallel implementation must deal with 

these areas efficiently. However, we cannot just ignore the rest of the program since it wi11 have 
implications on data movement and distribution, and if large numbers of processors are used it will 

require parallelisation of all of the code. 

Some typical results from the compiler generated subroutine level profiling of one such simulation 
are shown in Table 3. The table only shows those subroutines taking above 1% of the total time, with 
a few words outlining the function. It should be possible to perfonn the matrix assembly and right

hand side evaluation in parallel the since operations are independent, apart from update of common 
variables. The linear algebra is more complex and is dominated by the forward and backwards 

3 



Linear algebra 
Subroutine function MOSt MOS4 COMBIC NPN 
forward subs. 11.7 26.6 27.1 28.1 
backward subs. 11.7 25.3 27.8 28.4 
diag. matrix-vector prod. 3.0 3.0 8.6 6.5 
vector addition 4.2 4.3 5.0 5.7 
diagonal scaling 2.4 2.4 7.2 5.3 
vector scaling 2.7 2.5 2.8 3.3 
vector subtraction 2.5 2.7 2.8 3.3 
dot product 1.5 1.4 1.2 1.5 
maximum value of vector 1.0 0.9 1.1 1.2 
zero vector 1.8 0.6 0.1 0.4 

Matrix/RHS assembly 
Subroutine function MOSl MOS4 COMBIC NPN 
sparse matrix update 13.2 6.5 3.2 3.5 
evaluate element contr. 7.1 2.4 0.7 1.5 
discrete terms 4.5 1.4 0.2 0.6 
divergence terms 4.0 3.4 1.2 1.7 
mobility model 2.1 ne 0.5 0.8 

Table 3: Compiler generated subroutine level profiling of some test problems. The subroutines are divided into 
those associated with the linear algebra and those to do with the fonnation of the Jacobian matrix and right-hand 
side. Figures are the percentage of the total time due to this routine. 

substitution operations on large sparse matrices. These operations arise due to the pre-conditioning 
of the iterative methods and are further emphasised by the fact that the Solver Module uses the 
implementation due to Eisenstat [3] which avoids a direct sparse matrix-vector product at the cost 
of additional substitution operations. An effective pre-conditioning is required because the iterative 
methods can often fail to converge without it. 

4 Parallel Methods for Device Modelling 

There has been a great deal of research done on solving partial differential equation problems on 
parallel computers. The methods that might be applied to the device equations can be classified into 
two main types, true domain decomposition methods and ones based on a geometric decomposition for 
the matrix assembly followed by a parallel solution of the global linear problem. We briefly consider 
these options here. 

4.1 Domain decomposition methods 

The classic domain decomposition method is that due to Schwarz, whereby the domain is divided into 
a number of overlapping subdomains. Within any one subdomain a self contained problem is defined 
by assuming that the new boundary edges that arise from the decomposition are Dirichlet boundaries. 
The values on the new boundaries are first set by some initial guess and are then updated from the 
neighbouring subdomains when new solutions are obtained. Many texts describe this method in more 
detail, see for example [4]. 

4 



From the point of view of adapting an existing device modelling program to run in parallel 
this technique would appear to be straightforward to implement. If the existing device mesh were 

decomposed into a set of suitable overlapping regions then the new boundaries could be defined as 
a new type of contact (which implies Dirichlet boundary conditions). This would allow the existing 
Solver Module to run on each node of the parallel machine with only the minimum of modifications 
to exchange boundary updates at suitable points and to check for global convergence. However the 
Schwarz method suffers from a number of draw backs which could make it very inefficient: 

• The overlap region represents at least one layer of additional elements to be assembled for 
each processor. This will increase the total workload and limit efficiency especially for three
dimensional meshes. 

• The convergence of the non-linear process will be slower in the parallel version than the serial 
one [6]. This is likely to represent a significant problem as the device equations are highly non
linear. Convergence improves as the amount of overlap is increased, but this is at the expense of 

increasing the total amount of work. 

Other methods exist based on decomposition into non-overlapping subdomains, which avoids the 
additional work and should give better convergence properties. One such method is based on solving 
the Schur complement problem for the interface nodes. If the domain is split into just two subdomains 
for example, and the nodes are renumbered so that those on the interface have the highest numbers, 

then the linear system to be solved takes the form: 

where each A;i represents s block matrix and ui and fi are the components of the update and right-hand 
side vectors respectively. If we can solve for the interface values u3 first, then the remaining two parts 

of the solution for u1 and u2 are independent and can be performed in parallel. 
The Schur complement problem for the interface nodes is to solve 

where, 

and 

h = /3- A3tAI/ !t- A32Azl h 

A lot of research has been done on such methods, much of it for problems in computational fluid 
dynamics (CFD), see for example [5]. The size of the Schur complement problem is proportional to 

the number of interface nodes and this can be large in three dimensions. An efficient solution method 
is required and [5] suggests that a parallel iterative solver is needed. However, it is also necessary to 
use a good preconditioner and it seems that there are many possibilities to select from. We are not 

aware of any work which explores the appropriate preconditioning to use for the device equations or 

indeed whether such a preconditioner exists. 

In the absence of clear evidence that such an approach would work we looked at the alternative 

method to domain decomposition, that of using a global parallel solver. 

5 



4.2 Parallel iterative solvers 

Implementation of a parallel version of the the conjugate solver routines on a distributed memory 

MIMD machine is possible and offers the advantage that we will be solving the same numerical 

problem as in the serial case, and hence should expect similar convergence properties and behaviour. 

The fact that such an approach is viable on at least one MIMD architecture is shown by Pommerell et 

a/ [7]. They solve matrices arising from the semiconductor device problem on a 64 processor system 

using parallel PCGS and ICCG solvers. Good performance is reported in terms of speed up (40-50 on 

64 processors). However they present no results for the actual performance of the system (elapsed time 

or MFLOP/s) and have used a simulation of the system for timing. One characteristic of the system 

that they do state is that the time to send one word of data (8 bytes) from one processor to another is 

close to that to compute it, i.e. the time for 1 FLOP. Other aspects such as message latency are not 

mentioned. We note that the iPSC/860 can perform 1 FLOP in about 0.1ps while taking almost 3ps to 

send an 8 byte word (with very long messages). Thus the iPSC/860 has a much worse communication 

- computation balance. 

Taking some typical timing results for just the linear algebra part of the Solver module we find 

that the CPU time of the serial code can be classified into three major types shown in Table 4. 

Operation Example Time(%) CGS 

Parallel vector o:x+y 31.8 

Limited parallel vector x.y 2.7 
Forward/back subs. L-1x 63.4 

Table 4: Distribution of CPU time for the linear solvers between 3 types of operations. 

The three types of operation are: parallel-vector, vector operations which can be performed without 

communication; limited parallel-vector operations, like the dot product where some communication 

is required; and the forward and backward substitution operations. 

The key problem is seen to be the sparse matrix substitutions, which are normally solved in a 

sequential manner with little scope for parallel execution. The method suggested for parallelisation of 

these operations in [7] is based on a renumbering of the nodes such that sub-blocks of the matrix can 

be treated in parallel. This renumbering is illustrated in Figure 1. 

1 2 3 4 5 6 1 2 13 7 8 16 

7 8 9 1C 11 1~ 3 4 u 9 1C 1~ 
1-----+---l 1-----+---l 

13 14 15 16 17 18 5 6 15 11 12 18 

(A) (B) 

Figure 1: The original grid (A) has a natural numbering of the nodes. Half the nodes are mapped to each 
processor and a balanced red-black renumbering performed (B). 

The original mesh (A) with natural numbering has first been partitioned so that the nodes on the 

6 



left are mapped to processor 1 and the rest to processor 2, as in (B). In the substitution operations, 

we have one unknown corresponding to each node and nodes that are mapped to the same processor 

will be solved sequentially. Hence dependencies between processors are restricted to nodes along 

the interface (3,4,9,10,15,16 in the original numbering). In the renumbered system (for the forward 
substitution case) nodes 1-6 on processor 1 and 7-12 on processor 2 can be solved in parallel. Nodes 
13-15 can only be solved when the results for nodes 7-9 are provided from processor 2. Nodes 16-18 

do not have any dependencies on processors 1, but have been effectively "coloured black" so that there 
is an equal number of each colour on every processor (the balanced colouring of [7]). This can be 

extended to unstructured meshes and more complex decompositions, though more than two colours 
may be required in some cases. 

Hence with suitable modification of the data distribution it should be possible to parallelise all the 

basic operations involved in the preconditioned CGS and ICCG solvers. 

One additional cost that needs to be considered is that of the convergence rate of the iterative 
methods due to the renumbering of the nodes. It is known that "natural" numberings generally lead 

to better preconditioners than some others such as red-black orderings or band-width minimisation 
ones. Heiser et a/ [8] have reported that the reordering for parallelisation costs about 15-40% in terms 

of extra iterations. While not insignificant, such an overhead is acceptable if good speed up can be 

obtained. 

5 Mesh Partitioning 

All the methods mentioned in the previous section require that the device mesh is partitionerl in 

some way between the processors. There are many ways in which this can be done and the optimal 

partitioning will depend on the solution method to be used. For the matrix and right-hand side vector 

assembly a partitioning that ensures reasonable load balancing is required. For a hexahedral mesh 

over a device of only one material this just requires the same number of elements are assigned to each 

processor. In addition it is important to minimise the number of nodes on the interface between two 

domains since the variables associated with these will have updates from both processors and hence 
require communication. 

For the solution of the linear algebra problem using a global solver the partitioning is based on nodes 
rather than elements. Apart from the need to have the same number of nodes on each processor we 

also need to consider the communication costs associated with the most time consuming operation, the 

sparse matrix substitution. Following the colouring and reordering techniques discussed in Section 4.2 

we will need to exchange data between processors for nodes that are on the boundary with another 

subdomain. This is similar, but not identical to the requirement for the assembly partitioning. 

The importance of the mesh partitioning will depend on the characteristics of the parallel computer. 

The ratio of communication time to the calculation time is particularly important. The iPSC/860 is 
poor in this respect since it takes of the order of 30 times longer to send a value as to calculate it. The 
latency, or start up time to send a message, can also be important since decompositions that minimise 

the number of interface nodes also tend to create more neighbouring subdomains, so more messages 

of shorter length are sent. The iPSC/860 has a message half performance length of N1; 2 ~ 486 ([9]) 

which has to be taken into account when selecting the best decomposition. In this paper we are most 

interested in the behaviour with large meshes and limited numbers of processors. 

While it is possible to repartition data between the matrix assembly phase and the linear solution, 

we have sought to avoid this by looking for a single partition that balances work in both phases and 

7 



limits the total communication cost. 

Many algorithms have been developed for mesh decomposition. Simulated annealing may give the 

best results though it can be very expensive. Orthogonal recursive bisection and eigenvalue recursive 

bisection [ 10] are cheaper techniques that give reasonable results. We have developed a preprocessor 

that uses the domain decomposition method due to Farhat [11], it would be easy to modify this to use 
one of the more recent algorithms. 

The Farhat algorithm attempts to decompose a given mesh into p subdomains with Ne/ p elements 
each (or as near as possible), where Ne is the total number of elements. The basic steps are: 

1. Count the number of elements about each node (called the weight). 

2. Find the node with the lowest weight and use the elements connected to this as the start of the 
element list for the new subdomain. 

3. Add the elements surrounding those already selected to the list until the desired length is reached. 

4. Remove the selected elements from the list and update the weights. 

5. Repeat from 2 until p subdomains are found. 

This works well for small p but for p > 8 the method sometimes fails to find a set of connected regions. 
Because of this we modified the algorithm so that it would try a range of possible decompositions. 

This can be done since it is usually the case that there is more than one node of minimum weight to use 
as a seed for the next subdomain. By varying this choice we can usually find a number of successful 
decompositions without disconnected subdomains. As several valid decompositions can be generated 
in this way we can select the one that is "best", such as having the least number of interface nodes. 

The preprocessor will automatically try to generate a number of possible decompositions and write 

out the best one. For small problems there can be a difference of about 20% between the best and the 
worst decomposition in tenns of the number of interface nodes. 

A further complication is in the case of mixed meshes, as are often used in EVEREST, where the 

work per element is not constant. Timing measurements indicate that the assembly of a hexahedral 
element costs about 1.8 times that of a tetrahedral one in the present software. To allow for this the 
algorithm uses a weighted target for the number of elements in each subdomain. An example of the 
mesh decomposition for a two-dimensional MOSFET is shown in Figure 2. 

Having partitioned the elements it is necessary to find a balanced partitioning for the nodes. This 
is done as follows: 

1. Nodes that lie totally within any subdomain are allocated to that processor. 

2. Interface nodes are assigned to processors trying to avoid giving any one processo! more than 

N n j p, where N n is the total number of nodes. 

3. To improve the load balance, a sweep is made through all interface nodes changing the subdomain 

they are assigned to if this improves the load balance. Nodes can still only be assigned to 
subdomains that they are next to. 

This simple method gives a good load balance even when using a mixed mesh in the examples we 

have tested. 

The preprocessor for mesh decomposition is a self contained module that just reads the selected 

mesh file, in the standard ASCII (neutral file) format used through out the EVEREST suite. It takes 

8 



I I I i I I I I 

gt 

Figure 2: Mesh decomposition of a 20 MOSFET into 4 subdomains. 

typically a few minutes (SUN 4 I 5000 nodes), to calculate a reasonably good decomposition and then 
writes the results to a new set of neutral files, one for each subdomain. These can then be picked up 
the Solver module running on the iPSC/860. 

6 Parallelisation of the Matrix Assembly 

To test the parallelisation of just the matrix assembly phase of the computation we have developed 
a new version of the EVEREST Solver module. This performs the assembly and right-hand side in 
parallel using the subdomains, but then sends the result to one processor so that the serial version of 
the linear solver can be used. This will be of limited use since the linear algebra step is represents 
about half of the total time, but it does allow us to test decomposition. 

Due to the complexity of the data structures that are used within the code (some of which are to 
save memory) this required a significant amount of effort. Synchronous communication was used for 
sending data from all processors to the controlling node and returning the updates to them. 

For fast access all the relevant data files are stored on the Concurrent File System (CFS) of the 

iPSC/860. Processor 0 is given control of the simulation and is responsible for reading commands 

and relaying them to other processors and writing results files. The parallel assembly is used for 
both coupled and Gummel iterations and also for damping, when only the right-hand side vector is 
evaluated. The range of different techniques used in the Solver add to the work required to produce a 

parallel version. 
Table 5 gives some timings for the case of one and two processors. The test problem is a bipolar 

device with 372 nodes and 828 elements, all hexahedra. 
The computation time for assembly is very close to half in each case with two processors, showing 

that the decomposition has worked. The results obtained are identical to just using one processor. 
The communication costs are about 1/8th of the computation time with two processors, but this gets 
worse as the number of processors is increased. In this test the assembly phase was about42% of the 
total time so the speed up is limited to ~ 1.2 in this case. Increasing the number of processors will 
not improve this significantly and a parallel version of the linear algebra is required to get worthwhile 
performance. 

9 



Operation 1 processor 2 processors 

Tcalc (ms) Tca/c (ms) Tcomm (ms) 

Poisson 123 62 10 

RHS Poisson 63 32 2 

Electron 555 276 14 

Coupled 1092 548 74 

Current eval. 5.3 4/1.3 1/2.9 

Table 5: Results for parallel assembly on iPSC/860. The times are milliseconds per call. 

7 Performance Estimates for Parallel PCGS on the iPSC/860 

We can estimate the performance of a parallel preconditioned conjugate gradient solver on the iPSC/860 

using the data in Table 4 along with results from the BECAUSE Benchmark Set (BBS) [9]. The tests 
in the BBS include the basic operations that are performed by the PCGS solver. 

BBS 2.4.2 involves forward and backwards substitution on a sparse matrix of the type that occurs 

in the EVEREST solver. The parallel implementation is based on the mapping and renumbering 

discussed in Section 4.2 with a slicewise decomposition of the problem domain and the results are 
given in [9]. We may expect slightly better performance with the decomposition used in this paper, 

since there will be fewer interface nodes and hence less communication. Nevertheless the results 
should be a fair approximation to the potential speed up. Other BBS tests give the speed up we can 

expect for the other important operations, such as dot product and maximum value of a vector. All 
these results can be combined since there is no inconsistent assumption about the data distribution 

between them. 

Operation Time(%) S13oo 59000 s36ooo 
Parallel vector 31.8 8 8 8 
Limited parallel vector 2.7 0.7 2.8 4.9 

Forward/back subs. 63.4 0.7. 1.8 4.0 

Weighted Speed up 1.0 2.4 4.8 

Table 6: Estimated speed up of the EVEREST linear solver based on BBS test results for 8 processors on the 
iPSC/860. Sn is the speed up with n nodes. 

Table 6 shows estimates of speed up for the iPSC/860 based on the BBS results and the weights 
from Table 4. We have selected three typical sizes for the number of nodes of 1300, 9000 and 36000. 
While we can achieve about 60% efficiency using 8 processors on the largest problem, the smaller 

problems give very poor results. The half performance problem size is about 30000 nodes, and this 

will increase rapidly as the cube dimension is increased. The results are significantly worse than those 

reported in [7] for 64 processors. This is due to the poor communication performance of the iPSC/860. 

However, we cannot say that the machine discussed in [7] is "better" than the iPSC/860 since no 

absolute performance figures are quoted, only speed ups. If we made the same calculations as above 

for the iPSC/2 instead of the iPSC/860 we would get much higher speed up and efficiency. However 

the problem will always run in a shorter time on the iPSC/860 with the same number of processors. 
The above efficiency does not include the cost of the extra iterations that are expected to be required 

due to the renumbering of the nodes for the forward and backward substitutions [8]. This could reduce 

the efficiency of the largest case to less than 50%. 

10 



8 Conclusions 

We have analyzed an existing application software package to identify the computational kernels that 

are most expensive. Tills is an important first step in deciding whether it is possible to adapt a serial 

program to run in parallel or if it is necessary to redesign it using different algorithms. 
For the EVEREST three-dimensional device modelling code most computational work is asso

ciated with the Solver Module in terms of the matrix assembly and the sparse linear algebra. The 

assembly can be performed in parallel by a suitable mesh decomposition and the method ofFarhat has 

been shown to be suitable for the three-dimensional mixed element type mesh used in this software. 

The linear algebra is more difficult to treat. The incomplete LU type preconditioning is intrinsically 
difficult to parallelise. While it is feasible on machines with good communication/computation balance, 

the iPSC/860 is rather limited in this respect and the performance will only be acceptable for large 

problems on limited numbers of processors. 
The next generation of machines, such as the Intel Paragon, should address this communica

tion/computation imbalance and be easier to use in an efficient manner. 

11 



References 

[1] C.Greenough, C.J.Fitzsimons and R.F.Fowler, "Software for Modelling Semiconductor Devices 

in Three Dimensions" Report RAL-91-042 , Rutherford Appleton Laboratory (1991). 

[2] J.V.Ashby, C.J.Fitzsimons, R.F.Fowler and C.Greenough, ''The adaptive solution of three dimen

sional semiconductor device problems" Report RAL-91-020 , Rutherford Appleton Laboratory 

(1991). 

[3] Eisenstat, S.C., 1981: Efficient implementation of a class of preconditioned conjugate gradient 

methods, SIAM J. Sci. Statis. Comp., vol. 2, p. 1. 

[4] Carey, G.F., "Parallel Supercomputing: Methods, Algorithms and Applications", WHey (Chich

ester) 1989. 

[5] Chan, T.F, "Domain decomposition algorithms and computational fluid dynamics", lntl. J. Super

computer Appl., Vol. 2, No. 4, p. 72, Winter 1988. 

[6] G.Meurant, "Domain decomposition methods for PDEs on parallel computers", lntl. J. Supercom

puter Appl., Vol. 2, No. 4, p. 5, Winter 1988. 

[7] Pommerell, C. et a/, "A set of new mapping and colouring heuristics for distributed memory 

parallel processors", Technical Report No 90/1, ETH Zurich, 1990. 

[8] Heiser, G., Pommerell, C., Weis, J. and Fichtner, W. , "3D Numerical semiconductor device 

simulation", IEEE Trans. CAD, Vol. 10, No. 10, p. 1218 (1991). 

[9] R.F.Fowler, B.W.Henderson and C.Greenough, "BBS results for the iPSC/2 and iPSC/860", Pro

ceedings of the BECAUSE European Workshop, INRIA Sophia-Antipolis, Oct. 1992, to be pub

lished. 

[10] R.D.Williams, "Performance of dynamic load balancing algorithms for unstructured mesh calcu

lations", Concurrency Pact. & Exper., Vol. 3, No. 5, p. 1 (1991). 

[11] C.Farhat and E.Wilson, "A new finite element concurrent computer program", lntl. J. Numer. 

Methods inEng., Vol. 24, 1771 (1987). 

12 






