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Abstract  Environmental pollution control relies heavily on human expert 
judgment supported by historical data and scientific models. 
Telemonitoring by networks of arrays of heterogeneous sensors 
provides the opportunity for data mining models to be constructed 
from the historical data to supplement human expertise. This pa-
per reports some progress made in the TELEMAC project by data 
mining. TELEMAC is concerned with enhancing the efficacy of 
anaerobic digestion in potentially unstable digesters. In the labora-
tory using full instrumentation it is possible to derive a good de-
scription of the digester state. With data mining it is possible to 
identify some constraints on sensor choice. This paper examines 
this data mining work from the perspective of a three layer Grid 
architecture to see what implications and requirements arise that 
could benefit the exercise of expert judgment. After placing the 
specific TELEMAC situation in a generic Grids context, we pre-
sent a classified approach to attributes for metadata and indicate 
some examples of model resource discovery.  

Keywords : Anaerobic digestion, Data mining, Grids, Telemonitor-
ing and control, Wastewater treatment. 
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1  Introduction  
Networks of sensor arrays, measuring properties of multiple instances of 

some physical process, raise some important issues in the context of Grids. 
An example is provided by the TELEMAC project [1], a European Union 
funded project on anaerobic wastewater treatment, in which individual treat-
ment plants are equipped with a variety of sensors. The aim of TELEMAC is 
to improve the monitoring and control of digesters from a central telemoni-
toring and control centre, TCC [2]. The control of these plants could benefit 
from data mining and the leveraging of knowledge through the TCC. 

Although the TELEMAC project was not conceived as a Grids project, 
nonetheless there is clear potential for applying Grid technologies. The focus 
is on three levels of grids:  knowledge, information, and data rather than 
computation. Issues that arise include: 

1. data heterogeneity; 
2. the data mining methods themselves; 
3. time-based issues, such as the updating of data mining models; 
4. the role of human expertise. 

In TELEMAC the user interacts with a heterogeneous environment of data 
stores and data collection sensors. Grid technology could provide a standard 
framework for the interoperation of the distributed sites. Jeffery emphasised 
metadata, agents, and brokers as key architectural components of Grids [3]. 
Paraphrased here are observations relevant to TELEMAC on:   

“Metadata:  Most examples of metadata in use today are neither struc-
tured formally nor specified formally so tend to be of limited use for auto-
mated inter-operations and consequently require human interpretation.” 

“Agents/Brokers: Agents use metadata to take action; the can provide a 
monitoring function. Brokers act as go-betweens for agents” 

This paper is structured as follows. Section 2 considers the industrial con-
text and associated biochemical processes. Data mining in TELEMAC is 
discussed in Section 3; the issues of sensor arrays, the role of sensor ranking, 
and diversity of sensors are addressed in a data mining context. Examples of 
data mining results are presented. In Section 4 we consider TELEMAC from 
the perspective of the three layer Knowledge, Information, and Computa-
tion/Data Grids. It is here we address the issue of leveraging knowledge and 
grid resources. The role of human expertise in providing knowledge man-
agement in the plant monitoring and control cycle is presented and this 
shows the way the three Grids interact in this type of environment. In Section 
5 we identify some specific attributes that are useful in the metadata for our 
data mining models and resources. A short summary of our conclusions fin-
ishes the section. Some issues of heterogeneity are considered in the Appen-
dix. 
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2 Industrial context 
Anaerobic wastewater treatment is an important technology for the dis-

posal of certain kinds of waste, in particular the by-products from alcohol 
production in wineries and distilleries [4]. It has great advantages such as 
efficiency, low production of sludge, and the possibility of energy recovery 
through cogeneration. However it is an unstable process which is difficult to 
monitor and control with the consequence that plant is operated at low effi-
ciency. Expert knowledge is required for efficient operation of the plant but 
that expertise is unlikely to be locally available at small, possibly remotely 
located, individual plants. Therefore the role of the TCC is crucial here in 
supporting expert human knowledge by a range of analysis and prediction 
techniques. 

The anaerobic digester plants operate on a range of engineering principles 
such as upflow sludge blankets, lagoons, upflow fixed-beds and continuous 
stirred tanks, CSTRs. Within TELEMAC there is a preponderance of CSTRs 
at the industrial level with typical volumes of 500->5000m3.  The chemical 
oxygen demand, COD, of the wastewater is one measure of the outflow qual-
ity; organic loading rates within the digesters vary between 2kg and 20kg  
COD m-3d-1. Measurement of COD is generally not available on-line [2]. 

 
 

 
Figure 1. The biological process for anaerobic waste water treatment 

The biological process has two main steps; these are shown in Figure 1. In 
the first step a set of acidogenic bacteria generate volatile fatty acids and 
carbon dioxide. This conversion proceeds at a fast rate. Volatile fatty acids 
themselves are acetates and acetic acid or similar. The second step is a slow 
conversion of the volatile fatty acids to methane and more carbon dioxide by 
methanogenic bacteria. The problem is that a build up in the concentration of 
volatile fatty acids inhibits the methanogenic bacteria. This can lead to sup-
pression of the second stage and ultimately to irreversible destabilisation of 
the digester; then it could take a period of several weeks or even several 
months to recover. A converse problem occurs if the digester is hydraulically 
over-loaded and the biomass is washed out.  
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3 Data mining in TELEMAC 
3.1   Introduction 

The biological and chemical processes involved in anaerobic digestion are 
complex but there is good qualitative understanding of the main features. 
Although analytical models have been developed [5], there is still much 
scope for data mining of sensor data to complement them. Data mining helps 
to answer both static and dynamic questions, such as which sensors form the 
minimum set required for accurate estimation of key variables like concentra-
tion of volatile fatty acids, or what is the likely future value of such a vari-
able given the current state of the digester plant [6]. 

3.2   Sensor ranking and diversity 
A wide range of sensors are commercially available for use with anaerobic 

digesters. These are summarized below. 

Sensor Types: 
Classical plant instruments such as gas and liquid flow meters, pres-
sure and temperature gauges.  
Titrimeter: to measure acid and base concentrations (up to 4 variables) 
Infra-Red spectrometer (up to 5 variables) 
TOCmeter to measure total organic content 
Thermal conductivity sensor for CO2 

Sensor Mode: 
Online sensors return a value at measurement time 
Offline chemical analysis returns a measurement significantly later 
and may be different in value than from an online measurement 

Sensor Problems: 
Sensor reliability – failure due lack of precision, saturation, lag in 
recovery of measuring capacity, foaming in digester  
Sensor accuracy – calibration; contamination; standard setting 

 

tempdig,        qgas,                   vfadig                coddig, 
qin, phdig      co2gas                              tocdig 
Level 1       Level 2             Level 3           Level 4 

Figure 2. Venn diagram showing sensor ranking. The sensors are defined with 
their Level. Suffix dig indicates measurement of the digester content. 
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In Figure 2  tempdig is the temperature, qin is the influent liquid flow rate, 

phdig is the pH, qgas is the biogas flow rate, co2gas is the percentage of 
carbon dioxide in the biogas, vfadig is the concentration of volatile fatty 
acids, tocdig is the concentration of total organic content, and coddig is the 
concentration of chemical oxygen demand. With a full set of sensors it is 
possible to get a fairly complete chemical description of the current digester 
state. The figure shows expert judgement of the ranking of sensors by ex-
pected availability/reliability, with the simplest and most robust in the inner 
ring. These four levels of sensor are relevant when dealing with operational 
industrial systems which would lack such full instrumentation. 

3.3   Data mining techniques used 
Classification and Sequencing A key aspect of data mining is the classi-

fication of digester states using cluster analysis. Analysis of the clustering 
results suggested that the cluster membership is stable as the number of clus-
ters varies. A subset of variables in each cluster had a narrow spread in that 
cluster.[7]  It has been possible to characterize state sequences and transition 
frequencies.   
Regression models have been used for several purposes:  

1. Models for predicting data values for missing/faulting sensors were 
constructed with associated predictions of confidence intervals. This 
has allowed both current prediction and short term forecasting of the 
concentration of dissolved and suspended organics during sensor fail-
ure.  

2. Highly accurate short term forecasting is feasible using multivariate 
autoregression; with reliable sensors this could be used for plant con-
trol.  

3. Predictions from auto-regression are of little use over extended time 
on occasions of sensor(s) faulting, a frequent occurrence, because the 
models depend on known target values at previous times. Non linear 
multivariate regression performs satisfactorily for current and immi-
nent states. 

The models need to be evaluated against an independent test set of data to 
ensure that the model training does not result in over-fitting to errors in the 
training data. Statistical tests for quality of fit need applying. such residuals, 
mean squared and mean errors, squared Pearson correlation function (R2), 
and paired sample t-tests for means.  

A range of models need to be deployed. Linear models can provide good 
starting pointers. In some circumstances they can be sufficient in themselves 
eg in the most extensively instrumented digesters. In other cases artificial 
neural net models provide a markedly superior model judged by out-of-
sample test set estimates. Unit root tests aid a decision on whether to model 
in differences or levels.  
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3.4 Examples of work done  
Data mining has shown that  

•   it is feasible to determine the ranking of sensors; for example in 
order to estimate a Level4 variable (Levels as in Figure 2) it is con-
siderably better to have at least one Level3 sensor dataset (coddig 
requires either Level3 vfadig or Level4 tocdig) 

•  features between variables can mean that a second sensor adds little 
to the improvement of a model. E.g. strong colinearity means that if 
tocdig data is available then vfadig adds little additional modelling 
power 

 
coddig_0.25d ahead  Predicted from Venn input set & (5+3) hln NNR
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Figure 3a. Forward prediction of 0.25days.  Prefix or suffix of NNR or LR 
indicates neural net or linear regression respectively.  

 
Figure 3a shows a forward prediction of 0.25d for an INRA validated 

dataset using the sensor variables from Level1, Level2, and Level3 inputs to 
predict a Level4 variable, the concentration of coddig in g/litre. It compares 
the independent test set experimental data with the prediction of a neural net 
model and shows residuals on the left hand scale. The model had 8 logistic 
functions in two hidden layers (as 5+3) with tempdig eliminated; R2=0.945, 
t-pair=1.3, mean residual error = 0.031, predicted mean square error=0.332. 
The residuals for a corresponding linear regression are shown on the right 
hand side scale. R2=0.930(in sample R2=0.928), t-pair=0.21, mean residual 
error = 0.014.  Figure 3b compares the independent test set experimental data 
with the prediction of a neural net model. 97% of the actual experimental 
data points fall within the 95% prediction confidence band. 
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coddig_0.25d ahead  Prediction interval from Venn input set & (5+3) hln NNR
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Figure 3b. Lower(L_0.25) and Upper(U_0.25) 95% prediction confidence bands [6] 
from forward prediction of 0.25days for a validated dataset for the concentration of 
coddig in g/litre.  

4 The Grids context 
4.1 Telemonitoring and control:the TELEMAC concept 

Figure 4. The evolution of monitoring and control of wastewater treatment plants. 
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Figure 4 shows how the TELEMAC project represents an important ad-

vance in remote monitoring and control of wastewater treatment plants. Pro-
file 1 shows the traditional practice on an isolated plant. Profile 2 shows how 
TELEMAC laboratory prototypes evolved. Profile 3 shows the full 
TELEMAC solution to sharing expertise while maintaining local control. 
The Database, Telemonitoring system and Expert are based at the Telemoni-
toring and Control Centre (TCC) and are remote from the local user. Other 
components in Profile 3 are local to individual plants. The icons for the local 
user show the transition from puzzled in Profile 1 to enlightened in Profile 3. 

Profile 3 introduces the monitoring and control of multiple plants from a 
single remote centre, the TCC. This is a step towards a full Grids-based sys-
tem, though there is as yet no concept of identifying and combining resources 
according to specific needs: the system components and linkages are prede-
fined and inflexible. 

It is possible to abstract the essential components of the above model so as 
to prepare for a Grids-based solution. 

Local User: Needs to be able to operate the plant in normal mode and re-
ceive warning of possible excursions. They will seek and receive advice from 
a Remote Expert.   

Remote Expert: Needs to monitor each individual plant, compare with 
reference models, issue advice and alerts to local operators/users. The remote 
experts service a TCC. 

Local Plant: Different plants have different arrays of sensors, have differ-
ent volumes and operating principles. Each plant has its own data validation 
and consistency check for fault detection and isolation. Individual variables 
and combinations of variables are validated. In laboratory prototypes, multi-
ple sensor consistency for the same variable can be used for calibration. Out-
puts of the FDI are used to provide robust control guidance. Each plant is 
serviced by a TCC; of course a single TCC may service multiple plants. 

Telemonitoring and Control Centre: Receives and stores validated data 
from local plants. It provides advice from monitored data in response to en-
quiries.  It pools models to generalise expertise. It revises models as new 
situations are recognised. The TCC is responsible for holding the models and 
data for its plants. There are mathematical analytical and simulation models 
as well as data mining models.  

4.2 Knowledge, information, computation/data Grids  

A general architecture has been proposed for structuring knowledge, in-
formation, and data/computation in a Grids context [8]. This architecture, 
shown in Figure 5, represents the conversion of data to knowledge and then 
using the knowledge to exercise control. Explicitly the control is over the 
data and its processing but ultimately it is concerned with changing the data 
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in the real world. Homogeneous access to heterogeneous distributed data 
occurs in the information layer. As well as including data mining technology 
the knowledge layer encompasses human experts and decision makers. This 
model is therefore compatible with the approach taken in TELEMAC. 

 

 
Figure 5. The Knowledge, Information, Computation/Data Grids (taken from [8]) 

4.3 The Grids perspective for leveraging knowledge 

Figure 6. The knowledge management cycle. 
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Figure 6 shows the mining of historical data to produce reference knowl-

edge and models that can be applied to current behaviour of the digester 
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plant. The cycle is closed by the observation of the resulting behaviours 
leading to a need for re-mining, if there are deviations from what was ex-
pected. The ovals with broken lines indicate opportunities for leveraging 
knowledge obtained from elsewhere. For example, reference knowledge 
obtained about the behaviour of a digester in a state of hydraulic overload 
might be generalisable to other digesters of the same class, and usable in 
managing such states in future. 

Large companies are likely to opt for an intra company TCC while the 
many small wineries might collaborate through geographically local TCCs. 
In either case there is scope for leveraging knowledge that has been derived 
about a particular situation by applying it in other circumstances, typically to 
a different plant. This leveraging should be done in a transparent way. It is 
therefore anticipated that a Grids infrastructure will provide the appropriate 
user transparency for this to proceed because it provides access to resources. 
Now it is not necessary for the Remote Experts to be located at every TCC.  

4.4   Grid resources 
With reference to Figure 6, it is possible to identify a number of classes of 
resource that can enable the leveraging of knowledge. These are: 
Data mining tools. A selection of tools and methods such as those men-
tioned in section 3.3 may be available at the TCC. Not every TCC will have 
the same set, so there is potential for offering the tools themselves for use as 
a resource. 
Datasets. Data sets from sensor data are steadily accumulated at the TCC 
and constitute the raw material for data mining that is a valuable resource in 
its own right. An ontology for resolving heterogeneities needs to be included. 
Mined data. The results of the data mining, in the form of neural nets, rules, 
clustering parameters are obviously of potential value in dealing with situa-
tions on other plants. This is the classic example of transferring ‘knowledge’ 
from one plant to another. 
Human expertise. It is important not to forget that the expertise of the re-
mote experts is itself a kind of resource that can benefit the operation of 
multiple plants in a Grid. 

5  Grids based approach to TELEMAC 

5.1 Generalising the problem  
From a Grids perspective we can consider each network to consist of a set 

of nodes (in TELEMAC each of these is the local computer associated with a 
digester) and a set of decision centre nodes (in TELEMAC a TCC). Figure 
7a. shows a network of sensor arrays. The sensors are labelled for reporting 
variables A,B,C,D,E  etc. A1, A2 are two different sensors reporting on vari-
able A. The plant’s local computer acts as the node, validating the data for 
that plant, and passing it to the TCC. In some circumstances control action 
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may be passed from the TCC to a node for action on the plant controls. In 
Figure 7b the Decision support centre node comprises the remote experts, the 
validated data and models, and the data mining and knowledge investigation, 
tools, (DMKI) 

. 
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Figure 7a. A network of sensor arrays. 
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5.2 Metadata  
Metadata is required in a Grids system to represent properties of the Grid 

resources and allow reasoning over them to locate and deploy resources. The 
terms applicability, transformability, and reliability emerged as important 
metadata attributes for reworking TELEMAC in a Grids architecture. These 
terms are discussed in relation to the data mining models and resources. 

Data Mining Models 

Applicability: this class of metadata identifies circumstances under which 
the model can be deployed with confidence on the basis of the model genera-
tion eg the type of process, and the range of sensors available. It would nor-
mally be based on expert knowledge. 

Transformability: this metadata identifies expert judgement about 
whether the models estimates can be used in (gu)estimating different re-
gimes. 

Reliability: this metadata identifies the confidence in the derivation of the 
model viz: the goodness of the model assessed using training and testing 
data, and any constraints that need to be considered. 

 

 

Applicability
Absolute characteristic
Variable characteristics

Characterised by range of sensor values themselves
Characterised by qualitative states (e.g. “hydraulic overload”)

Transformability
Non-scaling quantity (e.g. temperature, pH)
Scaleable by fixed physical dimensions (e.g. volume)
Scaleable by variable properties (e.g. flow rate)

Reliability
Direct assessment (e.g. prediction intervals)
Indirect assessment

Amount of data on which based
Validation data

Figure 8. Metadata about datasets archived and available for data mining 

Data Mining Resources 

Figure 8 shows the metadata relating to datasets available as a Grid re-
source. 

Applicability: 
 Absolute characteristic: this is a fixed feature of the system that never 
changes e.g. digester process type but not a potentially varying character-
istic such as internal volume. 
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Variable characteristics: Generally each variable series is characterised 
by statistical summary data such as stationarity or variance. The series 
from the sensors are considered individually to determine the span of the 
variable and missing values. Qualitatively different behaviours of the di-
gesters are characterised as states bound by ranges on subsets of the vari-
ables. Using these states an expert would be able to assess a priori 
whether they were not suitable for modelling other states e.g. data relat-
ing to hydraulic overload would not give a good indication of the behav-
iour of organically overloaded states.     

Transformability: 
Direct instrument readings sometimes need transforming to a consistent 
scale. 
Non-scaling: these are quantities that typically have a direct scientific role 
such as temperature and pH. 
Scalable by fixed physical dimensions: typically converts extensive to in-
tensive e.g. using volume to scale bio-gas flow rates to m3 per day, or to 
convert between time and frequency. Within this category we include 
time scale synchronisation where a variable is mapped to a different in-
terval. 
Scalable by a variable: maps to a new variable of interest e.g. using dif-
ferences to remove a trend in a variable or produce a derived variable e.g. 
HRT is Volume/<inflow-rate> which is the length of time taken to feed 
into the digester the volume of liquid equal to the digester’s volume.  
Reliability: 
Direct assessment:  These are methods where the prediction on the target 
data generates an estimate of the error. E.g. Prediction intervals can be 
obtained directly from neural net models of the unseen targets. Boot-
strapping is widely used as an alternative approach for non-
heteroskedastic data; it produces multiple models each on a variant of the 
training data. 
Indirect assessment: These are methods where an estimate of the error is 
based on the quality of the model fit to its training and validation data.  
Eg information criteria and characteristics of residuals in linear regres-
sion. 

5.3 Resource discovery 
Having established a collection of resources with associated metadata, re-

source discovery proceeds by locating resources that satisfy the current needs 
of the user (at a TCC). Urgency and novelty of the digester state are factors 
that need to be taken into account when identifying potential resources such 
as data mining models that can be deployed. If a digester is in an alarming 
state which the Remote Experts have never seen before, then the experts 
would cast the net wider to look for resources that might help with the situa-
tion - accepting data mining models that are less reliable, for example, be-
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cause at least they might offer some information of value.  The broker would 
seek resources using such criteria[3].  Firstly it would need to match digester 
type and sensor set available in the archive; it would perform measurement 
unit conversion as appropriate. Then a suitable set of models would be se-
lected with appropriate guidance. The system may even provide the Remote 
Expert with functionality that will advise on the urgency of the problem and 
whether it is novel.  

5.4 Conclusions  
TELEMAC is representative of a class of systems: networks of sensor ar-

rays with significant heterogeneity and varying reliability. The sensors re-
spond and report at different frequencies. Models need to be updated epi-
sodically over time as new data changes the characteristics being monitored. 
Expert knowledge can be deployed in different ways from advisory to auto-
matic control. The knowledge base is used to infer behaviour of systems with 
different characteristics. The Grids architecture provides a knowledge, in-
formation and data architecture that enables a structured approach to devel-
oping this class of system. 
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Appendix - Some heterogeneity issues 
In addition to the usual problems of heterogeneity associated with data 

and their schemas such as consistency of names, scaling, units, applicability 
range there are some heterogeneities which affect data mining models from 
arrays of sensors. Data heterogeneity arises at two levels, from the diversity 
of sensors installed on what are essentially different instances of the same 
process, and from intrinsic differences between processes. For the first of 
these, unavoidable heterogeneities arise from the following: 

1. different types of sensors measuring a given physical quantity by a 
different process; 

2. different initialisation calibrations of the same sensor types; 
3. complete failure of a sensor; 
4. partial failure of the sensor through contamination, saturation, or 

drift. 
5. different sampling frequencies and process time-constants 

 
Also the anaerobic digesters themselves operate on different principles 

and are of different sizes. There are practical heterogeneities that arise from 
scaling variables; sometimes a key dimension is unknown or changing. 

 
Given these limitations, there are implications for metadata representing 

the applicability and trustworthiness of results, and for the trade-off between 
the need for information and the possible unreliability of the information 
sources. 
 


	3.4 Examples of work done  
	Data Mining Resources 
	5.4 Conclusions  


