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Abstract 

In this paper we extend the results of previous work on spontaneous baryogenesis 
to general models involving CP violation in the Higgs sector. We show how to deal 
with Chern-Simons terms appearing in the effective potential arising from phase 
changes in the vacuum expectation values of the Higgs fields. In particular, this 
enables us to apply this mechanism to general supersymmetric models including 
the minimal supersymmetric standard model, and the extended model with a gauge 
singlet. A comparison is made between this approach, and that in which one solves 
the equations of motion for Higgs winding modes. As anticipated in earlier work, 
the effect of the latter approach is found to be small. 
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1 Introduction 

There has been considerable recent interest [1]-[11] in the possibility of generating the observed 
matter-antimatter asymmetry of the universe at the electroweak phase transition within the 
standard electroweak model or its minimal extension to include an additional Higgs doublet (for 
recent reviews see Ref.[12]). It has been well known since the pioneering work oft' Hooft [13] 
that, due to the axial anomaly, baryon number Band lepton number L are not conserved in the 
standard model. For N 9 fermion generations the change in baryon and lepton number is given 
by 

ll.B = !l.L = N9 !l.Ncs (1) 

where Ncs, the Chern-Simons number for the gauge field, is given by 

Ncs = J d3zK0 (2) 

with K~-' the topological current 

K JJ. - g~ JJ.VPA T (F. A 2 . A A A ) 
- 1671"2£ r vp A + 3"92 v p A (3) 

and AJJ. = A~ ua 12, FJJ.v = F:v ua 12 the SU(2) gauge field and field strength respectively. In 
Eq.(1) the change in Ncs is associated with transitions between the different topological sectors 
of the gauge and Higgs fields. The different sectors are separated by energy barriers correspond­
ing to the saddle point sphaleron configuration of mass Maph :::::i 5Mw I a.w (where a.w = gV 47r) 
so that these transitions are heavily suppressed at zero temperature where Maph :::::i 10TeV 
and the f:l.Ncs = 1 transitions are mediated by quantum instanton tunneling at the rate 
exp( -47r I a.w). However at high temperatures the transitions can occur rapidly via classical 
transitions induced by thermal fluctuations over the now lower energy sphaleron. 

The effective action for the gauge and Higgs fields at temperature T contains the CP-violating 
Chern-Simons term [2] 

(4) 

where F~-'v = c;JJ.VPA FpA, and f( </>, T) is a gauge invariant function constructed from the Higgs 
doublets </>of the model. This term is heavily suppressed in the standard model, being of order 
10-20 [14]. However it has been argued [2,4] that it may be much larger in multi-Higgs doublet 
models with soft CP-violationin the Higgs sector. Thus these extended electroweak models meet 
two of Sakharov's [15] conditions for generation of a matter-antimatter asymmetry, that is the 
existence of (anomalous) B violation and of C P violation. The third condition, the departure 
from thermal equilibrium, may occur during the electroweak phase transition if it is first order 
(10,12,16,17]. 

An interesting explicit scenario for the generation of a baryonic asymmetry has been sug­
gested [2,4,7,8] in which the Chern-Simons term (4), arising from soft CP-violating terms in the 
Higgs potential, has the form of a CP-odd Higgs phase linearly coupled to Ncs and modifies 
the classical equations of motion for the gauge fields such that, during the electroweak phase 
transition, an asymmetry is produced in the probabilities of the topology changing processes 
associated with !l.Ncs = +1 and -1, thereby driving the Ncs value of the universe positive. 

An alternative scenario has been advocated by Cohen et al [1,5,6] in which the physical 
pseudoscalar field 0( z) orthogonal to the Goldstone boson, develops a derivative coupling to the 
fermionic hypercharge current j: 

(5) 
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as a result of performing an anomaly-free space-time dependent rotation on the fermion fields 
to remove 0( z) from the Yukawa couplings. The spatial average of iJ acquires a non-zero value 
during the electroweak phase transition and acts as a potential for fermionic hypercharge which 
produces a free energy which is minimised for non-zero baryon number. This mechanism requires 
a first order phase transition, in order that the produced baryon asymmetry be preserved against 
sphaleron transitions, which for the standard model and MSSM translates into a stringent bound 
on the physical Higgs masses (mH <55 GeV [10), and ma < 64 GeV [11] respectively). 

In general it is possible to only couple iJ to hypercharge, when only one Higgs is responsible 
for the fermion masses. Because of this, the mechanism has not yet been applied explicitly 
to supersymmetric models. In this paper we examine the relation between these two effects. 
First we extend the results of Ref.[5] to the most general case. We then rederive the main 
result of Ref.[2], using the rotated-phase approach of Ref.[5], and find this effect to be negligible 
compared with the former as anticipated in earlier work. We conclude by applying the results 
to the minimal supersymmetric standard model (MSSM) and the extended model with gauge 
singlet (ESSM). 

2 The two-Higgs model 
In order to clarify the connection between the approaches described above, we consider the most 
general soft CP-violating, two Higgs doublet model [18]. As in the supersymmetric Standard 
Model, one doublet field, ¢1, gives mass to the up-type quarks and the other, ¢2, to the down­
type quarks and charged leptons. The zero temperature Higgs potential is 

Vo = .\1(<Pl<P1- vf}2 + .\2(¢~¢2- vi)2 

+.\a(¢1¢1- v~ + <P~<P2- v~)2 

+ .\4 [ ( <Pt <PI) ( <P~ ¢2) - ( <Pt ¢2 )( <P~ ¢1 ) ] 

+.\&[Re(¢1¢2)- v1v2 cose]2 

+ .\s [Im( <Pt ¢2) - vl v2 sin eJ 2 (6) 

With suitable values ofthe parameters .\~c (all positive for example), this potential is minimised 
for fields, up to SU(2) X U(1) gauge transformations, of the form 

(¢1) = ( 0 ) 
vl 

(7) 

This potential softly breaks the reflection symmetries ¢1 -4 -¢1 and ¢2 -4 -¢2. The most 
general potential of this nature would also have a term .\7Im[( <P1 ¢2)2] but this would induce a 
non-zero upper component into one of the fields and thereby give rise to an electrically charged 
vacuum. 

At finite temperature and in an electrically neutral plasma we do not anticipate any charge 
inducing terms in the free energy density (temperature dependent potential) so that a minimum 
free energy field configuration should also be of the form ( 7). 

Electrically charged fields are not of interest to us in this paper and, as we wish to consider 
neutral fields not only at a minimum of the free energy but also during the phase transition 
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connecting the minimum free energies of the unbroken and broken phases, we take the neutral 
fields to have the form 

(8) 

The Lagrangian density describing the coupling of these Higgs fields with the fermion fields 
is (using the two component Weyl notation) 

Lm = -~uPl[u!e-i91 UI + ulei91 u,.] 

- ~dP2 [ d! e -ie2 dz + d] ei92 d,.] 

-~EP2[E!e-i92 Ez + Efei92 E,.], 

where a summation over generations (and consequently the KM matrix) is implied. 

(9) 

Because of the presence of the interaction term hn( 4>14>2 ) in Eq. ( 6), away from the false 
vacuum the Lagrangian is only invariant under changes in the the relative phase a = 01 + 02 of 
the two Higgs doublets, and therefore a small variation in this phase will be shared between 01 

and 82 according to 

(10) 

This mode of variation can be shown to be orthogonal to the Goldstone mode which is absorbed 
into the gauge fields. Thus the partition (10) is the way that change in the phases should be 
divided even when the fields are not at a free energy minimum, since it is the only remaining 
physical degree of freedom once the symmetry is broken. In terms of Lorentz covariants we have 

(11) 

Following Cohen et al [5], we would like to absorb the phase factors into a redefinition of the 
fermion fields. In contrast with that work however, we do not have the option of allocating them 
according to the fermion hypercharge, so that we cannot avoid generating Chern-Simons terms 
involving the gauge fields. In fact, the relative phases are completely determined by the Higgs 
potential. Therefore the only remaining freedom is the distribution of the phase absorption 
between the left and right handed fields. In order to allow for this, we denote a generic Dirac 
field by 1/J. The most general rotation 

(12) 

where a and b are constants, generates the additional action term, 

(13) 

The axial rotation in the first piece will eventually cancel the complex phase induced by the Higgs 
potential. The second piece exhibits the conservation or otherwise of the associated current via 
the Chern-Simons terms. There are two Chern-Simons contributions to the effective potential 
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induced by the above rotation. The :first type is the anomaly term (the SU(2) pieces coming 
from the left handed rotations only) which takes the form 

5S1 = d z t0 a- b --- t0 a+ b --J 4 [· ( )FiFz . ( )F,.F,.l 
32~2 32~2 

(14) 

where F" (Fi) is the gauge field coupling to 1/J" (1/li)· (The coupling constants have been absorbed 
into F for notational convenience, so that we may include semi-simple Lie groups.) Such terms 
may be calculated most efficiently using the invariant path integral method as in [19], and are 
temperature independent as shown in Ref.[20). 

In addition to this, the fermion loop diagram in Fig.(1) makes a non-local contribution. In 
order to determine the effective potential, one makes a Taylor expansion in powers of momenta. 
This piece then generates a Chern-Simons like term. In calculating this contribution, our ap­
proach is analagous to that used in Ref.[2]. That is we consider the fields to be varying slowly 
enough with time that we may assume a quasi-static equilibrium. This allows us to use the 
techniques of finite temperature field theory to determine the anomalous contribution to the 
free energy density. In the calculation of Ref.[2], the time dependence of the field strengths was 
extracted using the zeroth, (temperature) component of momentum. Therefore the finite tem­
perature anomaly was obtained by making an indirect appeal to the Lorentz invariance of the 
zero-temperature object from which it came. This procedure is outside the domain of standard 
finite temperature field theory, and to avoid it, we instead examine the one loop fermion dia­
grams shown in Fig.(1), and derive the A ofEq.(1) using the space components of the momenta 
only (for technical details see for example Ref.[21]). The contribution to the action may be 
expressed as 

(15) 

where 

(16) 

and the sum runs over all integer values of n. (We remind the reader that the expression above 
uses the summation over space-time indices merely as a notational convenience, and that finite 
temperature field theory has no Lorentz invariance.) As pointed out in Ref.[2,7), there is a 
complementary topological term generated in the Higgs sector, so that the total topological 
number Ncs- NH is completely gauge invariant. Such terms are generated by the two-loop 
diagram shown in Fig.(2). At high temperature T > > m, we may make the approximation 

14 m 2 
( 93((5) m

2 
) 

A = 3((3) ~2T2 1 - 56((3) ~2T2 + . . . . (17) 

At this point we would like to add a cautionary note regarding thermal calculations of this type. 
On taking the zero-temperature limit T-+ 0, we replace 

L f((2n + 1)~T)-+ 
2
:T j dwf(w) (18) 

and recover the zero-temperature contribution 

(19) 
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which may be recognized as the topological term in Ref.[7]. Alternatively, one may take the 
zero-mass limit first, upon which we find that 6S2(T) = 0 for all temperatures, which seems 
to contradict Eq.(19). The resolution lies in the fact that in order to make the calculation, we 
have implicitly assumed that the mass interaction (i.e. the chirality-flip) remains in equilibrium. 
When taking the m -+ 0 limit, at some point this will no longer be the case since ( 18) is only 
true forT<< m. Thus Eq.(19) will no longer be valid. 

On examining the total change in the action, 6S = 6S0 + 6S1 + 6S2(T) we find that the 
charge (Q) and baryon-lepton number (B- L) are conserved at all temperatures, but that Y 
and B + L are not. Explicitly, 

8,_,.jQ = 0 

lJ,.,.j'iJ_L = 0 
2 - 2 -

lJ .. J·yP + ... = (~A _~A ~A )ig2F2F2 (~A _ 17 A 15 A )igyFyFy 
,.. 4 b 4 t + 4 T" 321r2 + 48 b 48 t + 48 T" 321r2 

2 - 2 -
jl .,.,. N ig2F2F2 _ N igyFy Fy (20) 
v,_,.] B+L 4 g 321r2 g 321r2 ' 

where the ellipsis stands for the mass terms in Eq.(13), F2 and Fy are the conventional SU(2) 
and hypercharge field strengths, and N9 is the number of fermion generations. Clearly the 
topological terms in the hypercharge equation would vanish if we were able to take the T -+ oo 
limit. Physically what happens is that, as the temperature is increased, the mean free path of 
particles in the gas becomes much shorter than the path length of the (hypercharge violating) 
chirality-flip. This is related to our previous point concerning the zero mass limit of 6S2. 

We are now ready to apply the method of Ref.[5) to the case under discussion. First we 
remove the complex phases on the mass terms in Eq.(9) by making the rotations, 

u,. -+ ei(w-81 >u,. 

d,.-+ ei(w-82)d,. 

E,. -+ ei(w-82) E,. 

u,-+ ei"'ul 

d,-+ ei"'dl 

E,-+ e;,c;;E,, (21) 

where we have introduced two arbitrary phases, w and w. The corresponding changes in the 
action are, 

6So = -I d4 z [urr'"'u,8,_,.w + u,.""f'"'u,.8,.,.(w- th) + drr'"'d,8,_,.w + d..""f'"'d,.8,_,.(w- 82) 

+En'"' E,8,.,.w + E,.""f'"' E,.8,.,.(w- 82) + vn'"'v,8,.,.w + ... ] . (22) 

Again the ellipsis refers to the mass terms in Eq.(13). In addition, setting Ab = A-r = 0, we have 

I 4 _ 3 ig~F2F2 9 3_ 17 ig~FyFy 
6S1+6S2= d z(18w+6w-2At0t) 

32
1r2 -(2w+2w-(4-

24
At)Ot-402) 

32
1r2 . (23) 

Instead of solving the equations of motion as in Ref.[2,7), we may remove the topological piece 
(i.e. the SU(2) piece) by making a judicious choice of win terms of w, viz. 

(24) 

Notice that there is no solution which removes all contributions to Eq.(23), and there remains 
a term involving the hypercharge fields which is given by, 

I 4 13 ig~Fy Fy 
6S1 + 5S2 = d z(402 + (4-

12
At)Ot) 

32
1r2 · (25) 
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In the above ,the angles wand ware acting as extra, space dependent Band L rotations. Thus 
this operation may be interpreted as an absorption of the phase into the right handed fields, 
followed by the removal of the topological SU(2) piece by an appropriate B + L rotation as 
given by Eq.(20). 

Our analysis continues exactly as in Ref.[5]. First we substitute w into the current contribu­
tions given by (22). We then recalculate the net particle density imposing the above constraints 
of conserved B - L and Q, by including the chemical potentials JLB-L and IJ.Q. The relevant 
expression for the density of a species i is, 

. T2 
Pi = k,( (0i) + (Bi - Li)JLB-L + Qii/-Q )6, (26) 

where 0i is a generic symbol representing the phases appearing in Eq.(22). The factor ki counts 
colour and spin degrees of freedom, and factors of two for bosons with respect to fermions. This 
is a relativistic expansion, and there is no Boltzmann suppression, since we are assuming that 
all species are lighter than T during the phase transition. We now determine IJ.Q and JLB-L by 
solving pq = PB-L = 0, initially making the naive assumption that all species and sphaleron 
transitions remain in equilibrium during the phase transition; 

I'B-L -til- ((9- 9At + 3n- Atn)(Ol) + 24(02))) /(111 + 13n) 

1/-Q ( 
3 . 39 . ) 

- (27 + 4At)(01) - 2"(02)) /(111 + 13n) 

PB = PL = 3 ( . . ) T2 
2

( ) (162- 51At + 18n- 6Atn)(01 ) + (210 + 26n)(02)) -
6 

, (27) 
111 + 13n 

where n is the number of light charged scalars. As expected, there is no dependence of the final 
physical quantities, PB and PL, on the arbitrary angle w. Thus the mechanism does not depend 
on how the phase absorption is divided between left and right handed fields. As in Ref.[5], 
non-zero phase-changes may bias the sphaleron transitions to produce a net baryon number. 

Clearly there are some potential inaccuracies involved in the previous assumptions. The 
first arises from the fact that the top is the only right handed particle expected to remain in 
chemical equilibrium during the phase transition. The fact that it is the left-handed particles 
which contribute to the SU(2) piece of the B+L non-conservation, indicates that only the left 
handed fermions are directly in chemical equilibrium with the sphalerons. For right handed 
particles to be included, their masses must be sufficiently large that they are able to perform a 
chirality flip during the phase transition. We should also take account of the fact that there will 
not be time for the equilibrium densities to be attained. Both these points are dealt with below, 
where we introduce the relaxation equation which is governed by the sphaleron transition rate. 
In addition there is the inaccuracy due to the relativistic expansion. Since the major contribution 
to the baryon asymmetry occurs at the beginning of the phase transition (close to the symmetric 
phase where the sphaleron transitions are unsuppressed) where the physical top mass is small, 
this is an acceptable approximation. Because of this it is probably more correct to set A, ,...., 0 
too. 

3 Comparing the two Approaches 

Our formulation of the Chern-Simons terms in the preceding section allows an easy comparison 
of the method of Cohen et al applied to this most general case, with that of Turok and Zadrozny 
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[2, 7]. In order to give a more reasonable approximation for the former, one should improve 
on the previous analysis by taking into account the fact that the top quark is the only right­
handed particle in equilibrium during the phase transition. Also we use the non-equilibrium 
rate equation for the relaxation of the particle densities towards their equilibrium values, 

fB is the baryon number violation per unit volume, and is given by 

fB = K-afyT4e-4,.V/g2T, 

Setting the net densities of the light, right-handed particles to zero, we find that 

where 
C(n) = -~ 288- 177At + 48n- 28Atn 

16 159 + 25n ' 

Thus, making the step-function approximation for fn as in Ref.[5], we find that 

PB = C(n)K-afyT3 aol! 

and therefore we can naturally have 

if ~6 o:j:. ~6, a "' 10-2
, and K- "' 1. 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

In Ref.[2,7], sphaleron transitions were biased by the one loop diagram contributions using 
a linearised potential. Instead we may simply absorb the phases in Eq.(9) by rotating the right 
handed fields only, in order to avoid creating SU(2) anomalies (equivalent to setting w = w = 0 
in Eq.(23)). Thus by Eq.(15) we find 

8S2 = -itJ.. j d4
zvo.;o;.F2F2 (34) 

where 

" 7((3) ( Mfv ) 2 ( ml ) fl. = L: 811'2 1r2T 2 \ 1- 93((5)/56((3) 1r2T 2 +... , (35) 

where Mw is the dynamical quantity, which changes during the phase transition with p1 and 
P2· This reproduces the result of Ref.[2], and inserting the previous numerical values, we obtain 

PB < 2 X 10-12 . 
s 

(36) 

Clearly, this contribution is suppressed by a factor of mt/( 411'2T 2) "' 10-2 which is the natural 
parameter of high temperature expansions. Thus one should expect the biasing in this case to be 
smaller than that caused by the non-zero chemical potentials arising during the phase transition. 
In addition one should bear in mind that mt (or alternatively the Mw appearing in Eq.(35)) is 
small when the sphaleron transition rate rB is largest, so that some further suppression may 
occur. Since in both cases the final baryon asymmetry is proportional to a (assuming that p1 / P2 
remains relatively constant during the phase transition) it seems that the Turok and Zadrozny 
effect should be less important as was anticipated in Ref.[5]. 

8 



4 Supersymmetric Theories 

To conclude we examine the baryon asymmetry for the two supersymmetric theories mentioned 
in Ref.[5], namely the MSSM and the ESSM. In the first case the superpotential is of the form, 

t- t t -;;() 0 -+ -W = >.1QLH1UR + >.2QLH2DR + A3L H2ER + p.(H1H2 - H 1 H2 ), (37) 

where capital letters implies superfields. After including the soft supersymmetry breaking terms 
we find that the tree-level neutral Higgs potential is of the form, 

Vo = (g~ + g} )(p~ - P~)2 /8 + ,,..,.,2(P~ + Pn 

+m~p~ + m~p~ + 2IBP.IP1P2 cos(02- 81 + 0'"' + Os ). 

Throughout the phase transition, the minimum is given by 

82 - 81 = 1r - 0'"' - Os 

(38) 

(39) 

and therefore for non-trivial values of Pl and p2, we must have 81 = 82 = 0 and so no spontaneous 
baryogenesis. Alternatively, as in Ref.[22], we could have made a rotation of the Higgs fields to 
remove the phase on Bp. (that is 0'"' + Os = 0), without affecting the Kobayashi-Maskawa (KM) 
mixing matrix. We expect that a more full analysis, along the lines of Ref.[6] for the anomaly 
free (hypercharge coupled) theory, would yield a barely acceptable baryon asymmetry due to one 
loop corrections to the effective potential. As that work showed, the additional requirements of 
a sufficiently first order phase transition, and a small neutron electric dipole moment, severely 
constrain the model. 

In the ESSM, the electroweak symmetry breaking is provided by the extra gauge singlet 
superfield ~. The superpotential is 

t- t t -;;() 0 -+ 3 W = >.1QLH1UR + >.2QLH2DR + >.3L H2ER + A7~(H1H2 - H 1 H2) + >.s~ . (40) 

Letting the scalar component of the gauge singlet be ~~ = p:z:eiB.,, we find a neutral scalar Higgs 
potential of 

Vo = (g~ + g} )(p~ - p~) 2 /8 + l>-1l 2 P!(P~ + p~) + 9I"Asl 2 P! + l>-1l 2 P~P~ 
+m!P! + m~p~ + m~p~ + 6I"A1>.s!P1P2P! cos(02- 81 - 2B:x: + B>.T - 0>. 8 ) 

+2IA7>.7!P:x:P1P2 cos(02- 81 + Bz + B>.T +OAT)+ 2IAs"AsiP! cos(3B:x: + 0>.8 + OA8 ).(41) 

We first use the two Higgs rotations to eliminate the phases on the >.7 and As couplings. The 
only physical phases remaining are those on A 7 and As, the 0 vacuum, and the super-KM and 
KM phases [22]. Minimising this potential with respect to phases gives the conditions 

0 

0 

sin( 82 - 81 + B:x: + 0 AT) + 31 ~: I P:x: sin( 82 - 81 - 20:x:) 

sin(30:x: + OA8 )- 31 ~7 ~ P
1
P

2 
sin(02- 81 - 2B:x:)· 

s P:x: . 
{42) 

In the case that OA7 - OA8 = 1r we have the trivial minimisation (i.e. when all the cosines in 
Eq.{41) are -1) given by 
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--OA 3 71 
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in which case there is again no spontaneous baryogenesis, since the A7 coupling is approximately 
constant during the phase transition. (We make this last assumption because the phase tran­
sition is taken to be fust order, in which case it proceeds by spinodal decomposition implying 
that the temperature remains nearly constant.) Now let fJA 7 - fJA, = 7r + AfJA, where we assume 
that A.(} A is small. Then the minimum may be approximated by 

(44) 

It should be noted that the residual angle appearing in the mass terms may be absorbed by 
fermion rotations without affecting the KM matrix, exactly as in the MSSM. If we again make the 
assumption that the vacuum expectation values are small when the baryon number violation is 
greatest, we may approximate fJ2-fJ1 = 7r-(2fJA7 -ll.fJA)/3, again implying no baryon asymmetry. 
Clearly the production of a net b~yon number depends on how long the sphaleron transitions are 
allowed to continue away from the symmetric phase. In order to make an estimate, we shall use 
the renormalisation results of Ref.[23], for the supergravity inspired model with the parameters 
(in the notation of that paper), m 112 = 200 GeV, m0 = 300 GeV, tan/3 = 2, tan/3:~: = 1/2. 
In addition we use the values for the couplings >.1 = g2, >.s = 0.2. We may induce a non­
zero fl.(} A by allowing a small phase on the trilinear ( soft-supersymmetry breaking) parameter 
A = IAI exp iA.fJ Ao. We shall choose IAI = 0.2. 

Close to the GUT scale fl.(} A = 0, but as the renormalisation group equations are run down 
to the weak scale, a non-zero phase develops. At the beginning of the phase transition since 
the phases on A1 and As are constant, there is no baryon number production. Towards the 
end of the phase transition however, the phases are changing rapidly due to the large vacuum 
expectation values that the Higgs fields have aquired. The total change in phases is 

and hence, 
p B "' 10 -sAO Ao . 
s 

(45) 

(46) 

In this case, the observed baryon asymmetry may quite easily be generated, provided that 
sphaleron transitions are not frozen out too quickly. In addition, we note from Ref.[17] that 
the phase transition may be naturally fust order, since there are trilinear terms in the Higgs 
potential even at tree level. This also implies that there may be some enhancement of the baryon 
asymmetry arising from transport processes as described in Ref.[5). 
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Figures 

Figure 1 The triangle diagram leading to anomalous Chern-Simons terms in the effective 
potential, and also to finite temperature non-anomalous contributions. 

Figure 2 The Higgs equivalent to Fig.(l), which leads to a Higgs topological term, Nn. This 
ensures that the quantity Ncs- Nn is total gauge invariant which may be described as 
the total derivative of a density, the Goldstone-Wilczek density. 
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