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Abstract 

The longitudinal susceptibility, a measure of magnetization fluctuations, 

is studied within the framework of the Dyson hamiltonian. Results for models 

appropriate to EuO and EuS show that near Tc the fluctuations included in 

the Hartree-Fock approximation more than double the susceptibility. It is 

shown that inclusion of the fluctuations does not change the exponent in the 

power law divergence of the susceptibility with respect to a magnetic field. 

Results for the magnetization and spin wave renormalization, including the 

influence of the dipolar energy, are given for EuO and EuS, and compared 

favourably with the available experimental data. 
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1 Introduction. 

Several groups of researchers have recently noted a somewhat remarkable shortage 

of precise experimental information on the spectrum of spin density fluctuations in 

simple magnets that are adequately described by a Heisenberg spin Hamiltonian. 

Moreover, the data produced by these groups are not in striking agreement with 

predictions based on linear spin wave theory; predictions which have been known 

for several decades. Couched in terms of the wave vector-dependent susceptibility 

x(k), the prediction for zero magnetic field is x(k) oc (1/k) near the centre of the 

Brillouin zone; alternatively, for a finite magnetic field H, x(O) ex (H)- 112. 

Neither of these predictions are in tolerable agreement with available data, much 

of which has been obtained with the neutron scattering technique. The shortage of 

precise experimental data is largely due to the fact that this technique is not ideally 

suited to the measurement of the spectrum of spin density fluctuations. Unfortu­

nately, it is the only technique currently available for the measurement of x(k), 

which in neutron scattering parlance is referred to as the longitudinal spectrum. 

In contrast, the transverse spectrum, exhausted by single spin wave events, is well­

researched and understood. Indeed, measurements of the transverse spectrum are 

the source of data on spin wave dispersions in magnetic materials. The neutron scat­

tering technique is not ideal for the measurement of x(k) because it is not observable 

in isolation from the relatively intense transverse spectrum, unless polarization anal­

ysis is employed, although this has the drawback of a significant intensity penalty. 

Absence of experimental verification of the divergence of x(k) at the zone centre, 

due to a Goldstone mode in the isotropic spin Hamiltonian, prompted investigation 

of the influence of dipolar forces on the susceptibility. At face value, dipolar forces 

are a prime candidate for changing the structure of x(k) because they change the 

spin symmetry of the Hamiltonian (the total spin is no longer a constant of motion). 
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However, the conclusion is that these forces do not change the structure of x(k), as 

far as k is larger than the characteristic wavevectors of the magnetostatic modes. 

The effect of dipolar forces, to a first approximation, is simply to reduce by about 

50% the value of x(k) from that obtained for the isotropic spin system. Detailed 

calculations have been reported (1, 2] for realistic models of EuO and EuS, both of 

which are simple, face centered cubic ferromagnets with ordering temperatures (Tc) 

of 69.5 K and 16.5 K, respectively. 

While the investigation of dipolar forces removes an important query in con-

fronting theoretical predictions with experimental data, there remains concern about 

use of a linear spin wave approximation, given that experiments are performed close 

to Tc where the susceptibility is enhanced by fluctuations which are precursors to 

critical effects. Here, we report the first findings on the influence of non-linear spin 

wave interactions on the spin density susceptibility, and explicit results for realis-

tic models of EuO and EuS, including accounts of dipolar forces. It is shown that 

x(O) ex (Ht1f2, i.e. the interactions do not change the exponent in the diver­

gence with respect to the magnetic field. For weak fields, the enhancement of x by 

non-linear spin fluctuations is as much as 50% for T ~ 0.9Tc. Inclusion of dipolar 

forces decreases x, as already mentioned, but the relative enhancement by non-linear 

fluctuations remains almost the same. 

Let us denote the spin wave dispersion in a simple ferromagnet (T < Tc:) by Wk. 

The frequency and wave vector dependent susceptibility for spin density fluctuations, 

obtained from linear spin wave theory, is 

xo(k,w) = (1/N) L nq- nq+k 
q w +wq+k- Wq 

(1) 

in which 

(2) 

is the Bose factor (n = kB = 1 ). 
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The result for x(k) = x(k, 0) obtained from (1) is to be contrasted with the 

corresponding susceptibility for transverse spin fluctuations, namely (2S/Wk) where 

Sis the magnitude of the spin (S = 7/2 for EuO and EuS). From (1) we obtain, 

using the approximation, 

(3) 

the result: 

(4) 

where v0 is the volume of the unit cell. The estimate ( 4) is good for temperatures 

close to Tc, and it displays the anticipated inverse square-root singularity with re-

spect to the magnetic field. It will be shown that, for EuO and EuS and T ~ Tc, 

Eq.( 4) significantly underestimates the non-interacting susceptibility. 

Our treatment of non-linear spin wave interactions is based on two spin wave 

events described by Dyson's boson Hamiltonian. Evidence to support this treat-

ment comes from several sources. First, it provides an exact description of the spin 

wave bound state. Secondly, results obtained for the renormalized spin wave ener-

gies are in excellent agreement with experimental data. In the same vein, critical 

temperatures obtained from the theory agree well with observed values. 

The structure of the equation for the spin density propagator (Green function) 

has the form of that for a localized single defect problem of the Lifshitz type, and 

it can be solved by the established method [:3]. For the problem in hand, the defect 

potential is generated by the dynamic spin wave interaction. Further details and an 

explicit solution for (one dimensional) chain of spin can be found in Ref. [4-6]. 

Here, we limit attention to the expression for x(k = 0), and reserve for later 

publication the full expression for x(k). 

5 



2 Renormalized Spin-Wave Theory 

The theory of two-spin wave interactions described by the reduced Hamiltonian of 

Dyson and its treatment within the Hartree-Fock approximation has recently been 

reviewed (7]. In view of this, the presentation given here is minimal, and is designed 

to really do no more than define notation and the basic concepts. Our hamiltonian 

i£ is the sum of an isotropic exchange interaction between spins S11 , located on a 

Bravais lattice defined by vectors n, and a Zeeman energy created by a magnetic 

field in the z-direction of the coordinate system, 

(5) 
111,1111 Ill 

Here J(m- m') is the exchange parameter, and is defined such that .J(O) = 0. 

The reduced hamiltonian introduced by Dyson is the sum of non-interacting spin 

waves, with dispersion: 

(6) 

in which S is the magnitude of the spin and 

.Jk = L J(m) cos(k · m) . (7) 
111 

The Dyson hamiltonian is the lowest order approximation to the dynamic interac-

tion, and correctly describes two-spin wave processes, e.g. the two-spin wave bound 

state. When corrections to the Hartree-Fock approximation for the dynamic inter-

action are set aside, the dispersion relation is modified by a simple temperature 

dependent factor. The renormalized dispersion is 

(8) 

where now 

nq = (exp{Eq/T)- lt1 (9) 
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Results (8) and (9) together give a transcendental equation for the dispersion and 

occupation number. The corresponding magnetization is determined by 

(Sz} 1 s= 1 - NSLnq. 
q 

(10) 

Results for the special case of an exchange interaction restricted to one shell of 

neighbouring magnetic ions, for which lq = rJ/q and 1' is the number of ions 

in the shell, are discussed in the Appendix. A realistic model for EuO and EuS 

contains two shells of neighbours, and implementation of the theory is necessarily 

slightly more complicated than for one shell of neighbours. Results for the spin wave 

renormalization and magnetization are reported in the next section, together with 

an estimate of the influence of dipolar forces. 

It is well known that dipolar forces have a significant effect on the structure of 

spin wave theory of a Heisenberg ferromagnet [7, 8]. However, at elevated tempera-

tures, where many spin waves are excited, their influence is adequately described by 

the effect of a magnetic field proportional to the magnetization (in this approxima-

tion, off-diagonal terms in the Hamiltonian that have a considerable impact on low 

temperature properties are neglected). The theory including dipolar forces can thus 

be mapped into the one described in the previous paragraphs with the magnetic 

field replaced by the sum of the applied field and the anisotropy energy 

I ~(.'F) 
l.a = -5-.-' .. ( 11) 

in which the constant ~ is proportional to the saturation magnetization; values of e 
for EuO and EuS are provided in Table I. 

With the inclusion of the dipolar energy as described above, the magnetiza-

tion and dispersion are determined by the coupled equations (8) and (10) together 

with (9) and (11 ). An investigation of the theory, using a numerical method, is re-

ported in section 3. Fortunately, some key aspects of the results can be understood 
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from a simple analysis reported in the Appendix. The equations admit physically 

acceptable solutions up to a maximum temperature that is quite close to the ob­

served critical temperature. At this maximum temperature, the magnetization and 

renormalization of the spin wave dispersion are finite, and the values obtained in 

a numerical analysis are very close to the estimates reported in the appendix. On 

the question of the influence of the dipolar force, analytic and numerical works are 

in good agreement, and the induced changes are found to reduce the discrepancy 

between theory and experimental data.. At this juncture we mention that Pa.ssell et 

al. [9] also report numerical calculations of the magnetization and spin wave renor­

malization including dipolar energy. However, in their treatment of the dipolar 

energy the magnetization is inserted (experimental values) whereas here the entire 

set of physical variables is treated in a self-consistent manner. 

3 Magnetization and Renormalized Dispersion 

The theory outlined in section 2 has been applied to realistic model of the magnetic 

salts EuO and EuS; various parameters are gathered in Table I. In the absence of 

dipolar anisotropy (~ = 0), the maximum temperature at which there is a solution 

of the transcendental equation is 62.5 K for EuO and 16.2 K for EuS. Including 

the dipolar anisotropy in the approximate form described in the previous paragraph 

increases this temperature to 6:3.5 K and 16.8 K respectively. It is gratifying to 

find that these changes are in good agreement with the estimates derived in the 

appendix, as are the dipolar induced changes to the magnetization and spin wave 

renormalization. 

Figs. 1 and 2 contain results for (.5'') /.5' and tq for EuO and EuS as functions 

of the temperature, together with available experimental data. The applied field 

is zero in all cases. The dipolar anisotropy is included in the form described in 
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section 2, and for EuO it goes toward reducing discrepancies between theoretical 

and experimental data, while for EuS no substantial improvement is obtained. 

The calculation given in the Appendix for a nearest neighbour exchange model 

predicts that the magnetization and spin wave renormalization should be 0.33 and 

0.50, respectively, for ~ = 0 and at the maximum temperature. The good agreement 

between the full numerical analysis and these estimates vindicates the assumption 

that, for high temperatures, it is adequate to use nq ~ (T / Eq). 

4 Longitudinal Susceptibility: Theory 

The longitudinal susceptibility in the classical limit is proportional to the mean-

square fluctuation in the magnetization, i.e. 

x(k) ex ((S'k) 2
) , ( 12) 

where Sk is the spatial Fourier transform of the magnetization. For a quantum 

mechanical calculation, a convenient way to proceed is to obtain the Zubarev Green 

function for the magnetization density operator. The Green function evaluated at 

zero frequency is proportional to x(k); see, for example, ref. [10]. Calculated for 

linear spin waves with dispersion wq the Green function, denoted by /(0 (k), is simply 

related to the wave vector and frequency dependent susceptibility (1), namely 

xo(k) = xo(k, 0) = -I<o(k) . 

Taking the limit k -+ 0 in xo(k, 0) leads to 

1 
xo(O) = NT L nq(I + nq) . 

q 

(13) 

( 14) 

In the classical limit nq » 1, and then Xo(O) is seen to be the mean square fluctu­

ation in the magnetization. On using the approximation nq ~ (T/wq) in Eq. (14), 



replacing the sum by an integral, in the standard manner, and using the low-k expan-

sion for Wk we arrive at the result ( 4). For the simplified nearest neighbours model 

discussed in the appendix, the behaviour of the macroscopic static susceptibility for 

vanishing field is easily recovered without introducing the continuum approximation 

for the spin wave dispersion. From ( 40), when the effects of renormalization are 

neglected, we get: 

Xo(O) = - ~ 1'({3) , 
eo 

(15) 

where !'({3) is the derivative of the extended Watson integral. Using the expansion 

{31), together with D = 2.JSa2 and v0 = a:3/4, we see that (1.5) is identical with Eq. 

( 4 ). 

The Green function for the reduced hamiltonian of Dyson can not be calculated 

without approximation. In the present work, the approximation used is well tried 

and tested; it yields the exact spectrum of the two spin wave bound state, and is 

entirely consistent with the renormalized spin wave theory described in section 2. 

The full form of the Green function is quite complicated, and it is readily obtained 

from the main result provided by Balucani et al. [5] in their discussion of fluctuations 

in the Heisenberg chain. In view of this, we limit ourselves to providing the results 

for the susceptibility without details of the intermediate working. One new aspect 

of our result is the generalization to two shells of neighbours labelled by i = 1, 2. 

The Fourier transform of the exchange interaction is 

1 . 
J = - "'() .-v(t) {16) 

q 2 L... 1 lq 
t 

where ~~) are standard geometric factors with the normalization ~~i) - 1, and 

One effect of the spin wave interactions is to renormalize the dispersion as de-

scribed in section 2. Hence, in the remaining discussion nq is the function (9) in 
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which the dispersion fq depends on temperature. The function K(k) used in the 

following is simply the right hand side of Eq. (1) with w set to 0 and Wq replace by 

The susceptibility is expressed in terms of three functions, in addition to K, that 

have a structure similar to K. The three additional functions of interest are: 

c (17) 

in terms of which, 

T {Ol(A(ll)2 + 02(A(2))2 + 0102[(A(1))2B(2) + (A(2l?B(l)- 2A(l)A(2lC]} 
x(O) =-I\ (O)+ {1 + 01B(ll + 02B(2l + elo2[B(llB(2l- C2]} · 

( 18) 

Several features of this expression merit some comment. First, in the limit of zero 

magnetic field x(O) ex: (h)-t. This behaviour arises, for temperatures less than the 

maximum temperature, because the three functions listed in (17) are not singular 

for h -t 0 owing to the additional geometric factors in the integrands ( (1 - /q) ex: 

q2 for q -t 0). Note that if we found a result for x that was not singular for 

h -t 0 the result would be unacceptable, since the singularity is a consequence of a 

spin symmetry of the Hamiltonian which must be respected by approximations to 

observable response functions. Hence, the significant finding is that the exponent of 

h in x(O) is the same as in the non-interacting spin wave approximation. Secondly, 

we find the result X ~ Xo· This result is in accord with physical intuition because the 

corrections to xo in ( 18) are created by the spin fluctuations, which eventually drive 

the continuous phase transition as T -t Tc. The influence of the spin fluctuations on 

the susceptibility evaluated in the limit h -t 0 is obtained from the relation, derived 
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from (18), 

l. X 1' [( 
1m - = llll -T- • 

h-+O Xo h-+O !i 0 
(19) 

If we evaluate I<(O) in the same fashion as /(0 (0) is evaluated to obtain the estimate 

(4), 

. X [ D(O) l t hm-= --
h-+O Xo D(T) 

(20) 

where the temperature dependent spin wave stiffness D(T) IS derived from fq, 

namely 

fq = D(T)q2 for h = 0 and aq <t:: 1 . (21) 

At low temperatures, D(O)/ D(T) increases from unity at T = 0 with a term propor­

tional to TL Fig. 3 shows the temperature dependence of [D(O)/ D(T)]~ for EuO 

and EuS over the entire temperature range for which Hartree-Fock theory is valid. 

Finally, we remark on the structure of x(O) evaluated with the analysis discussed 

in the appendix, in which there is just a single shell of ions. With a more or less 

obvious notation, for a single shell of ions the result (18} reduces to 

OA2 

x(O) = -K(O) + 1 + OB (22) 

With the approximation nq ( 1 + nq) ~ (T / fq) 2 we have for the case of zero magnetic 

field 
T 

B =--2 e 

where I is the Watson integral and e is the renonnalized exchange integral, i.e. 

Eq = e(l -!q) , h = 0 . 

(23) 

(24) 

Perhaps the most interesting aspect of these expressions is that, at the maximum 

temperature for which the Hartree-Fock scheme admits a physical solution of the 
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transcendental equations for the spin wave renormalization, the analysis in the ap-

pendix leads to the result 

OT 
1 + OB = 1 - - = 0 . 

e2 
(25) 

Hence, within the approximate analysis based on nq ~ (T / Eq), which is shown 

in section 3 to provide a quantitative description of (exact) numerical results, the 

maximum temperature for a physical solution is also · the temperature at which 

the additional term in the susceptibility, which arises from spin-wave interactions, 

diverges too. It is particularly satisfying that the divergence with respect to the 

field h is the same as that of K(O), i.e. at the (zero field) maximum temperature 

T = (e0S/4) we obtain 

l 
1+0Bcxhz 

in the limit h ---+ 0, while the function A in the numerator is finite. 

(26) 

5 Longitudinal Susceptibility: Predictions for EuO 
and EuS 

The result ( 18) for the susceptibility has been evaluated for the same realistic model 

of EuO and EuS as we used in section 3 to investigate the magnetization and spin 

wave renormalization. We report for these two compounds our predictions with 

respect to the dependence of the susceptibility on temperature, magnetic field and 

dipolar anisotropy. 

Results for [D(O)/ D(T)]t in Fig. :3 give a measure of the influence of spin fluctu-

ations on the susceptibility as a function of temperature. In the temperature range 

covered in the figures for both materials the susceptibility increases by about a factor 

2, and beyond the maximum temperature contained in the figure the susceptibility 

continues to increase. 



In Fig. 4 we show for EuO and EuS the field dependence of X and Xo· The 

log -log plots illustrate the power law behaviour with respect to h, which is com­

mon to X and Xo· At the chosen relatively high temperature we see a significant 

enhancement of the susceptibility by the spin fluctuation effects contained in x, 

while the enhancement is found to be negligible at lower temperatures (T ~ 0. 7Tc) 

as might be expected. We draw attention to the mild field dependence of (x- x0 ). 

6 Conclusions 

The work reported has essentially two threads. While the main aim is to estimate 

the influence of spin fluctuations on the longitudinal susceptibility, this naturally 

entails a study of magnetization and spin wave renormalization. Results from the 

latter part of the study are in accord with previous theoretical findings and available 

experimental data. A new feature of our theoretical work is that the dipole energy 

contribution is handled in a fully consistent manner, whereas previously recourse 

was made to experimental data. 

Our results for the susceptibility show the significant underestimate of spin fluc­

tuations by the standard spin wave expression. For a temperature ~ 0.96Tc the 

fluctuations more than double the size of the susceptibility, and on approaching the 

critical temperature from below the susceptibility displays a power law divergence. 

This, together with other aspects of the study are clearly revealed in an analysis of 

a simple model calculation appropriate at high temperatures. 

Our results for the longitudinal susceptibility of EuO and EuS can be directly 

tested with neutron scattering experiments. Less direct evidence is contained in the 

analysis of muon spin relaxation experiments, where the relaxation rate is propor­

tional to a weighted integral of the susceptibility x(k) divided by the damping rate 

for magnetization fluctuations. 
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Appendix 

While a numerical method must be used to obtain a complete solution of the tran-

scendental equations for the magnetization and renormalization factor, some useful 

insight to the nature of the solutions can be obtained by elementary analysis, based 

on a nearest neighbour model and high temperature expansion of the Bose factor. 

First of all we recall that at very low temperatures the magnetization can be 

expanded in a power series in (T I J), and for a simple magnet the leading-order 

contribution from the dynamic interaction is found to be proportional to (T I J) 4
• 

Furthermore a quantum spin reduction is present due to the dipolar anisotropy. 

However, due to the high value of the spin, this reduction turns out to be negligible 

in the case of interest, being less than 0.2% and 0.6% for EuO and EuS, respectively. 

Here, attention is focused on the high temperature properties of the theory. The 

equations to be analysed are, 

< sz > 1 
m = s· = 1 - N s· L nk ' 

·- ·- k 

(27) 

and 

(28) 

in which the spin wave dispersion 

Ek = ea(l- CIS)(! -l'kJ + ~m + h (29) 
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and e0 = 2r J S, the exchange interactions being limited to the first shell of neigh­

bours. For high temperatures, T ~ J, it is reasonable to approximate the Bose 

distribution factor by nk = (T I Ek)· In this instance, the coupled equations can be 

expressed in terms of the extended Watson integral, 

IU3) = __!__ L: 1 
N k 1+,8-lk 

(30) 

The series expansion for a J cc lattice is: 

:3J3 1 
1(!3) = /(0)- -2-(32 + ...... ' 

'7r 
,8 < 1, (31) 

where /(0) ~ 1.:3447. The equations (27) and (28) reduce in the high temperature 

limit to: 
T 

rn = 1- eS/((3) (32) 

and 
T c = -[1- ,81(13)] . 
e 

(33) 

Here, {3 = (~m + h)le withe= e0(1- CIS). 

To begin with let us set aside the contribution to Ek(T) from the dipolar forces 

and the applied magnetic field h. With ~ = h = 0, ;z; = ( el e0 ) satisfies the equation: 

:r( 1 - :1:) = ( T I eo S) , (:34) 

which admits real solutions forT= (Tie0S)::; 114. At the maximum temperature, 

we find (eleo) = 112 and, 

1 
m = 1 - 2 /(0) = 0.:3:3, fcc. (:35) 

These values are in tolerable agreement with the values obtained from the full nu-

merical solutions reported in the main text; this finding gives confidence in our 

approximate treatment of the transcendental equations. 
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Turning next to the influence of dipolar forces on the magnetization and renor-

malization, still in the absence of any applied magnetic field, we will exploit the fact 

that the strength of the dipolar forces is weak compared to the exchange forces, i.e. 

e ~ e0 • Consider, for example, EuO. The value J = 0.74I< gives a critical tempera­

ture for the spherical model that agrees with the measured value, and (e/e0 ) = 0.016. 

Working to leading order in (e/e0 ), we find that the coupled equations admit real 

solutions for the magnetization up to a temperature 

(36) 

at which the renormalization parameter is 

(37) 

and the corresponding value of the magnetization is 

m = I - ~ { /(0)- 0.8270 [
2

- /(O)Je} 
2 eo 

(38) 

The dipolar force is seen to increase the critical temperature and magnetization, 

and decrease the renormalization function. Evaluated for the simplified model of 

EuO, with (e/e0 ) = 0.016, the dipolar forces increase the critical temperature by 

1.4% and the corresponding magnetization by 12.8%. 

For the particular case of an applied magnetic field the results (36) and (37) 

apply with rn replaced by unity and e = h, where h is the Zeeman energy. The 

corresponding magnetization at the maximum temperature and (h/e0 ) ~ 1 is, 

m = 1- ~ (1(0)- 1.1695(h/e0 )t] . (39) 

The same simplified method of analysis can be applied to the static susceptibility; 

from (22) and the definition of A and B we get : 

eox(O) f { -1'(!3) + f [1 2(13) + 1'(13)]} 

S' 1 - f { 1 - ~:3 [/32 /(/3)J} 
( 40). 
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in which f = ( T / x 2) and the reduced temperature ( T) and spin wave renormalization 

( x) are related by 

x(l - x) = r(l - (31((3)] . (41) 

Some features of this results are mentioned in the main text. Here we note that the 

susceptibility increases with temperature (see Fig. 3) and diverges at the maximum 

temperature. 

18 



TABLE I 

Some useful quantities for EuO and EuS. a is the lattice constant, Tc the experimen­
tal critical temperature, J1 and J2 the nn and nnn exchange interaction constants, 
e the parameter, defined in the text, which rules the dipolar effects. Values of e are 
obtained from e = H21r9fLBMo), where Mo is the observed saturation magnetization. 

a (A) Tc (K) J1 (K) J2 (K) e (K) 

EuO 5.12 69.5 0.61 0.12 1.08 

EuS 5.95 16.5 0.24 -0.12 0.67 
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Figure Captions 

Fig. 1 Reduced magnetization versus temperature for EuO (a), and EuS (b). The 

dashed line is the result for the pure exchange Heisenberg ferromagnet, while the 

continuous line takes into account also the dipolar interaction as described in section 

2. The open circle are the experimental results [9]. 

Fig. 2 The ratio between the renormalized and bare spin-wave frequency at the zone 

boundary for Eu 0 (a) and EuS (b) is reported as a function of temperature. In (a) 

the continuous line is the result for the pure exchange Heisenberg ferromagnet, and 

the long-dashed, dashed and dot dashed line the results with the dipolar interaction 

in the (001 ), (011) and (111) direction, respectively. In (b) all the curves are obtained 

without any dipolar interaction and refer to the (001) (long-dashed line), (011) 

(dashed line), and ( 111) (dot-dashed line) direction, respectively. The symbols are 

experimental results for some values of k [9]; filled circles: k = 0.2/1-1
, open circles: 

k = 0.6.A-I, open triangles: k = o.sA-1
, open squares: k: = l.OA-1 . 

Fig. 3 The ratio [D(O)/ D(T)pl2 = 1<(0)/ I<(T) versus temperature for EuO (a) 

and EuS (b). 

Fig. 4 Macroscopic static susceptibility versus applied field for EuO at T = 60]{ 

(a) and EuS at T = 161( (b). The dashed and continuous lines refer to the non­

interacting and interacting case, respectively, and the Zeeman energy h = 911-BH is 

in units of ]{. 
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