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Abstract 

The generalized SChrodinger equation with the Kerr and saturation non­
linearities is used to investigate the filamentation instability of arbitrarily 
large amplitude optical pulses in a nonlinear medium. The existence of finite 
amplitude optical clumps (optical solitons or light bullets) is demonstrated. 
Conditions under which the filamentation instability and light bullets arise, 
are presented. 
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In the past, a number of authors1
-

3 have investigated the modulation and 
filamentation instabilities as well as self-focusing of optical pulses in a ho­
mogeneous nonlinear media. In order to study the nonlinear propagation of 
optical pulses, the cubic Schrodinger equation4 has been often used. The cu­
bic Schrodinger equation contains the Kerr nonlinearity which arises from the 
modification of the refractive index due to the optical pulse intensity. When 
the pulse dispersion is exactly balanced by the Kerr nonlinearity, we have 
the possibility of the optical solitons4 (light bullets5

) or a periodic sequency 
of optical clumps. It is thought that the latter are the final state of the 
modulational/filamentation instability. Optical solitons have been observed 
in laboratory experiments6 and they might serve the purpose of transmitting 
rapid information in optical fibres. 

However, in addition to the Kerr nonlinearity, there exists the so-called 
saturation nonlinearity in a nonlinear medium. Thus, Akhmediev et.al. 7 in­
corporated the combined effect of these two nonlinearities in the numerical 
study of non-stationary longitudinal modulational instability of an optical 
pulse. 

In the Letter, we present an analytical investigation of the flamentation 
instability and light bullets involving finite amplitude optical pulses in a 
nonlinear medium with the Kerr and saturation nonlinearities. Our results 
should strengthen the understanding of the nonlinear optical pulse propaga­
tion, which plays a vital role in telecommunications, infrared spectroscopy, 
medicine and many other areas of physics. 

The interaction of a finite amplitude optical pulse with a nonlinear medium 
can give rise to a slowly varying optical field envelope, which is governed by 
the generalized nonlinear Schrodinger equation 7•8 

(1) 

where the function 1/;, which basically represents the electric field of the 
optical pulse, and all other variables are appropriately normalized to include 
all material parameters. Furthermore, z in the normalized longitudinal co-
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ordinate, v'I = a; + a~ ~ a;' T is the retarded time, and7 

2 I '1/J 1
2 

- I 
f (I '1/J I ) = 1 + f3 11/J 12 = 1 + (31' (2) 

where (3 is the saturation parameter, which varies in the interval 0 < (3 < 
1. For (3 = 0, F (11/J 1)2 =I '1/J 12 and (1) becomes the cubic Schrodinger 
equation, which describes the propagation of an optical pulse in a nonlinear 
medium with the Kerr nonlinearity. The (31-term in (2) is the contribution 
of the saturation nonlinearity. Note that (1) is valid for an optical pulse with 
anomalous dispersion. 

In the following, we present an investigation of the filamentation insta­
bility and the formation of light bullets involving finite amplitude optical 
pulse. To investigate the filamentation instability of a constant amplitude 
('1/Jo) optical pump wave, we let 

(3) 

and assume 1/;1 ~ '1/Jo, where 1/;1 is the complex amplitude of the perturba­
tion. Here 8 and n are the nonlinear wave number and frequency shifts, 
respectively. Inserting (3) in (1), we obtain 

(4) 

and 
(5) 

where the asterisk denotes the complete conjugate. 

Supposing that 'I/J1 = ('1/Jr + iV;i) exp ( G z + ik.r1.), where '1/Jr and 1/Ji are 

real and imaginary parts of 'I/J1 , respectively, G is the spatial amplificiation 
rate along the z-axis, and k is the wave vector of the modulation in a direction 
perpendicular to the optical pulse propagation, we can readily derive the 
nonlinear dispersion relation of the filamentation instability from (5). The 
result is 

(6) 

The spatial amplification of the optical pulse along the direction of the pulse 
propagation is possible provided that 

(7) 

3 



The minimum length over which the amplification occurs involve 
k = i;/~ {1 + f31Ks) 112 = km. Thus, the minimum amplification length is 
1/km. 

Next, we focus on the formation of finite amplitude optical bullets. Thus, 
we let '1/J = Wexp { i.\z - i{t), where W is the complex amplitude of the 
modulated wave envelope and A and 1 are the nonlinear wave number and 
frequency shifts, and assume steady propagation of the bullet along the z­
direction. For one-dimensional problem, (5) takes the form 

(8) 

where .6. = 1 + A + 1 2 
_ 

Multiplying (8) by OxW, and integrating once we obtain the energy inte­
gral 

{9) 

where we have assumed W, OxW ---+ 0 at I x 1---+ oo, and have defined 

(10) 

For localized bullets to exist, V(w) < 0 for 0 :::; W < Wm, where Wm is the 
maximum amplitude of the bullet. Thus, ~ > 0 is required. Furthermore, 
the condition V (W = Wm) = 0 and (8xW') 111=111 m = 0 give 

(11) 

which determines the maximum amplitude '~~m· Furthermore, the bullets are 
formed if (8Vj8W) 111=111m > 0, yielding 

f3W"~/ ( 1 + {3w~) > .6.{3 . (12) 

Equations (11) and (12) are the necessary conditions for the formation of 
finite amplitude optical bullets in a nonlinear medium. For the small ampli­
tude bullets, we assume {3W2 ~ 1 and obtain V (w) = -~W2 + !W"4

. Thus, 
(9) admits the well-known secant hyperbolic profile for the pulse electric field. 
Clearly, the saturation nonlinearity (the {31-term) does not play any role in 
the small amplitude limit. 
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Finally, it is instructive to mention that although the condition (12) 
should also hold for cylindrically symmetric optical bullets, the profile of 
the latter is determined from 

1 d d\I! 
--d (r-d ) -~'I!+ I 'If 12 

W/ (1 + /11 \I! 12) = 0. 
r r r 

(13) 

Equation (13) can be formulated in terms of the variational principle 

8 j drL = 0, (14) 

where the Lagrangian is given by 

1 d\I! 1 1 1111tl2 
L = --(-?- -r~W2 + -r f(x)dx. 

2r dr 2 2 0 

(15) 

Following Anderson9 we can use Gaussian trial functions and a Ritz opti­
mization procedure in order to obtain approximate solutions for bullet width, 
bullet amplitude, and nonlinear frequency chirp. On the other hand, we note 
that pulse-like solutions will exist corresponding to the bound-state solutions 
of (13) provided that ~ > 0. We have not been able to obtain an analytical 
solution to Eq. (13) and, therefore, one should resort to numerical integra­
tion subject to the boundary conditions w(r = 0) = 0 = \I!(r = oo). This 
investigation as well as the variational problem for cylindrical light bullets are 
under consideration and the results shall be presented in a detailed version 
elsewhere. 

To summarize, we have analytically investigated the filamentation in­
stability and flat light bullets involving finite amplitude optical pulses in a 
nonlinear medium with the Kerr and saturation nonlinearities. It is found 
that the saturation nonlinearity plays a decisive role when the amplitude of 
the pulse is arbitrarily large. The present investigation supplements our cur­
rent understanding of the nonlinear optical pulse propagation in nonlinear 
media, such as the optical fibres. 

This research was supported by the European Economic Community 
through the SCIENCE Program under the Contract No. SC-CT92-0773. 
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