
1- e Science and Engineering Research Council 
0 

o ~ ~ $ Rutherford Appleton Laboratory 
- - ..J 
~ N N <C Chilton DIOCOT Oxon OXll OQX RAL-93-01 0 

: 3 a: 
<( 0 \.) 
~\....Jet: 

. -1 r... 
1 -X ":) 

'-0 .... 
l r-- .::;) 

:.4 - M 
..... ·::'-1 7'1 

.. 
0 •• 

* '2; l-1 * I -i * :) '1l *' 0 ~ 
'!f. d fl 

Stitching the Yukawa Quilt 

P Ramond R G Roberts and G G Ross 

il1993 

LIBRARY, R61 
26 APR 1993 

RUTHER~OClD AP0 LETON 
LABORAiORY 



Science and Engineering Research Council 
"The Science and Engineering Research Council does not 
accept any responsibility for loss or damage arising from 
the use of information contained in any of its reports or 
in any communication about its tests or investigations'' 



Stitching the Yukawa Quilt 

P. Ramond* 
Institute for Fundamental Theory, 

Department of Physics, University of Florida, 
Gainesville Florida 32611 USA 

R. G. Roberts 
Rutherford Appleton Laboratory, 

Chilton, Didcot, Oxon, OX 11 OQX, UK 

and 

G. G. Rosst 
Department of Theoretical Physics, 

Oxford University, 
K eble Road, Oxford, UK 

Abstract 

RAL-93-010 
UFIFT -93-06 

March 1993 

We develop a systematic analysis of quark mass matrices which, 
starting with the measured values of quark masses and mixing an­
gles, allows for a model independent search for all possible (symmetric 
or hermitian) mass matrices having texture zeroes at the unification 
scale. A survey of all six and five texture zero structures yields a to­
tal of five possible solutions which may be distinguished by improved 
measurements of the CKM matrix elements and which may readily 
be extended to include lepton masses with the Georgi-J arlskog tex­
ture. The solutions naturally suggest a parameterisation for the mass 
matrices based on a perturbative expansion and we present some spec­
ulations concerning the origin of such structure. 
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1 Introduction 

The Yukawa sector of the Standard Model is parameterized in terms of three 
3 X 3 matrices of Yukawa coupling constants. These serve to determine the 
nine quark and lepton masses as well as the three angles and one phase of 
the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Of the masses only one 
is presently unknown, the top quark mass although it cannot be heavier 
than 200 Ge V without spoiling the consistency of the Standard Model with 
experiment. 

While the three Yukawa matrices appear as independent parameters at 
the level of the Standard Model, they can be correlated in various theoret­
ical extensions. In specific GUTs, for example, there are relations between 
fermion masses, the best known being the SU(5) relation mb = m7 [1] at 
the unification scale Mx. As with the relation amongst gauge couplings 
this relation applies at the unification scale and must be radiatively cor­
rected. These corrections offer a further tantalising piece of circumstantial 
evidence in favour of supersymmetric unification for, starting with the re­
lation mb(Mx) = m 7 (Mx ), they can bring the prediction for mb/m-r into 
agreement with experiment using the same value for Mx found in the anal­
ysis of gauge couplings [2]. This cannot be done in the non-supersymmetric 
case without adding new interactions. · 

Further predictions for fermion masses require more sophisticated GUTs 
because the simple relations ms = mi-L and md = me plus radiative correc­
tions are grossly in disagreement with experiment. One inspired choice was 
proposed by Georgi and J arlskog [3] and subsequently developed by Harvey, 
Ramond and Reiss [4]. Recently it was run in the SUSY case by Dimopoulos, 
Hall and Raby [5] and by Ramond [6] and Arason, Castano, Ramond and 
Piard [7]. In this and other [8] Ansatze the number of parameters needed 
to specify the mass matrices is limited by the requirement that there be 
"texture" zeroes [9],[10]. The maximum number of such zeroes in the up 
and down quark mass matrices consistent with the absence of a zero mass 
eigenvalue is six. With six zeroes there are left just six real parameters plus 
one phase to describe the six quark masses, the three mixing angles and 
the CP-violating phase and so one obtains relations between the masses and 
mixing angles. It was shown that, including SUSY radiative corrections, the 
resulting predictions for the low energy parameters are in remarkably good 
agreement with experiment. 
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This illustrates how the analysis of fermion masses can lend support to 
the hypothesis of a stage of unification, in the same way as did the analy­
sis of gauge couplings. In both cases one uses the renormalisation group to 
continue the measured values and looks for simplicity appearing at the uni­
fication scale; in the case of gauge couplings simplicity is equality between 
the couplings, in the case of the mass matrices simplicity is simple ratios of 
quark and lepton masses and the appearance of "texture" zeroes. However 
the analysis of the mass matrices so far presented falls short of the ideal 
"bottom-up" approach for it starts by assuming a particular, theoretically 
motivated, texture for the mass matrices rather than just starting with mea­
sured values, continuing them to high energies, and looking for simplicity in 
the form of a definite texture. 

In this paper we will attempt to implement this "bottom-up" approach 
through a systematic study of possible zeroes in the quark Yukawa cou­
plings. The major difficulty in implementing this program is that labora­
tory measurements only determine the masses, i.e. the diagonal mass matrix 
y~iag, Yfiag, and the CKM mass matrix, not the full mass matrices, Yu, Y d; 
i.e. we have 

Y D·iag = RL y RRt u u · u· u 
Y Diag _ RL y RRt 

d - d. d· d 

v CKM = R~.R~t (1) 

If we are to determine R~·:, and hence the mass matrices separately, 
' a simplifying assumption is needed. These mass matrices come from the 

Yukawa sector of the theory which, in the standard model is given by 

(2) 

where Qi are the three quark doublets, Ui , Ji the three right handed charge 
-2/3 , 1/3 antiquark isodoublets, Li the three lepton doublets, ei the three 
right handed antilepton isosinglets, and H is the Higgs doublet normalized 
to its vacuum value. 

Given that the general case is not tractable we will concentrate in this 
paper on a promising possibility that has been widely studied, namely the 
case that the matrices in family space Y u , Y d , Y e are symmetric in family 
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space. At the level of the Standard Model and SU(5), this is not necessarily 
true, but at the SO(lO) level and beyond, where each family appears as a 
single representation, this assumption is natural (but not inevitable). With 
this assumption we can diagonalize the Yukawa matrices, or the associated 
mass matrices, by means of a Schur rotation i.e. RL = RR*- R. 

We can analyze the most general symmetric mass matrix case1 leading to 
five or six texture zeroes, because there are just 6 possible forms of symmetric 
mass matrix with an hierarchy of three non-zero eigenvalues and three texture 
zeroes (at least one of the up or down quark mass matrices must have three of 
the texture zeroes). Allowing for the redefinition of the quark fields to absorb 
phases, these matrices involve just three real parameters. This allows us to 
determine, up to the six fold discrete ambiguity, the diagonalising matrix Ru 
(or Rd) in terms of the masses. Hence, using eq(l), we may compute Rd (or 
Ru) in terms of the CKM matrix and hence find Yd (or Yu)· Further texture 
zeroes in Y 1, Y d will result in predictions for the mixing angles of the CKM 
matrix. 

The advantage of this technique is that it allows a determination of the 
down quark mass matrix using experimentally measured quantities without 
prejudicing the result by the choice of a specific texture. Thus the general 
problem of searching for structure in mass matrices may be solved with the 
assumption of symmetric mass matrices for the case that there are 5 or 6 tex­
ture zeroes. We will also consider the remaining case of just 4 texture zeroes, 
although in this instance there are fewer predictions making it somewhat 
uninteresting given the success of the more predictive forms. 

The paper is organised as follows. In Section 2 we introduce the procedure 
needed for a general analysis including the introduction of a Wolfenstein-like 
parameterisation for the mass matrices and the inclusion of the radiative cor­
rections needed to continue the mass matrices to high energy. Section 3 gives 
an explicit example of the analysis and presents the textures consistent with 
present measurements of masses and mixing angles. Section 4 presents the 
results of our general analysis in which the radiative corrections are deter-

1 In fact the analysis applies to hermitian matrices too for a general 3 x 3 symmetric 
mass matrix may be transformed to an hermitian matrix through the freedom to redefine 
the nine phases of the three left-handed doublets and six right-handed singlets of quark 
fields. These 9 phases may be used to make both the up and down quark mass matrices 
hermitian since it is always possible to choose a basis in which either the top or the bottom 
mass matrix is diagonal. 
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mined numerically by integrating the renormalisation group equations. This 
allows us to include the effects of thresholds correctly and to perform a com­
plete analysis of the gauge couplings, radiative electroweak breaking, and 
masses and mixing angles. Section 5 discusses these results in the context of 
the analytic solutions. Finally Section 6 presents our conclusions. 

2 A general analysis for symmetric mass ma­
trix texture. 

The procedure we adopt is straightforward: 

• We first assume that the up quark mass matrix Yu has a certain texture 
(i.e. zeroes in specific places)). After using the freedom to redefine 
quark phases to make the elements of Y u real the diagonalising matrix 
Ru is parametrized by three angles2

• If Yu has three zeroes, these 
angles will be related to quark mass ratios. If Y u has just two zeroes 
there will be one undetermined angle. 

• We now form the down quark mixing matrix by computing 

Rd = PdVbKMP~.Ru (3) 

where Pu,d are diagonal matrices of phases ei ct>~,d needed to express 
the "measured" CKM matrix in a basis in which the quark fields have 
arbitrary phases. Using Rd we may form the down quark mass matrix 

In writing this we have assumed Y d is hermitian rather than symmetric 
and is diagonalised by an hermitian matrix. As discussed above we are 
free to do this because we may use the freedom to redefine quark phases 
to change the symmetric matrix to an hermitian matrix. 

• We examine the matrix elements of Y d and derive relations between 
quark masses and the CKM mixing angles by requiring that some of 
these elements be zero (texture zeroes). 

2 With this phase convention it is clear the CP violating phase resides in Rd 
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We then start the process all over again, i.e. input a different texture 
for Yu, etc. 

• Finally we repeat the whole process starting with the down quark mass 
matrix Y d and computing the up quark mass matrix Yu. These steps 
leave us with all possible relations among quark masses and m1xmg 
angles, derived from requiring zeroes in the Yukawa matrices. 

• Before comparing with experiment, we run each of these relations 
through the renormalization group machine to include the radiative 
corrections. 

This outlines the scheme of analysis we adopt. Its implementation re­
quires the determination of the possible texture structures, the parameteri­
sation of the mass matrices in a manner that allows for a systematic analysis 
of the predictions, and a determination of the radiative corrections. We turn 
now to a discussion of each of these points. 

2.1 Possible texture structures 

As we mentioned above the analysis of the general case is possible because 
there are just 6 possible forms of symmetric mass matrices with just three 
non-zero eigenvalues and the maximum number (three) of texture zeroes 
capable of describing the hierarchy of up or down quark mass matrices. These 
are 

1. 

(5) 

2. 3 

(6) 

3This is the form used in refs [3, 4, 5, 7, 11] 
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3. 

03 0 

~) 0 (7) 
b3 C3 

4. 4 

u. 0 a4 ) b4 0 (8) 
0 C4 

5. 5 

(; as 2,) 0 (9) 
bs cs 

6. 

(0 •• b.) 
a6 0 0 (10) 
bs 0 Cs 

where ai ;S bi ;S Ci are constants determined by the quark masses. Note that 
we have chosen the axes so that the largest entry (approximately equal to 
the heaviest quark mass) is in the (3,3) position. It may readily be verified 
that these six forms are the complete set of possibilities up to relabeling of 
the axes. 

We will analyse all of these possibilities in turn for the up (or the down) 
quark mass matrices. Then using eq(4) we may study the implications of 
three, two or one further zeroes in the down (or the up) quark mass matrices, 
corresponding to a total of 6, 5 or 4 texture zeroes. 

The most predictive Ansatz has a total of 6 zeroes (3 in the up and 3 
in the down quark matrices) reducing the number of parameters needed to 
specify the mass matrix. In terms of these the 6 up and down quark masses 

4This is the form used for up quarks in ref. [8). 
5This is the Fritzsch [10) matrix for both up and down quarks. This form is used for 

the up quarks only in refs. [3, 4, 7, 11] 
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and the CKM matrix elements must be determined. In principle there are 
6 measurable quantities in the unitary CKM matrix but for small mixing 
angles this is reduced to 4 leaving a total of 10 experimentally measurable 
quantities. Mass matrices with texture are overconstrained leading to the 
prediction of relations between these quantities and it is our task to find 
which, if any, of these textures is viable. 

We are also able completely to analyse the case of five texture zeroes, 
although one of the up or down quark rotations is not completely determined. 
The analysis in this case proceeds exactly as before because in this case too 
one of the up or down mass matrices has three zeroes and is given by one of 
the set above. 

The analysis of the case of four texture zeroes using the set of matrices 
above is incomplete because four zeroes may also occur when both the up 
and down matrices have just two zeroes. Below we will discuss this case 
too, but we have not analysed its implications fully because of the residual 
uncertainty in determining both the up and down current quark basis. 

2.2 Parameterization of the mass matrices 

As we will see, in the analytic analysis of possible textures it is useful to 
parameterize the quark mass matrices in a way that keeps track of the order 
of magnitude of the various components of the mass matrices. This was done 
for the CKM matrix by Wolfenstein [12] 

( 

1- >.
2 

2 

VcKM = -A 
AA3(1- p + iry) 

(ll) 

where the small expansion parameter is A ~ .2 the (1,2) matrix element of 
the CKM matrix (approximately the Cabibbo angle) and A~ .9 ± .1. The 
assignment of the CP phase in eqn(ll) is arbitrary, the only constraint is the 
invariance of JCP. We now go one step further and parametrize the down 
quark masses a la Wolfenstein. We choose6 

6The parameterisation of quark masses a Ia Wolfenstein is not new, although here we 
take it to apply at the Unification scale rather than at low energies. The first references 
are given in (13]. 
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Y Diag _ 
d -

( 
m~d (12) 

where 

(13) 

are both of order md. This is a general parameterization of the down quark 
mass matrix which is useful because it exhibits the order of magnitude of the 
various elements. The analogous form for the up quarks is 

(14) 

where 

(15) 

2.3 Evolution of the CKM matrix and the mass eigen­
values. 

We have stressed that the experimentally observed quantities used in our 
analysis are the CKM matrix and the eigenvalues of the mass matrix and 
not the full mass matrices. For the analysis presented above we would like to 
know these quantities at the unification scale and thus we need to consider 
their radiative corrections. In an elegant paper, Olechowski and Pokorski [15] 
studied the renormalisation group evolution of the CKM matrix and the 
masses and we can use their results to get a rough idea of the size of the 
radiative corrections. 

Keeping the top and bottom Yukawa couplings only and neglecting thresh­
olds, the CKM matrix elements evolve as 

ell V· I 161!'2 t) 

dt 
d I V12 I 

dt 

-
3

2c(h~ + h~) 1 Vij I, ij = 13,31,23,32 

(16) 
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Here t = ln( Q / Qa) where the elements are evaluated at the scale Q, ht and 
hb are the Yukawa couplings and cis a constant determined by the couplings 
of the theory and is 2/3 in the MSSM. The irreducible phase of the CKM 
matrix also evolves via the equation 

161r2 d I Jcp I = -3c(h2 + h2) I l I dt t b CP (17) 

where we can choose I Jcp I= Im(l-'23 Vl2 v;_; v;;). If we substitute the Wolfen­
stein parameterisation, eq(ll) in eqs(16) and (17) we find I Jcp I= A2 .\

6(1-
-X2/2)(p + i17) and 

6 2dA 1 7r-
dt 

-
3
2
c(h; + hi)A 

d.\ 
0 "' dt "' 

dp 
0 

dt 
d1J 

0 
dt 

(18) 

The beauty of this result is that only the A parameter in V CKM evolves 
on going from low to high scales making the analysis including radiative 
corrections quite straightforward. The remaining radiative corrections are to 
the diagonal Yukawa couplings and have the form 

(19) 

and similarly for (he/ ht). 

167r2d(hd/hb) = -~(ch2 + bh2)(h /h) 
dt 2 t b ' d b 

(20) 

and similarly for (hs/hb)· Here b=2 for the MSSM. 

2.3.1 Quantitative estimates. 

As we discuss in the next section, if we impose the GUT relation mb = mr at 
the GUT sca.le together with reasonable boundary conditions on the SUSY 
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breaking parameters, we need a relatively large value of ht to get the required 
value of the running mass mb = 4.25±0.1 GeV evaluated at mb. We can take 
ht to be approximately constant over the range Mx down to Mz. It is then 
convenient to introduce the parameter x defined by x = (Mx/Mz)-hU< 16

1T
2

). 

We have 

A(Mx) 
= X A(Mz) 

(hd/hb)(Mx) 
X (hd/hb)(Mz) 

-

(hu/ht)(A1x) x3 (21) 
(hu/ht)(lvfz) -

With the value of h1 ~ 1.25 used in our favourite analysis of electroweak 
breaking ( cf. Section 4.2) we have x ~ 0. 7. With this value the evolution of 
V CKM up to J\1x requires A should be reduced by ~30%. Relative to hd and 
hs, hb should be increased by ~30% at Mx and relative to hu and he, ht is 
increased by a factor 2.5-3 at Mx. 

The beauty of this form is that the radiative corrections are entirely 
specified in terms of the single parameter X· Simply by varying X it is easy 
to adjust for other possible values of the top quark coupling. 

3 Texture analysis 

We turn now to the results of applying the analytic analysis of texture zeroes 
to the symmetric mass matrices. To illustrate the method of Section 2 we 
consider the case where we start with a specific texture structure with just 
two zeroes for the down quark mass matrix. This will illustrate the general 
method capable of dealing with the 4 zero case and also, by setting one of 
the elements zero, the .5 and 6 zero cases too. 

( 
0 a 0) 

Yd = a b c 
0 c d 

(22) 

Note that choosing c=O gives the structure 2 (eq(6)) and b=O gives the 
structure 5 ( eq(9) ). In this equation we have used five of the eight relative 
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quark phases to make the elements of Y d all real. For a ;S b, c ;S d the rotation 
Rd is approximately given by 

where Ct,3 = cos(01,3), St,3 = sin(lh,3) and 

ad 

and 

St ~ c2- bd 
c 

83 ~ d 

mb ~ d 
c2 

ms ...... -b+-...... 
d 

md ...... a2/ms ...... 

(23) 

(24) 

(25) 

Then applying the analogue of eq(25) for the up quark mass matrix we 
have 

Yu R~.Pd. vb[(M. P~.Y~iag.Pu. v CKM . P).Rd 

Pd.P).R~.Pd. VbKM. P~.Y~ia9 .Pu. VcKM. P).Rd.Pd.Pd (26) 

It is convenient to compute Yu in a different basis Y~ = P).Yu.Pd, and 
to absorb the effect of PJ,Rd.Pd by allowing the off diagonal elements to be 
complex with phases ¢ and 0. It is now straightforward to determine the 
implications of zeroes in the Y~ matrix. To illustrate the method we quote 
the result for Y~ setting s3 = 0 to keep the algebra manageable 

Y~(l, 1) 

Y~{l, 2) 
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Y~(1,3) 

Y~(2, 2) 

Y~(3,3) (27) 

where, following the discussion of Section 2.2, we have parameterised the up 
quark mass matrix in terms of me, mt and E is defined to be of order one, 
E = s 1 ei<P / .\, so that the expansion in .\ is well ordered. 

It is now straightforward to use the form of eq(27) to find the implications 
of one or more texture zeroes in the up quark mass matrix. From eq(27) we 
see that it is not possible for Y~(3, 3) or Y~(2, 3) to be zero. The other matrix 
elements rnay vanish for special values of the parameters. For example if the 
(1,3) matrix element vanishes then, to leading order in the Maclaurin series 
in .\ 

(28) 

It is possible for the (1,1) matrix element to vanish simultaneously with 
the (1,3) element. Inserting eq(28) in Y~(1, 1) and working to the next non­
vanishing order in the expansion in powers of .\ gives 

(29) 

At leading order this gives 

(30) 

which, from eqs(24) and (25) gives the Gatto- Sartori-Tonin-Oakes (GSTO) [16] 
relation 

.\ = Vus = Jmd/ms 

Solving eq(29) to the next order gives 

111 I- , _ (1nd nlu 2~md mu "')l 
I us - A - + + COS 'f' 2 

1ns me ms me 

12 

(31) 

(32) 



where the phase <P comes from the phase of t:. 
Eq(28) with eq(29) gives 

P2 + "'2 = ..\ I ~u I= ..\ -3 I mu I 
me me 

(33) 

Eqs(32) and (33) are the consequences of two texture zeroes in the (1,1) and 
(1,3) positions. From eq(32) we see that the expansion parameter, ..\,is of the 
correct order given by the GSTO relation but with a small correction which 
determines the phase, ¢, of E. From eq(33) we see that I p + iTJ I is predicted 
in terms of this expansion parameter to be small, of order v'>.. From eq(28) 
and the determination of ¢, p and TJ may separately be determined. This 
gives an example of a texture with 5 zeroes and it may readily be verified 
that no further zeroes can be obtained. We will return to a discussion of 
these results in Section 5. 

3.1 Results of the analytic analysis 

The discussion presented in the last section illustrates the method for study­
ing 5 and 6 texture zeroes. Including r =f 0 in eq(26) the most general case 
of 4 texture zeroes can be also be analysed. Using this method we have 
surveyed all structures with 6 or 5 texture zeroes. A complete discussion 
of these results will appear elsewhere but here we list just those solutions 
that are consistent with present measurements of the CKM matrix elements. 
Encouragingly there are solutions, consistent with the hoped for simplicity in 
the mass matrices, but the number of possible solutions is limited; no solu­
tions with 6 texture zeroes were found 7 and only five 5 texture zero solutions 
are consistent with the measured masses and mixings. These are given in 
Table 1. 

Note that the example presented above corresponds to Solution 4 with 
5 texture zeroes (pairs of off-diagonal zeroes are counted as one zero due to 

7In reference (5] a solution with 6 texture zeroes was presented corresponding to Solu­
tion 2 with E' = 0. We do not include this in our acceptable set of solutions as it leads to 
the prediction V cb = Jmc/m1 which is larger than present indications that m1 :S 180GeV 
from LEP data (14]. The non-zero entry in the (2,3) position of the Y d matrix of Solution 
2 reduces the value of V cb. However this is the nearest we get to a 6 zero solution, setting 
one of elements to zero in any of the other solutions leads to conflict with data. Note also 
that our solution no.3 conesponds to the Ansatz of ref([8]). 

13 



Solution Yu yd 

(~ 
c 

1) ( ~· 
F i) 1 B E 

0 E l 

(~ 
c 

~) ( ~· F i) 2 0 E 
B Et* 

0 0 

~) (~ 
F i) 3 B E 

0 Et 

( ~ 
c {) (~ 

F 

~) 4 B E 
B' 0 

0 0 

~') ( ~· F 

l) 5 B E 
Bt 0 

Table 1: Symmetric textures. Approximate forms for the parameters ex­
tracted from the various fits are given in Table 2 
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the symmetric structure assumed)'. After using the freedom to choose the 
9 independent quark phases there is one phase left which we take to be the 
phase of the complex parameter F. Thus we see this solution needs 7 real 
parameters and one phase to describe the mass matrices and hence the 6 
quark masses and 4 CKM parameters. This implies two relations consistent 
with our analysis showing p and "' were determined. As a bonus we found 
that the magnitude of the Cabibbo angle was determined by the approximate 
GSTO relation. 

The other solutions may be analysed in an equivalent way. Solutions 
1,3,4 and 5 have 8 parameters and hence yield two relations. Solution 2 
has an additional phase and hence only gives one relation. The structure 
of these relations may be algebraically complex (for example try solving the 
conditions that the (1,1) and (1,2) matrix elements of eq(27) simultaneously 
vanish - Solution 5). In order to check the predictions it is convenient to 
make a best fit to the masses and CKM matrix elements in terms of the 
non-zero elements. We will do this in the next section in a more complete 
analysis including the threshold effects in the renormalisation group analysis. 

4 N.umerical Analysis of Yukawa Matrices 

In the last section we discussed the analytic determination of the implications 
of texture zeroes using the analytic form of the radiative corrections to CKM 
matrix and the quark masses. In this section we present the results of a 
more complete and exact analysis where we study all possible 5 or 6 texture 
zero choices including radiative corrections using a numerical solution to 
the renormalisation group equations which correctly includes the effects of 
thresholds in the analysis, omitted in our approximate analytic treatment. 
In this we begin at the scale Mx with a given pair of Yukawa matrices Yu 
and Y d and evolve down to low energies to examine the resulting fermion 
masses and CKM matrix elements. Again we present the five solutions which 
exhibit different textures but are all consistent with the data. 
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4.1 Details of the Procedure 

The evolution of the Yu mass matrix, for example, is 

2dYu 3( t t) ( 1611" dt = 2 bYu Y 1, + cYdYd Yu + Eu- Au)Yu (34) 

where t = lnQ, Eu = Tt[3YuY! + 3aYdY~ + aYeY!), Au - A113g~ + 
AIL2g~ + A1.1Y?. Here Ye is the lepton mass matrix and the values coeffi­
cients a, b c, Aui depend on whether MSSM or SM is relevant. Analogous to 
eq(34) Lh re are equations for evolving the Y d,l matrices. Details may be 
found in ref [17) for example. In ref [18) we derived solutions for the SUSY 
spectrum by combining 1SSM and unification of the gauge couplings and 
demanding t hat the electroweak symmetry is spontaneously broken by ra­
diative corn~ ·tion . We ontinuc with th:is description her but ensuring that 
across each individual threshold of SUSY particles, Higgs and quarks etc., 
not only do the gauge couplings alt r but also the values of the coefficients 
in eq(34) and incle d individual lements in Yu,d and Ye. 

In thi. procedure the parameters at the unification scale determining 
the supersymm tric ma.'3s spectrum are the soft SUSY breaking parameters 
m 112 m 0 , J.Lo, A, B. The allowed ranges of these parameters may be con­
strained I y the need to obtain the correct scale of lectroweak breaking 
without fine Luning consist ,ncy with dark matter abundanc and unifica­
tion of ga.ug , coupling . In our estimat. s of threshold effects we will use 
valu s consistent with these constraints. 

We cl oose forms for Y u.,d a.t Mx, either one of the six three-zero types 
given by eqns (.S)-(10) or one of the 12 possible two-zero types derived from 
them. Provid dYe is ma.ll it plays a negligib1e role in Lhe volution equation 
34 and can be ignored in a.n analysis of the quark structure. However, a.s has 
been stress d in [5] the simpl Georgi-Jarl kog Ansatz is very su essful in 
de ct• ibing th lepLon mass mairi,' and so, for completenes , we analys t his 
structur too. 1otivat d by this Ansatz Lh form for Y e we take is govern d 
by the choi for Y d. taking th same zero texture but multiplying the (2 ,2) 
element by t.be factor 3 in order to give the relations for th eigenvalues a 
the scaie Q = Mx : h.,.= hv, h,.. = 3h3 , he = hd/38 

8 We have chosen to include a discussion of the lepton masses to illustrate that all the 
quark mass structures of interest here may be combined with reasonable lepton masses, 
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Given the initial conditions we now evolve down to low energies via the 
renormalisation group equations all quantities including the matrix elements 
of Y u,d and Ye and attempt to fit the values of me, miL, mn md, ms, mb, mu, me 
and the CKM matrix elements. We have included the analysis of lepton 
masses for completeness but we stress once more that our assumption of 
a Georgi-Jarlskog-like Ansatz in the lepton sector plays a negligible role in 
determining the quark structure. 

4.2 Results of analysis 

As discussed above, we actually include the lepton masses in generating our 
solutions. In particular we assume hb/ h-r = 1 at Q = Mx and to achieve 
a value for this ratio at low energy around 2.4 we find we need ht to be 
relatively large. Depending on our particular choice for the parameters of 
the MSSM at Q = Mx (rr1-1; 2 , m0 , etc.) the values of ht are in the range 
1-1.5 and this value enters into all the relevant evolution equations of the 
masses. Predictions for tan (3 depend in particular on the assumed values 
for A, B at Q = J\!Ix and this uncertainty (together with the uncertainty on 
mb/rn-r) translates into a range of values for mt of 145-185 GeV. The masses 
of the other fermions are independent of the precise value of mt however. 

Altogether we find five solutions for the Yukawa matrices at Q = Mx 
which a.re consistent with the low energy fermion masses and CKM matrix 
elements. The structure of the five forms are listed in table 1. Rather than 
list the numeric values we present, in table 2, approximations to the matrix 
elements in powers of,\(-::::- 0.22), the small parameter in eqn (11). In table 
3 we list the results of the five solutions for the fermion masses and CKM 
matrix elements. 

Note that in our five solutions there is a single candidate structure, for 
Y d, namely the form of eq(22), which for certain cases reduces to the form 
of eq(6). For Y11 the five solutions correspond to the forms eqs(6, 8, 9, 10, 
(6), (8), (9), (19) and one related to eq(22) by an interchange of axes. 

given the simple G-J Ansatz. However, the analysis of of quark mass matrices is essentially 
independent. of this Ansatz and does not change if we choose not to include lepton masses 
in the analysis. 
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Solution Yu yd 

( ~A' 
y''i,).,6 n (+ 2A4 

4~3) 1 A4 2A3 

0 4A3 

( ~· 
).6 n (+ 2A4 

2~3) 2 0 2A3 

A2 2A3 

( JA' 
0 ~A' ) ( 2~' 

2A4 

4~3) 3 A-~ 2A3 

0 4A3 

( ~A' 
y'2A6 

~2) (+ 2A4 n 4 .;3>.4 2A3 

A2 0 

u 0 A' ) (+ 2A4 n 5 y'2A4 ,\2 
2A3 

72 _x2 
1 0 

-/2 

Table 2: Approximate forms for the symmetric textures using the parame­
terisation of Section 2. 
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Solution 1 2 3 4 5 Experiment [19, 20J 

md .0075 .0072 .0082 .0071 .0071 .0055 - .0115 
1n8 0.159 0.170 0.164 0.169 0.169 0.105 - 0.230 

1n" 4.23 4.23 4.23 4.19 4.20 4.15 - 4.35 
m.u .0042 .0040 .0045 .0044 .0040 .0031 - .0064 
1Hc 1.27 1.28 1.27 1.30 1.20 1.22 - 1.32 

li~,d .9756 .9754 .9759 .9756 .9758 .9747 - .9759 

I ~~~.s I .2197 .2203 .2180 .2197 .2185 .218- .224 

li~,b I .0029 .0029 .0034 .0029 .0040 .003 - .008 

ll~dl .2195 .2201 .2178 .2195 .2184 .218 - .224 

li1~s I .9744 .9743 .9747 .9744 .9748 .9734 - .9752 

lilcbl .0483 .0471 .0500 .0490 .0448 .035 - .047 

li~dl .0100 .0096 .0110 .0098 .0078 .006 - .018 

I ~~~s I .0474 .0462 .0488 .0481 .0443 .035 - .047 
I ~~~b I .9988 .9989 .9987 .9988 .9990 .9987 - .9994 

¢cP 111° 65° 96° 117° 49° 25°- 160° 

Table :3: Resulting values for masses and CKM matrix elements for the five 
solutions of table 1. Masses in GeV. For the solutions considered in this 
analysis, mt "' 180 GeV but this value could easily be decreased to around 
150 GeV as a. result of the uncertainty in the value of tan ,8 and mb. 
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5 Discussion of the supersymmetric textures. 

5.1 Structure of the Yd matrix at Mx. 

All of the textures found in the last section have the form 

(35) 

where the parameters o, (3, and 1 are of 0(1) 

v'ffisffid 
0 

ffib 

f3 
ms 

ffib 
(36) 

The results of the last section determine the constants o, f3 and 1 : o = f3 = 
2, 1 = 2JV for N = 0, 1, 2. To make a connection with the analysis of Section 
3 we note that 

1n 8 
2 

ffib 

ms 
1 

ffid 

83 ~N.-\2 
2 

8t ,\ (37) 

where s 1 and 8 3 are the mixing angles of eq(23), the general structure of Rd 
given i11 this equation being relevant because the Y d matrix of Table 1 is 
always of the form of eq(22). 

5.2 Structure of the Yu matrix at Mx. 

Similarly the solutions 1,2,and 4 for the Yu matrix have the form 

(38) 
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where 

a:' y'm~mu 
-

m~ 

(3' 
m' 

(39) c -
m~ 

and we have chosen the (2,3) matrix element in eq(39) as is found in our fits. 
The results of the last section determine the constants a:', (3' and 1' 

With the phases chosen so that the Yu matrix is real the matrix needed 
to dia.gonalise it has the form 

S2 0 ) ( 1 
C2 0 . 0 
0 1 0 

0 
( 40) 

Using Rd given in eq(23) we may determine the CKM matrix in the basis 
in which Y d is diagonal, by 

( 41) 

where pu is the diagonal matrix of phases which relates the basis in which 
Y u is diagonal to the basis in which Y d is real. Just how many phases 
are required to determine pu depends on the number of texture zeroes. An 
overall phase is irrelevant so we may write 

Pu == ( e~¢ e~¢ ~ ) . ( ~ e~8 ~ ) 

0 0 1 0 0 ei!J 

Thus there are at most two phases ( <P and 0) giving for V CKM 

g1vmg 

I Vus I 
I Vcb I 
IVubl 
IVcbl 

s 1ei¢ + c1s2 

-StS2eir/> + C1C2C3C4 + S3S4e-i!J 
·o 

-c1(s3- s4e' ) 
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Solution mcfmt mu/mc Vcb Vub/Vcb 

1 .x• 2 ).4 4 _x3 v'2 ).2 
x3 X 

2 
_x4 ).4 .X2(1-2 .X) ).2 
x3 X 

3 
_x4 2 ).4 4 _x3 

2)2 ). x3 X 

4 {VJ-l}.X• ( v'3 + 2)).4 
_x2 _A_ ).2 

X x3 VJ-1 

(-./2-~) .x• 1 _x2 v'2 ).2 5 ~).4 ~ x3 ( 2) X 

Table 4: Results following from the five symmetric texture solutions. 

To illustrate the structure we derive for the V CKM matrix that results 
from one of the texture structures of Section 3 we consider solution 4. In this 
case there are two phases left after field redefinition. The up mixing angles 
are 8 3 = 0 and s2 = {!!!;;. and ( cf. eq ( 43)) the vanishing of 8 3 means that V me 

one of the phases is irrelevant. From eqs(24) and ( 44) we may then derive 
eq(32) as must be the case since Yuhas a zero in the (1,1) position. We also 
have from eq( 44) the result VV,.b = {iii;;, This result also follows from eq(33) 

cb V me 

again as is expected since Yu has a zero in the (1,3) position. 

5.2.1 Comparison with analytic analysis. 

Here we compare the full results of Section 4 with the expectation following 
from the analytic solution of the renormalisation group equations given in 
Section 2.3. 

For all five solutions we have, for the parameters evaluated at a scale Mz 

Vus ~ "Vcd ~ ). 

ms 2 ).3 
-

mb X 
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Solution mc/mt mu/mc Vcb Vub/Vcb 

1 0.0067 0.0046 0.060 0.068 
2 0.0067 0.0023 0.038 0.048 
3 0.0067 0.0046 0.060 0.078 
4 0.0049 0.0087 0.068 0.040 
5 0.0061 0.0030 0.048 0.068 

Table 5: Results following from the five symmetric texture solutions using 
-\=0.22. 

(45) 

where x = ( !11x / M z thU(l6
1r

2
) and we have taken ht approximately constant 

as in eq(21). The results for the remaining elements of VcKM are given in 
Table 4. 

These are the values evaluated at the scale Mz. For comparison we quote 
the experimental results [20) 

ms 
0.03-0.07 

ffib 
ffid 

0.04-0.067 
111 8 

Vcb - 0.025 - 0.050 
Vub 

0.05-0.13 -
Vcb 
1nc 

0.0072 (for mt = 180 GeV) ~ 

ffit 
mu 
11lc 

0.003 - 0.005 (46) 

This is to be compared with the texture results obtained using the best 
value for A = 0.22. All solutions give Vus=0.22 and !!!.r.I.=0.05 and !!!:.4.=0.03, m, mb 

in agreement with the experimental results. 
For the other quantities we have the results given in Table 5. 
It may be seen all quantities are reasonably close to the experimental 

values, given the simple analytic form, which ignores threshold effects, taken 
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for the evolution of the CKM matrix elements and Yukawa couplings. Thus 
we see the analytic approximation gives quite a reliable guide to the results 
of the complete numerical analysis for all quantities. 

6 Discussion and Conclusions 

We have determined all possible forms of symmetric quark mass matrices 
having a total of five or six texture zeroes which are consistent with the 
measured values of the quark masses and mixing angles. It is encouraging 
for the idea of unification that there are such solutions corresponding to 
simplicity at the unification scale. This simplicity extends to the lepton 
quark matrices for the lepton masses are consistent with the Georgi Jarlskog 
relations at the unification scale. 

With the present measurements of quark masses and mixing angles, we 
find several candidate solutions, corresponding to the discrete ambiguity in 
determining the current quark basis. In detail these solutions give different 
predictions relating the masses and mixing angles and so may be distin­
guished by improved measurements of the CKM matrix elements. Perhaps 
the most useful outcome of this analysis is the determination, cf. Table 3, of 
the level of accuracy needed for the discrimination between solutions. 

The obvious question raised by these textures is what underlying theory 
can lead to such structure? Although a detailed answer to this question lies 
beyond the scope of this paper we cannot resist drawing some conclusions 
from the general structure found in the various solutions. The parameter­
isation of the quark (and lepton) mass matrices that was suggested by the 
hierarchy of masses and mixing angles is (cf eqs(11),(12), and (14)) a pertur­
bative expansion in A. This structure strongly suggests to us an underlying 
symmetry broken by terms of O(A). In the limit the symmetry is exact only 
the third generation is massive and all mixing angles are zero. Symmetry 
breaking terms gradually fill in the mass matrices generating an hierarchy 
of mass scales and mixing angles. Of course the idea of such a symmetry 
structure is not new [22] and essentially all attempts to provide an explana­
tion of the quark and lepton masses rely on broken symmetry, although they 
may not emphasise its role. However the realisation of the importance of an 
underlying symmetry leads to a discussion of the general properties such a 
solution must have and indeed these properties seem to be quite promising 
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in explaining the form of the structures found. 
To illustrate this let us first discuss the two generation case. We con­

sider the simplest possible symmetry based on an U(l) symmetry or on a 
ZN discrete subgroup. (Such symmetries are common in Grand Unification 
or compactified string theories. Of course the structure that emerges may 
also be derived from larger symmetries.) With our assumption that the mass 
matrices are symmetric we must take the left- and the right- handed com­
ponents to transform in the same way under this symmetry. Moreover the 
SU(2) symmetry requires that the up and down quarks must have the same 
transformation properties. Thus, without any loss of generality we may take 
the transformation properties of the quarks to be 

C£,R, S£,R-+ C£,R, S£,R 

UL,R, dL,R -+ a UL,R, a dL,R 

where a= exp(i27r/N). 
The transformation properties of the elements of the quark mass matrix 

then have the form 

The form of the mass matrices depends on the transformation properties 
of the Higgs, H1 ,2 , which couple to the up and down quarks respectively 
and generate their masses once the electroweak symmetry is broken. If they 
are singlets under the Z N group then, from eq ( 4 7), we see that only the c 
and s quarks acquire mass. If, however, the ZN symmetry is broken by the 
vacuum expectation value, x, of a field 8 transforming as 8 -+ &8 then we 
may expect corrections to the mass matrix to occur due to higher dimension 
terms coupling the quarks to the combination of fields H 1 ,28n for some integer 
n, giving a mass matrix of the form 

y = ( i: ~, ) ( 48) 

where M 1 ,2 are the masses associated with the scale of new physics generating 
the higher dimensional terms. 

Another way that such an hierarchy may arise is through the mixing of 
H 1,2 with other Higgs states Hf:; transforming as a and &2

• Then the light 
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H' '11 b , HLight H x Ha x2 Hb h , Iggs state WI e a mixture I 2 ~ 1 2 + -M 1 2 + M 2 1 2 , w ere x IS 
' ' 2 ' 1 ' 

now the vev of a field 0 transforming as 0 --+ aS and M 1,2 are the masses 
of intermediate states mixing H1 ,2 with the other Higgs states. This again 
gives the structure of eq(48). 

It is now easy to see how all of the structures of Table 2 may arise. 
Assuming, for simplicity, a single scale of new physics, M1,2 = M, then 

(49) 

If there should be no additional field H~ 2 transforming as a2 , then 
' 

(50) 

If instead there is no additional field Hf 2 transforming as a then 
' 

(51) 

The remaining structure encountered in Table 2 has the form 

(52) 

and it too may also be generated. For example if the discrete symmetry is 
Z3 then a 2 = a in eq( 4 7). Then the structure of eq(52) results if the vev of 
8 develops along a "D-fiat" direction < 8 >=< E> >= x, where E> is a field 
in the conjugate representation to 8 9

• Another possibility discussed below 
is that the form of eq(52) comes from eq(48) because the masses Mi are not 
degenerate. 

Thus we may easily generate any of the substructures found in Table 
2. Indeed such structures are the natural expectations in any underlying 
theory, such as a Grand Unified theory or a compactified string theory, which 
possesses additional symmetries of the type discussed. 

9The spontaneous breaking of symmetries at high scales in supersymmetric theories 
must proceed along such flat directions. 
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It is straightforward to extend this discussion to the three generation case. 
Rather than present a general analysis let us just illustrate the possibilities by 
presenting a symmetry structure which leads to one of the solutions found 
in Table 2. We assume that the underlying theory yields a three family 
spectrum of quarks with transformation properties 

tL,R, h,R ---t tL,R, bL,R 

C£,R, SL,R ---t acL,R, aSL,R 

d -4 -4 d 
UL,R, L,R ---t a UL,R, a L,R 

We further assume that, in addition to the light ZN singlet Higgs field, Ht, 
needed for electroweak symmetry breaking, there are massive Higgs fields 
H~·b transforming under ZN as a and a 3 with which the singlet field may 
mix. Assuming only a single scale of new physics the resulting light Higgs 
has the form Hfight ~ Hl + e Hfl M + 03 HU M 3 giving for the up quark mass 
matrix the form (with >. 2 = xj M) 

(53) 

which is of the form of the up quark mass matrix of case 2 in Table 2. (In 
deriving this result we have assumed that the vev of 0 develops along a 
"D-flat" direction< 8 >=< 0 >= x.) 

\Nhat this example shows is how the pattern of fermion masses and mix­
ing angles, as encoded in the mass matrices, may simply be related to the 
multiplet structure of the underlying theory. As we have seen the apparently 
complicated pattern may result from a relatively simple multiplet structure. 
To complete this example we need to explain why the down quarks have a 
different mass matrix. Again this proves to be relatively simple to explain on 
the basis of the multiplet structure. Any difference between the up and down 
quark mass matrices comes from different mixings of the Higgs, H 1 ,2 , giving 
masses to the up and down quarks respectively. For example we suppose that 
in the H2 sector there is an additional massive Higgs field H~ transforming 
as a 2 . \Ve further assume that the massive Higgs fields transforming as &3 

and a 2 receive theh· mass only at order x via the 8 vev10, so that the mixing 

10This will happen naturally if the fields with which they couple to obtain their mass 
have the appropriate transformation properties under the ZN group. 
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of these fields to the light singlet H2 will be enhanced by a factor Mfx. The 
resulting light Higgs field is Hfight ~ H2 + UHUM + fPHVxM + ()2 H~fxM2 

giving a down quark mass matrix of the form 

(54) 

Up to corrections of 0(1), which may be expected in generating the higher 
dimension terms, this is of the form of the down quark mass matrix in Table 
2. Thus we have constructed an example which, by assuming a definite 
multiplet and symmetry structure, generates the full texture structure of 
case 2 of Table 2 in terms of a single expansion parameter, x. 

Of course the next step is to identify the underlying theory which leads 
to the appropriate multiplet and symmetry structure. It is known in com­
pactified string theories that definite family structures for quarks and leptons 
may emerge and that they possess definite transformation properties under 
discrete symmetries of the type discussed above. Indeed specific models have 
been analyzed which do lead to structures in the fermion mass matrices of 
the type just discussed [21]. Similarly additional broken gauge symmetries 
may lead to the type of mass structure discussed above [23]. 

In conclusion, the fact that simple textures for the quark and lepton 
masses can describe in detail the quark and lepton masses and mixings lends 
further circumstantial evidence in favour of an underlying unified theory. 
It is to be hoped that improvements in experimental measurements of the 
CKM matrix elements will further refine this evidence. To us the resultant 
structure strongly suggests a (broken) symmetry explanation of the structure 
of the type which naturally arises in GUTs or compactified string unification 
and encourages us in the search for a definite theory. 
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