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Abstract 

Spin Fluctuations In an Ordered Heisenberg 

Ferromagnet with Dipolar Interactions 

Stephen W. Lovesey 

Rutherford Appleton Laboratory, 

Oxfordshire OXll OQX, U.K. 

Results from a theoretical analysis of the Heisenberg model of a ferromagnet, 

including dipolar interactions, are successfully used to interpret recent measurements 

performed on EuS, just below the critical temperature, that probe the dynamics of long 

wavelength spin fluctuations parallel (longitudinal) and perpendicular (transverse) to the 

spontaneous magnetization. Attention is given in the paper to longitudinal fluctuations 

following this and other related experimental investigations on the topic. With a view to 

future experiments, properties of the spin dynamics in the critical region are discussed 

within the framework of the coupled mode approximation. 
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While realistic models of magnetic materials include dipolar forces, which are 

responsible among other things for demagnetization effects, many experiments that probe 

magnetic properties on an atomic scale are relatively insensitive to them. In the case of 

experiments designed to investigate the dynamics of spin fluctuations, dipolar forces are 

only influentual at very large wavelengths and small frequencies. To put this comment on a 

more quantitative basis, let us use a standard measure of the strength of the dipolar forces in 

a magnetic material, the dipolar wave vector qd. If c is the exchange stiffness, determined 

by the strength and range of the Heisenberg exchange interactions, qd is defined by, 

(1) 

in which v 0 is the unit cell volume and g is the gyromagnetic factor; values of qd for some 

materials of current interest are provided in Table 1. It is found that dipolar forces influence 

the dynamics of spin fluctuations with a wave vector k 5 qd, while for k >> qd the 

Heisenberg exchange, which generates Bloch spin waves, is the dominant contribution to 

the Hamiltonian energy. Clearly, dipolar forces will be important in determining the nature 

of critical phenomena when the inverse correlation length K (K =0 at the critical temperature 

TJ is comparable to qd. 

Theoretical estimates of long wavelength spin wave frequencies (magnetostatic 

modes) have been provided by Holstein and Primakoff (1940) and are well understood. 

Perhaps the first ~stimate of the influence of dipolar forces on relaxation processes in the 

critical region was given by Huber (1971) who predicted their extreme importance in 

determining properties of EuO. He also exposed the special features of the dipolar induced 

relaxation process that stem from breaking conservation of the total spin (magnetization). 

Extensive work based on the coupled mode approximation now provides a fairly complete 

description which is consistent with available experimental findings of the wave vector and 

frequency, dependence of spin fluctuations (Frey and Schwabl 1988, Frey, Schwabl and 

Thoma 1989). 
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Another aspect of the spin dynamics of a ferromagnet which has recently received 

attention is the nature of the spectrum of spin fluctuations parallel to the magnetization, 

often called longitudinal fluctuations. Measurements made on nickel, in which dipolar 

interactions are relatively weak (c. f. Table 1 ), show that the longitudinal spectrum is 

quasielastic, and very similar to fluctuations observed in the paramagnetic phase (Boni et al. 

1991a). The investigators have drawn attention to the unexpectedly large width of the 

quasielastic spectrum, which is part of the reason why in earlier measurements the 

longitudinal spectrum was not successfully distinguished from the relatively intense 

spectrum of transverse fluctuations. However, at present there is no strong experimental 

evidence for the expected divergence of the integrated intensity (susceptibility) on 

approaching a magnetic Bragg reflection; see, for example, equ (6), and Cuccoli et al. 

(1993). The divergence in question is a manifestation of Goldstone bosons, and its 

prediction dates back to Holstein and Primakoff (1940). 

Recent theoretical and experimental work on the influence of dipolar forces on 

dynamic critical phenomena has focused on properties in the ordered magnetic phase 

(T<TJ. Toperverg and Yashenkin (1992) have used a perturbative treatment of dipolar 

forces to calculate transverse and longitudinal relaxation rates required for the interpretation 

of ferromagnetic resonance signals observed in the temperature range up to the critical 

region. Here, we report findings for the wave vector and frequency dependent response 

functions observed for EuS in preparatory experiments by Boni (1993). One reason for 

investigating this material is that the relatively large qd leads one to expect ready 

observation of dipolar induced effects. The calculation employs the coupled mode 

approximation, which should be reliable at high temperatures and in the critical region. 

There is complete accord between the experimental and theoretical findings at the level 

permitted by the preliminary nature of the measurements. 

We shall choose to report and discuss our findings that directly relate to the 

experimental observations for EuS, then outline the main features of the calculations which 

lead to the results, and conclude with predictions for the extreme critical region. For the 
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conditions of the experiment (T = 0.87Tc , k = 0.19A-1) it is sufficient to evaluate the 

dynamic self-energy (memory function) at the first level of approximation while in the 

critical region it is essential to make a self-consistent, or nonperturbative, calculation. The 

contribution to the self-energy we first consider is purely dipolar in origin, and naively of 

order f...2 where the energy parameter 'A.= cq2d (= 0.025 meV for EuS). When k 5 qd the 

pure exchange and exchange-dipolar induced contributions to damping are relatively small 

corrections, and they always vanish in the limit k-+ 0. 

By utilizing polarization analysis Boni (1993) has separated various contributions to 

the neutron scattering cross section. In view of the dipolar induced spatial anisotropy the 

direction of k relative to the magnetization is an important variable. Spin variables with 

components parallel and perpendicular to the spontaneous magnetization are referred to as 

longitudinal and transverse variables, respectively. The scattering geometry did not give 

access to events in which k has a component parallel to the magnetization. The structure of 

the cross-section observed in the experiments is reviewed by Lovesey and Trohidou (1991), 

together with a description of the transverse spectrum predicted by linear spin wave theory. 

When k is perpendicular to the magnetization the full dipolar anisotropy contributes 

a gap in the spin wave dispersion at the Brillouin zone centre. The appropriate expression is 

found to be (k .1 z), 

(2) 

where his the Zeeman energy, modified by sample shape dependent demagnetizing effects, 

<S> is the thermally averaged spin moment (in the z- direction) and the spin wave stiffness 

D = 2c <S>. Boni (1993) observed well defined spin wave excitations in the transverse 

spectrum, consistent with our theory, and report a value f...<S> = 0.041 meV. This value, 

taken together with a knowledge of the exchange interactions, yields (forT= 0.87 TJ the 

values D = 1.20 meV A2 and (<S>/S) = 0.47, where S = 7/2. These and various other 

quantities required in the interpretation of the experiment are gathered in Table 1. 
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It is well established that the approximation for the temperature dependence of the 

spin wave stiffness given in the previous paragraph, in which D is proportional to the 

magnetization, does not give good agreement with experimental data. However, data are in 

tolerable agreement with a theory, based on the Dyson Hamiltonian, that predicts a 

renormalization of D with temperature coming from the change with temperature of the 

(spin wave) energy (Cuccoli et al. 1993). Hence, we are not surprized that the value forD 

given in Table 1, and used hi subsequent numerical estimates, differs from the value 

deduced from preliminary experimental data (Boni et al., private communication). The 

discrepancy between the experimental finding and D = 2c <S> = 1.20 meV A2 is completely 

consistent with results obtained by Cuccoli et al. (1993) from the more sophisticated theory. 

But, in the present context of a theory for damping internal consistency is respected with 

use of the quoted value for D. It is also worth remarking that, the value we have deduced 

for the magnetization is in accord with previous experimental work (Passell et al. 1976) and 

the theoretical investigation by Cuccoli et al. (1993). 

The corresponding expression for the damping of the transverse spin wave is 

found to be (k 1. z), 

f =(1/15n)(A.Tvo)2( Ek ). 
.L 4D c<S>w 

(3) 

We find (r .l/eJ = 5% at w = ek. The reported experimental observation that the spin wave 

line width in EuS is resolution limited is consistent with this estimate, which is the only 

source of damping in the limit k - 0. 

Turning next to the longitudinal fluctuations, we find that there is no collective mode 

and the damping (k 1. z), 

(4) 
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Evaulated for w at the gap energy we find (f /A<S>) = 2.0. These theoretical findings are in 

accord with the observations that, the longitudinal fluctuations are quasielastic, and their 

linewidth corresponds roughly to the energy of the transverse spin wave. Note that (3) and 

(4) are lower bounds in the sense that they are correct in the limit k-0. A small k, used in 

the experiments, will engage small damping contributions generated by pure exchange, and 

exchange - dipolar processes, and we have more to say on this issue later in the paper. 

Non-linear spin wave events and dipolar forces have been shown to generate two 

other striking features of the neutron scattering cross-section. First, the spectrum of 

transverse fluctuations contains a quasi-elastic component whose intensity depends on the 

orientation of the wave vector relative to the reciprocal lattice vector that defines the 

selected ferromagnetic Bragg peak. Secondly, the intensity of the longitudinal quasi-elastic 

fluctuations does not decrease smoothly with increasing wave vector, as predicted by linear 

spin wave theory (Trohidou and Lovesey 1993), but displays some structure for k in the 

neighbourhood of qd. 

It is interesting to observe that (3) and ( 4) are consistent with a dynamic scaling 

exponent z = 3 - P/v- 5/2 (p = ~v (1 + 11).:: ~ v). To this end, use dimensionless variables 

( oo/A<S>) and (K/qd)· On the other hand, it is known that when the dipolar interaction 

dominates the Heisenberg exchange the marginal dimension = 3, and critical fluctuations are 

very weak (Als - Nielsen and Birgeneau 1977, Zinn - Justin 1990). In this case, critical 

exponents agree with the Landau, or molecular field, theory of a continuous phase transition 

applied to a non-conserved order parameter. Evidently the estimates (3) and (4) are 

appropriate for the isotropic phase, and the dipolar (anisotropic) phase is reached in the 

limit T- Tc To shed more light on this question, and the range of validity of the estimates 

(3) and ( 4), we examine the first correction to the Landau value of the disconinuity in the 

specific heat. For us to be correct in the use of the thermodynamic (perturbation) approach 
' 

this must be a small correction, which is indeed the case when, 
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where f = (qd/K), the reduced temperature "t = (Tc- T)!Tc and the Ginzburg parameter, 

in which ll.C is the discontinuity in the specific heat according to the Landau (molecular 

field) theory, and r1 is a measure of the range of the exchange interactions. For EuS (EuO) 

we find G = 0.024 (0.005) and the condition is well satisfied. As T -+ T c ,f -+ oo and 

eventually the Ginzburg condition is not satisfied (in making this analysis K2 oc "t in keeping 

with the Landau theory). In the limit T -+ Tc, the full non-linear coupled-mode theory is 

essential to obtain a cross-over from the isotropic to dipolar (anisotropic) behaviour. 

By way of contrast to the result ( 4) for the damping of longitudinal fluctuations in 

the extreme limit k -+ 0, we give the results for the damping generated by the pure 

exchange mechanism and the first corrections due to dipolar forces. The result valid for 

small k and leading-order in h is, 

(5) 

where 8k is the angle between k and the direction of the spontaneous magnetization 

(z-axis), and the appropriate form of the longitudinal susceptibility has been obtained by 

Lovesey and Trohidou (1991), namely, 

x;(k)- (Tv 0 /16D2k). (6) 

It is interesting to find that dipolar forces, treated as a weak perturbation, on the one hand 

decrease the longitudinal susceptibility by approximately a factor of two yet in f(k) the 

effect of this change is partially negated by the explicit correction of order A.. The 

expression (6) for the susceptibility has been used in the calculations that lead to (3) and (4). 
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The results presented and discussed in the foregoing paragraphs have been obtained 

from a coupled mode analysis, generated by the generalized Langevin equation, in which 

five variables are treated on an equal footing. Four variables relate to transverse 

fluctuations (Sk, S~k) and the fifth is Sk; a feature of the dipolar interactions is that 

off-diagonal correlations are finite, e.g. < Sk. S~ k > ~ 0. The equations of motion for the 

construction of the self-energies are, 

iSk = hSk + (2 IN) }:{j(p)- j(k+ p)} S~stP + (1- IN) }:{q+ (q_ S~ +q+ s:q)S~-k}, 
p q 

(7) 

and 

Sk =(i IN) }:{j(k+ p)- j(p)}s; Sk+p 
p 

+(ii-12N)}:{q+ q_(S~q Sk"-q-S~S~-k)+q~ S~ Sk-q -q=S~q S~-k}.(8) 
q 

In these equations, J( q) is the spatial Fourier transform of the Heisenberg exchange 

interaction and q:l: = <lx ± iqy where q is a unit vector (the spontaneous magnetization 

defines the z-axis). A review of the use of the Langevin equation formalism to construct 

coupled mode equations is given by Lovesey (1986), together with an introduction to 

dynamic critical phenomena, while Frey and Schwabl (1988) use the formalism to discuss 

the ordered isotropic ( qd = 0) Heisenberg magnet. 

The longitudinal relaxation function F(k, t) satisfies, 

t 

F(k, t) =-I dt' F(k, t- t') K(k, t') (9) 
0 

and in t,he limit k --+ 0, where dipolar terms in the equations of motion dominate, the 

coupled mode approximation for the memory function K(k,t) is 
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( 
4A. 

2T) 2 2 2 K(k,t)- .}:(q+q_) X.L (q) Re.F.L (q,t). 
x(k)N q 

(10) 

Here, X.L(q) and F.L(q,t) are the transverse susceptibility and relaxation function, 

respectively. The result (4) is obtained from (10) evaluated with a linearized approximation 

for F.L in which F.L(k,t) = exp (-itE.J, and X.L(k) = <S>Iek. We will not write out the pure 

exchange and dipolar-exchange contributions to K(k,t) used to obtain (5). In the latter both 

contributions are required to obtain the term proportional to A.. 

The corresponding .equation for F .L(k,t) contains an oscillatory component at the 

natural frequency Ek, while the memory function is, 

K .L (k, t) = 2A. 2T (A.sin 28k + 2ck2 )-& .}:( q+q_)2x( q)x.L (q)F( q, t)Re. F.L ( q, t). (11) 
q 

Equation (11) evaluated with linearized relaxation functions leads directly to the estimate 

· (3) for the damping of the transverse collective modes. 

By way of orientation to a discussion of relaxation in the extreme critical region we 

give the result for a simple isotropic ferromagnet (h = qd = 0). In the limit (K/k) -+ 0 the 

self consistent solution of the coupled mode equations is, 

r(k) = r .L (k)-e(2 1 3i12 k 512
; {r .L 1 r} -1-

40 
(K 1 k)2

, 
11 

where the nonuniversal energy constant, 

The critical exponent z = 512 has been verified in a number of experiments; see Boni et al. 

(1991a) and references therein. 
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The memory functions (10) and (11) for relaxation via purely dipolar processes have 

been analysed in the extreme critical region T-Tc using the expressions, 

and 

x( q) = {2c( q2 + q~ cos28q)r1
. 

As expected, we find there are no anomalous contributions to the memory functions 

generated by critical fluctuations. In the anisotropic, dipolar region accessed when k << qd 

(T - T J the longitudinal and transverse damping functions are independent of the 

magnitude of the wave vector k, are proportional to qdS/2, and r(r l.) varies with 

k as cos28k(sin28J. The precise magnitude of these functions are determined by the self 

consistent solutions of (10) and (11). These results, together with a full account of all 

contributions for T ~ T c to the lineshapes and damping functions, will be reported in a 

separate paper. Attention has been given to the interpretation of neutron scattering and 

muon relaxation experiments. The latter experiments have the potential to provide 

information not readily obtained from neutron scattering (Lovesey et al. 1992, 

Yaouanc et alJ993). 

Neutron scattering experiments that employ polarization analysis usually have the 

sample in a static magnetic field. Since a field suppresses critical fluctuations it is natural to 

question whether a field influences the experimental results we have mentioned. To this 

end, we have calculated the damping functions for a simple ferromagnet ( qd = 0) subject to 

a magnetic field. The relevant wave vector q0 = (h/D)'h increases as T - Tc because D is 

proportional to the magnetization which ultimately has a field limited value. ·For the 

extreme case ( q0 /K)>> 1, the self consistent solutions of the coupled mode equations are, 

(12) 

and writing x = ( K /q0 ) < 1 an expansion in x reveals at leading order, 
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{r l. (k) I f(k)} = 1 + (2x )2
• 

For Ni at T = 0.99 Tc and H = l.lkG one has (q0 /K) = 0.38, while for EuS with 

H = 1.64 kG at the same relative temperature ( q0 /K) = 8.2. The large difference in these 

values of (q0 /K) mainly reflects the fact that the stiffness parameter cis much larger for Ni 

than EuS, c.f. respective critical temperatures. Hence, a modest magnetic field is probably 

not influential in Ni, whereas it is a significant factor in determining the critical dynamics of 

EuS. 
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Steiner, and the ongoing interest of Prof. E. B. Karlsson, Dr. R. Wappling and 
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Material 

Ni 

EuO 

EuS 

qd cA-l) 

0.01 

0.15 

0.26 

1.31 

Table 1 

Material Parameters 

Experiment on EuS, Boni et al. (1992) 

c = 0.37 meV A2 

T = 0.87Tc = 1.24 meV 

k = o.19 A-1 

vo = 52.7 A3 

D = 1.20meV A2 

(<S>/S) = 0.47 
0 

rl = 1.40A 

~c = 2.42 (1) 

H = 1.64 kG 

(1) Stanley (1971) 
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