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Abstract. A rnet.hod to obtain an approximate relation between the uninte­
,g.ra.ted gluon density and the F2 scaling violations at low-xis presented. The 
resulting formula can be used to determine the gluon density from the first 
IIERA data., taken at low-x. 

It was shown in ref. [1] that. the gluon density a.t low-x can be obtained in a. convenient 
wary by analysing the longitudinal structure function. In this paper a similar method is 
a:pplied using the Q2 derivative of F2 to obtain the gluon density t.o good accuracy. The 
basic idea rests on the fad that the scaling violation of F2 arises, at low-x , from the gluon 
density alone and does not depend on the quark densities. This is illustrated in fig. 1 
snowing the scaling violation of the sea. qua.rk distribution as a. function of x. At low-x, 
ad ually already at x = J0- 2 , the quarks can be neglected in the Alla.relli-Pa.risi equa.t.ion, 
i.e. (for n1 = 1) 

dF2 Sa, lnl-:r. x 
- --· -

2 
~ - G(--)Pqn(z)dz 

dlo,qQ 97r o 1 - z 
(1) 

where in lowest order 
(2) 

When applying ( 1) to experimental data the problem arises of det.rrrnining the gluon 
distribution G(x) (= xg(x) where g is the gluon density) over the complete x-ra.nge. 
At low-x this problem can be avoided since the integral in (1) ca.n then be performed 
approximately. For this purpose the gluon distribution is expanded in the following wa.y 

x G"(z = 1/2) 
G( 

1 
_ z) ~ G(z:::: 1/2) + (z- 1/2)G'(z = 1/2) + (z- 1/2Y 

2 
(3) 

This expression is then inserted in (1) and approximating the upper integration limit to 1 
the second term will vanish in view of the symmetry of Pqg(z) around z = 1/2. The third 
term is expected to give a small contribution compared to the first a.nd is neglected. As 

a. result one therefore obtains 

dF2 Sa lo 1 

I 2 (x)~-'G(2x) Pqg(z)dz 
d ogQ 97r o 

(4) 
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This result is valid to all orders of the coupling constant. It shows tha.l the effective value 
of the gluon momentum fraction during the integration of the Alta.relll-Parisi equation is 
approximately 2x for low-x. 
For a numerical study ( 1) is evaluated using the leading order expression (2) for Pqg(z) 
to give: 

dF2 5a, 2 
dl Q2 (x)::::: --G(2x) 

og 911' 3 
(5) 

In Jig. 2 t.he approximate form (5) is compared with the exact formula (J) for three dif­
ferent gluon distributions, MRS Do and D- [2) and a distribution suggested by ref. [3] 
for the pomeron. Below x = 10-3 the approximation is good to the level of 10%. The 
approximation is, however, slightly dependent on the shape of the glnon distribution. The 
reason for thls is that the expansion is less a.(".curate at. the endpoint.s of the integration. 
If the distribution is large at these points the approximation is worse. In fig . 2a. and 2c 
the distributions a.re rather large a.t low and high x respectively and the approximation 
is therefore worse cornpa.red to the result in fig. 2b. 
The numerical study can be extended by assuming a gluon distribution of tl1e general 
form w 6(l- w)a where w is the gluon momentum fraction. Using (2) one obtains 

J~-:r: GC~JPqg(z)dz ~ (2x) 6(l- 2x)a~ + 3
1
0
(2x)0[48(8 + 1)(1- 2x)"- 86ax(l- 2x)a- 1 

- 8(6 + 2)ax(1- 2x)a- 1 + 16x 2a(a- 1)(1- 2x)a-2
) (6) 

Since x is small ax can be neglected and 1 - 2x a.pproxima.tcd by t so that effectively 
a.= 0 and the gluon distribution is proportional to w6

, i.e. 

1
1-x X 2 2 

G(--)Pq9 (z)dz ~ (2x) 8
- + -. (2x) 68(!5 + t) 

0 l - z 3 15 
(7) 

The factor [1 + l5(l5 + 1)/5), i.e. the cha.nge to the leading order result due to the second 
term of the expansion, is shown as a. dashed line in fig. 3. One may c.ornpare it t.o t.he ratio 
of (I) to the approximation (5) which is shown as a solid line. The agreement between 
the two lines shows that the further terms of the expansion can reliably be neglected. The 

smallness of the second term verifies (5). 
It is interesting to note tha.t distributions with 8"' -0.5 give less a.c.curnt.e result than for 

fl < -0.5 although the la.t.ter distributions a.re more sing11lar tha.n the former. Due to the 
symmetry of Pq9 (z) the approximation (4) is forced to be exact at 6 = - l (if the upper 
int.egra.t.ionlimit is set to J) since 

£1 l- z 1 11 --Pq9 (z)dz = - Pq9 (z)dz 
. o x 2x o 

(8) 

r.hanging the otherwise decreasing function with der.reasing 8 in fig . 3 to increase. This 
shows that the essential ingredient for this method to work is t.he symmetry property of 
Pqg· 
As long as -1.2 < 8 < 0.2 the approximation is better than 10%. 'l'his range of 8 .com-

prises the predictions from the DGLAP, the Lipa.tov and the GLR equations. Addw~ a . 

5% uncertainty in the experimental measurement of t.be Q2 -dependcnce of F2, 10% or 
a., and ] 0% for negleding typical low-x effects calculated beyond the DGLAP a.ppr~X­
imation such as gluon recombination into quarks and relaxation of the st.rong or?enng 
of the transverse momenta [4), one obtains a total accuracy of around 18%, sum~~g t 
sources in quadra.ture. This is accurate enough to distinguish beLvveen several eh e[eO 
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a.rametrisations now available on the market (5]. 
~;o:~icular interest would be to distinguish between a gluon distribution behaving a.s 

:p t nt at low-x a.s is conventionally assumed and can be explained through gluon 
a. cons a. ' 

bination effects described by the GLR-MQ equation (6], a.nd one proportional to 
-~i:Ji which is approxi~ately pre~ic~ed by th: Lipatov equation ~7]. _MRS have included 
ooth alternatives in their fit of existing expenmenta.I data resultmg m equally good de­
e~C;Iiptions. How~ver, at Io_w-x, outside the range of existing da.ta, the two functions differ 
dramatically as IS shown m fig. 4. 
The first HER.A data., occurring mainly at low-x, could be used for this purpose with the 
method described here. dF2/dlogQ2 has been estimated (8] to be measured with a high 
eneugh precision a.t the design luminosity down to x = 5 · 10-4

• 

Anether interesting application is in the measurement of the pomeron structure function 
a.L IfERA as described in ref. [9). It was shown there that assuming the pomeron to be 
purely gluonic, gluon recombination is expected to occur at a. significant level provided 
Lhe gluon density is not too small a.t low-x. This could quickly be investigated using eq. 

,(4). Having knowledge of the pomeron gluon density at the level of 20- 40% at low-x 
rpight be sufficient. to establish the occurrence of gluon recombination. 
Jn summary, a. convenient method to determine the gluon distribution from the Q2 de­
gendence of F2 ha.s been introduced. The essential result is ( 4) w hi eh is valid to a.ll orders 
.of a, since only the symmetry of Pq9 has been used in its derivation. This is favourable 
eompa.red to ref. [1] where the approximation of FL wa.s given only in lowest order. 
The argument of G, 2x , as obtained in ( 4) is also a useful result in another respect. Having 
knowledge of the effective gluon momentum fraction simplifies the usage of the gluon to 
quark transition formula in the transverse momentum scheme (see ref. (4] a.nd references 
therein for a review and a. numerical analysis of the subject). The result obtained here is 
a. hint on what has to be used for the argument in this case. It depends of course on the 
,actual gluon distribution, but the best value of the argument should be close to 2x . 
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Figure 1: The scaling violations of the sea quark distribution using KMRS B_ (a) and 
Bo {b) parton parametrisations. The full line corresponds to the corp.plete Alt.irelli-Parisi 
equation whereas the dashed line was obtained neglecting the quark distributions . 

0 

a.) ~ 
0 
1.. 

::-... 
::-... 

::.--.... 
=>-

10 - 4 10 -.3 

X 

0 

b) .... 
0 
1.. 

G(x) =Do 

'I 

10 - 4 

G(x) = .(0.18 + S.Sx)(i- x) 

' 1 p -4-

1.2 ~ 
1-

1.1 ~ 
1-
1--

0.9 I-

0 .8 t-

1.2 -
1.1 f-

0.9 

0.8 

I I 

10 - 4 
I 

10 -J 

X 

10 - 3 

X 

Figure 2: fllustration of the accuracy of the approxima.tion (5). The F2 scaling violations 
is shown on the left side with a dashed line for the approximation {5} and a solid line 
for the exact formula {1}. Th,~ right-ha.nd plots show the ratio of the corresponding two 
lines. The gluon distributions used were MRS D _ (a), MRS Do (b) {2} and the calculated 
pomeron gluon distribution {3} {c). 
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Figure 3: The dashed line shows the ratio of (7) to its first term on the RHS. The solid'li'ne 
is the ratio of (1) to (4) at x :::; 5 · 10-4

• The gluon distribution was taken as proportional 
to x5 • 

Figure 4: The gluon distributions obtained by ref. [2}. The dashed curve is ~e Do 
the solid curve the D _ distribution. The today existing data cannot distingu1.$" ~~ 
these distributions. 


