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roximate determination of the gluon density at
low-x from the F, scaling violations
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Abstract. A method to obtain an approximate relation between the uninte-
grated gluon density and the F; scaling violations at low-x is presented. The
resulting formula can be used to determine the gluon density {rom the first
HERA data, taken at low-x.

It was shown in ref. [1] that the gluon density at low-x can be obtained in a convenient
way by analysing the longitudinal structure function. In this papert a similar method is
applied using the @? derivative of I, to obtain the gluon density to good accuracy. The
basic idea rests on the facl that the scaling violation of Iy arises, at Jow-x, from the gluon
density alone and does not depend on the quark densitics. This is illustrated in fig. 1
showing the scaling violation of the sea quark distribution as a function of z. At low-x,
- actually already at z = 1072, the quarks can be neglected in the Aliarelli-Parisi equation,
e (forny =4)

(IFQ —_ égti
dlogQ? = 9n

A IO 0

1—2z

where in lowest order

Pg(z) = (1-2)"+2° (2)

When applying (1) to experimental data the problem arises of delermining the gluon
distribution G(z) (= zg(z) where g is the gluon density) over the complete z-range.
At low-z this problem can be avoided since the integral in (1) can then be performed
approximately. For this purpose the gluon distribution is expanded in the following way

:G"(z 2= 1/2) 3

x

G(

T z) ~G(z=1/2)+(2—-1/2)G'(2 =1/2)+ (2 — 1/2)
This expression is then inserted in (1) and approximating the upper integration limit to 1
the second term will vanish in view of the symmetry of P, (z) around z = 1/2. The third
term is expected to give a small contribution compared to the first and is neglected. As
a result one therefore obtains

dF2 gy 5&, 1
Toggi?) = 5.6 (22) [ Pa2)dz (4)
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This result is valid to all orders of the coupling constant. It shows thal the effective value
of the gluon momentum fraction during the integration of the Altarelli-Parisi equation is
approximately 2z for low-z.

For a numerical study (4) is evaluated using the leading order expression (2) for Py, (z)

to give:
sz 50’, 2

In fig. 2 the approximate form (5) is compared with the exact formula (1) for three dif-
ferent gluon distributions, MRS Dy and D_ [2] and a distribution suggested by ref. [3]
for the pomeron. Below z = 107 the approximation is good to the level of 10%. The
approximation is, however, slightly dependent on the shape of the gluon distribution. The
reason for this is thal the expansion is less accuratle at the endpoints of the integration.
If the distribution is Jarge at these points the approximation is worse. In fig. 2a and 2c
the distributions are rather large at low and high « respectively and the approximation
is therefore worse compared to the result in fig. 2b.

The numerical study can be extended by assuming a gluon distribution of the general
form wf(1 — w)* where w is the gluon momentum fraclion. Using (2) one obtains GEf

[T G(E2) Pyl 2)dz = (22)° (1 — 20)°2 + L (22)0[46(6 + 1)(1 — 22)* — 86az(1 — 2z)*!

—8(6 + 2)az(1 — 22)* ! + 16z%a(a — 1)(1 — 22)"?) (6)

Since = is small az can be neglected and 1 — 2z approximated by | so that effectively
a = 0 and the gluon distribution is proportional to w?, i.e.
T G2 ) Puol2)dz m (20)8% 4 - (22)6(6 + 1 7
| GG Pal)dz ~ (2)°5 + <-(20)%8(5 + 1) (7)
The factor [1+ 6§(6 +1)/5], i.e. the change to the leading order resull, due to the second
term of the expansion, is shown as a dashed line in fig. 3. One may compare it to the ratio
of (1) to the approximation (5) which is shown as a solid line. The agreement between
the two lines shows that the further terms of the expansion can reliably be neglected. The
smallness of the second term verifies (5).
It is interesting to note that distributions with § ~ —0.5 give less accurate result than for
6 < —0.5 although the latter distributions are more singular than the former. Due to the
symmetry of P,,(2) the approximation (4) is forced to be exact at § = —1 (if the upper =
integration limit is set to 1) since

11— 1 \
[ =Pz = o= [ Piyla)ds (®)
changing the otherwise decreasing [unction with decreasing § in fig. 3 to increase. This &
shows that the essential ingredient for this method to work is the symmetry property s
I,

As long as —1.2 < § < 0.2 the approximation is betler than 10%. This range of 0 o
prises the predictions from the DGLAP, the Lipatov and the GTLR equalions. Adding&;
5% uncertainty in the experimental measurement of the Q2-dependence of Iz, 10% f
o, and 10% for neglecting typical low-x effects calculated beyond the DGLAF appr
imalion such as gluon recombination into quarks and relaxation of the strong Orfier
of the transverse momenta [4], one obtains a total accuracy of around 18%, S‘lm"?mg
sources in quadrature. This is accurate enough to distinguish belween several dlffef
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1 para,metrisations now ava.ilablt‘a on thf: market [5]. S .
" articular interest would be to distinguish between a gluon distribution behaving as
ik nstant at low-x, as is conventionally assumed and can be explained through gluon
mbination effects described by the GLR-MQ equation [6], and one proportional to

= which is approximately predicted by the Lipatov equation [7). MRS have included
th alternatives in their [it of existing experimental data resulting in equally good de-
iptions. However, at low-x, outside the range of existing data, the two functions differ
ramatically as is shown in fig. 4.

¢ first HERA dala, occurring mainly at low-x, could be used for this purpose with the
method described here. dFy/dlogQ? has been estimated [8] to be measured with a high
n;)ugh precision at the design luminosity down to z =5 - 1077
* Another interesting application is in the measurement of the pomeron structure function
. at HERA as described in ref. [9]). It was shown there that assuming the pomeron to be

_purely gluonic, gluon recombination is expected to occur at a significant level provided
~ the gluon density is not too small at Jow-x. This could quickly be investigated using eq.
4). Having knowledge of the pomeron gluon density at the level of 20 — 40% at low-x
~might be sufficient to establish the occurrence of gluon recombination.

In summary, a convenient method to determine the gluon distribution from the @? de-
- pendence of Iy has been introduced. The essential result is (4) which is valid to all orders
of a, since only the symmetry of P,, has been used in its derivation. This is favourable
compared to ref. [1] where the approximation of Fj, was given only in lowest order.
The argument of G, 2z, as obtained in (4) is also a useful result in another respect. Having
knowledge of the effective gluon momentum fraction simplifies the usage of the gluon to
quark transition formula in the transverse momentum scheme (see ref. [4] and references
therein for a review and a numerical analysis of the subject). The result obtained here is
a hint on what has to be used for the argument in this case. It depends of course on the
actual gluon distribution, but the best value of the argument should be close to 2z.
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hints and suggestions. I thank also G. Ingelman and M. Wiisthofl for several stimulating
discussions.
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Figure 1: The scaling violations of the sea quark distribution using KMRS B_ (a) and
B, (b) parton parametrisations. The full line corresponds to the complete Altarelli-Parisi
equation whereas the dashed line was obtained neglecting the quark distributions.
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Figure 2: Illustration of the accuracy of the approzimation (5). The F; scaling violations
is shown on the left side with a dashed line for the approzimation (5) and a solid line
for the ezact formula (1). The right-hand plots show the ratio of the corresponding two
lines. The gluon distributions used were MRS D (a), MRS Dq (b) [2] and the calculated

pomeron gluon distribution [3] (c).
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is the ratio of (1) to (4) at = = 5-10~*. The gluon distribution was taken as proportion
to z°.
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Figure 4: The gluon distributions obtained by ref. [2]. The dashed curve is the A

the solid curve the D_ distribution. The today ezisting data cannot distiﬁy“ight
these distributions. ¥



