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ABSTRACT

This paper proposes an approach for obtaining block diagonal and block triangular

preconditioners that can be used for solving a linear system Ax = b, where A is a large,

nonsingular, real, n × n sparse matrix. The proposed approach uses Tarjan’s algorithm

for hierarchically decomposing a digraph into its strong subgraphs. To the best of our

knowledge, this is the first work that uses this algorithm for preconditioning purposes.

We describe the method, analyse its performance, and compare it with preconditioners

from the literature such as ILUT and XPABLO and show that it is highly competitive with

them in terms of both memory and iteration count. In addition, our approach shares with

XPABLO the benefit of being able to exploit parallelism through a version that uses a block

diagonal preconditioner.
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1 Introduction

Given a linear system

Ax = b, (1.1)

where A is a real, large, sparse square matrix of order n, we propose a method to construct a

preconditioning matrix M to accelerate the solution of the system when using Krylov methods.

The proposed method is based on a hierarchical decomposition of the associated digraph into its

strong subgraphs. This decomposition can be used to find a permutation of the matrix to produce

a block form that can be used to build either a block diagonal matrix for use as a block Jacobi

preconditioner or a block tridiagonal matrix for use as a block Gauss Seidel preconditioner.

The algorithm we use to create the blocks on the diagonal of M is a modified version of

Tarjan’s algorithm HD that decomposes a digraph into its strong subgraphs hierarchically (Tarjan

1983). Tarjan assumed that the edges of the digraph are weighted and HD uses this weight

information to create the hierarchical decomposition. However, HD requires distinct edge weights

if it is implemented as given in Tarjan (1983). In this paper, we propose a slight modification

of HD which allows us to handle digraphs whose edge weights are not necessarily distinct. We

make further modifications to the algorithm to use it for preconditioning purposes. The strong

subgraphs formed by the modified version of HD correspond to the blocks on the diagonal of M.

To the best of our knowledge, this is the first work that uses Tarjan’s hierarchical decomposition

algorithm for preconditioning purposes. We call our modified version HDPRE.

We should emphasize at this point that this algorithm of Tarjan is different from the much

better known algorithm for obtaining the strong components of a reducible matrix. This earlier

algorithm (Tarjan 1972), which we call SCC, is used widely in the solution of reducible systems and

is also called by HD and HDPRE which can be viewed as extending the earlier work to irreducible

matrices. We use the output from HDPRE to determine our preconditioners. This is done by SCPRE

that can generate a block diagonal preconditioner or a block upper-triangular one.

We have conducted several experiments to see the efficiency of the SCPRE algorithm.

We compare the number of iterations for convergence and the memory requirement of the

GMRES (Saad and Schultz 1986) iterative solver when the proposed approach and a set of ILUT

preconditioners (Saad 1994, Saad 2003) are used. We are aware that block based preconditioning

techniques have been studied before and successful preconditioners such as PABLO and its

derivatives have been proposed (Fritzsche 2010, Fritzsche, Frommer and Szyld 2007). These

preconditioners were successfully used for several matrices (Benzi, Choi and Szyld 1997, Choi

and Szyld 1996, Dayar and Stewart 2000). In this paper, we compare our results also with

XPABLO (Fritzsche 2010, Fritzsche et al. 2007).

Section 2 gives the notation used in the paper and background on Tarjan’s algorithm HD.

The proposed algorithm is described in Section 3 and the implementation details are given in

Section 4. Section 5 gives the experimental results and Section 6 concludes the paper.

2 Background

Let A be a large, nonsingular, n × n sparse matrix with m off-diagonal nonzeros. The digraph

G = (V,E), associated with A, has n vertices, vi, i = 1, n, in its vertex set V where vi corresponds

to the ith row/column of A for 1 ≤ i ≤ n and vivj is in the edge set E iff Aij is nonzero, for
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1 ≤ i 6= j ≤ n. Note that we do not consider self-loops of the form vivi corresponding to diagonal

entries in the matrix. Figure 2.1 shows a simple 6× 6 matrix with 13 nonzeros and its associated

digraph.

(a) A (b) G

Figure 2.1: A 6× 6 matrix A with 13 off-diagonal nonzeros on the left and its associated digraph

G on the right. The nonzeros on the diagonal of A are shown with ×. Except for these entries,

there is an edge in the associated digraph G for each nonzero of A.

A path is sequence of vertices such that there exists an edge between every two consecutive

vertices. A path is called closed if its first and last vertex are the same. A vertex u is connected

to v if there is a path from u to v in G. A directed graph G is strongly connected if u is connected

to v for all u, v ∈ V . Note that a digraph with a single vertex u is strongly connected. A

digraph G′ = (V ′, E′) is a subgraph of G if V ′ ⊂ V and E′ ⊆ E ∩ (V ′ × V ′). If G′ is strongly

connected it is called a strong subgraph (or a strongly connected subgraph) of G. Furthermore,

if G′ is maximally strongly connected, i.e., if there is no strong subgraph G′′ of G such that G′

is a subgraph of G′′, it is called a strong component (or a strongly connected component) of G.

If the matrix A cannot be permuted into a block triangular form (BTF) by simultaneous row

and column permutations, i.e., if the associated digraph is strongly connected, we say that A is

irreducible. Otherwise, we call it reducible.

Let G = (V,E) be a digraph and P(V ) = {V1, V2, · · · , Vk} define a partition of V into disjoint

sets, i.e., Vi∩Vj = ∅ for i 6= j and ∪k
i=1Vi = V . Let V = {V1,V2} be a set of two vertex partitions

such that V1 = P(V ) and

V2 =
⋃

Vi∈V1

P(Vi),

i.e., V2 is a finer partition obtained from partitioning the parts in V1. Hence, if V1 =

{{1, 2, 3}, {4, 5, 6}} then V2 can be {{1}, {2, 3}, {4, 5}, {6}} but cannot be {{1, 2}, {3, 4
}, {5, 6}}. Let no1(v) and no2(v) denote the index of the part containing vertex v ∈ V for V1 and

V2, respectively.

Let condense be an operation which takes G and V as inputs and returns a condensed

digraph condense(G,V) = GV = (V V2 , EV1) where each vertex set Vi ∈ V2 is condensed into a

single vertex νi ∈ V V2 . For all uv ∈ E, with no2(u) = i and no2(v) = j there exists νiνj ∈ EV1 if

and only if no1(u) 6= no1(v), i.e., u and v are in different coarse parts. Note that even though G

is a simple digraph, GV can be a directed multigraph, i.e., there can be multiple edges between

two vertices. The definitions of connectivity and strong connectivity in directed multigraphs are

the same as those in digraphs. An example for the condense operation is given in Figure 2.2.
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(a) (b)

Figure 2.2: An example for the condense operation on the digraph in Figure 1(b). The partitions

V1 = {{1, 2, 3}, {4, 5, 6}} and V2 = {{1}, {2, 3}, {4, 5}, {6}} are shown in (a). The condensed

graph is shown in (b).

3 A strong subgraph based preconditioner

Our proposed algorithm, SCPRE, generates a preconditioner M with a block diagonal or block

upper-triangular structure where the size of each block is smaller than a requested maximum

block size mbs. For the experiments, we scale and permute A from (1.1) by Duff and Koster’s

MC64 with the option that uses the maximum product transversal (Duff and Koster 2001). The

idea used by MC64 is due to Olschowka and Neumaier (1996) who propose an algorithm which

permutes and scales the matrix in such a way that the magnitudes of the diagonal entries are one

and the magnitudes of the off-diagonal entries are all less than or equal to one. Such a matrix is

called an I-matrix. For direct methods, it has been observed that the more dominant the diagonal

of a matrix, the higher the chance that diagonal entries are stable enough to serve as pivots for

elimination. For iterative methods, as previous experiments have shown, such a scaling is also of

interest (Benzi, Haws and Tůma 2000, Duff and Koster 2001). We observed a similar behaviour

in our preliminary experiments and used MC64 for scaling and permutation of the original matrix.

From now on, we will assume that the diagonal of A is nonzero since this is the case after this

permutation.

SCPRE uses the block structure from HDPRE to determine the diagonal blocks of the

preconditioner M. We then combine some of these blocks if the combination has fewer than mbs

rows/columns and the combination is not block diagonal. The diagonal blocks of the resulting

matrix can then be used to precondition the iterative solver using the block Jacobi algorithm and

can exploit parallel architectures as the blocks are independent. If we require a block diagonal

preconditioner, then we are finished. Otherwise, SCPRE permutes the blocks and builds a block

upper-triangular preconditioner.

If A is reducible and the maximum block size in the BTF of A is less than or equal to

mbs, then SCPRE will find this form or will return the diagonal blocks of it if a block diagonal

preconditioner is desired. The permutation of a matrix into its block triangular form is a well

known technique which has been recently and successfully used by direct and iterative solvers

for circuit simulation matrices (Davis and Natarajan 2010, Thornquist, Keiter, Hoekstra, Day

and Boman 2009), which they state can often be permuted to a non-trivial BTF. For some

applications, such as DC operating point analysis, the block triangular form has many but small
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blocks (Thornquist et al. 2009). Such a matrix is usually easy to factorize if we initially permute

it to BTF, so that a direct solver like KLU (Davis and Natarajan 2010) only needs to factorize

the diagonal blocks. Note that Tarjan’s SCC algorithm that has linear complexity in matrix

order and number of nonzeros has been widely and successfully used by the computational linear

algebra community for obtaining a BTF that is then exploited by subsequent solvers. A code

implementing this algorithm is available as MC13 from HSL (HSL 2011) and is also an algorithm

in ACM TOMS (Duff and Reid 1978a, Duff and Reid 1978b).

However, when the matrix is irreducible, the SCC algorithm is not applicable. Furthermore,

even if the matrix is reducible, we may have little gain from using the BTF because this form may

have one or more very large blocks. This is the case for applications like transient simulation or for

circuit matrices with feedbacks. For this reason we propose using Tarjan’s HD algorithm (Tarjan

1983) as an additional tool to SCC. SCPRE uses HDPRE and further decomposes blocks larger than

mbs to make the resulting preconditioner practical. For these reasons, in our experiments, we

only use matrices that are irreducible or have a large block in their BTF. The details of SCPRE

and the algorithms it uses are given in the next section. Note that since we use a combinatorial

algorithm from graph theory for preconditioning purposes, we will use terms from graph theory

in the following text so that row/column and vertex are used interchangeably, as well as nonzero

and edge.

3.1 SCPRE: Obtaining the block diagonal preconditioner

To obtain a block diagonal preconditioner, SCPRE uses HDPRE and then combines some of these

blocks if the size of the combined block is at most mbs and the combined block is not block

diagonal. In this section, we give the details of these algorithms. First, we describe Tarjan’s

hierarchical decomposition algorithm in detail.

3.1.1 Tarjan’s algorithm for hierarchical clustering

Let G = (V,E) be the digraph associated with A. The weight of an edge uv ∈ E is denoted

by w(uv) and is set to the absolute value of the corresponding off-diagonal nonzero. Hence,

there are m edges and all of the edges have positive weights. A hierarchical decomposition of G

into its strong subgraphs can be defined in the following way. Let σ0 be a permutation of the

edges. For 1 ≤ i ≤ m, let σ0(i) be the ith edge in σ0 and σ−1
0 (uv) be the index of the edge

uv in the permutation for all uv ∈ E. Let G0 = (V, ∅) be the graph obtained by removing all

the edges from G. We then add edges one by one to G0 in the order determined by σ0. Let

Gi = (V, {σ(j) : 1 ≤ j ≤ i}) be the digraph obtained after the addition of the first i edges.

Initially in G0, there are n strong components, one for each vertex, and during the edge addition

process, the strong components gradually coalesce until there is only one, as we are assuming

that A is irreducible. Note that if this is not the case, the algorithm will be used for the large

irreducible blocks in A. The hierarchical decomposition of G into its strong subgraphs with

respect to the edge permutation σ0 shows which strong components are formed in this process

hierarchically. Note that a strong component formed in this edge addition process is indeed a

strong component of some digraph Gi but not of G. For G all except the last are just strong

subgraphs.

A hierarchical decomposition can be represented by a hierarchical decomposition tree T ,
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Figure 3.3: The hierarchical decomposition tree for the digraph G and the permutation given by

the edge ordering in Figure 1(b).

whose leaf nodes correspond to the vertices in V , non-leaf nodes correspond to edges in E,

and subtrees correspond to the decomposition trees of the strong components that form as the

process proceeds. Note that only the edges that create strong components during the process

have corresponding internal nodes in T . If σ0 is the ordering determined by the edge numbers,

the hierarchical decomposition tree for the digraph in Figure 1(b) is given in Figure 3.3. As the

figure shows, during the edge addition process, after the addition of the 3rd and 6th edges in

σ0, the sets of vertices {1, 2, 3} and {4, 5} form a strong component of G3 and G6, respectively.

These strong components are then combined and form a larger one after the addition of the 11th

edge. In Figure 3.3, the root of the tree is labelled with 12. Hence the first 12 edges in σ0 are

sufficient to construct a strongly connected digraph. For the figures in this paper, we use the

labels of the corresponding vertices and the σ−1
0 values of the corresponding edges to label each

leaf and non-leaf node of a hierarchical decomposition tree, respectively.

Given a digraph G = (V,E) with n vertices and m edges, and a permutation σ0, the

hierarchical decomposition tree T can be obtained by first constructing G0 and executing SCC

for each internal digraph Gi obtained during the edge addition process. Note that this is an

O(mn + m2) algorithm since 1 ≤ i ≤ m and the cost of SCC is O(n + m) due to the strong

component algorithm of Tarjan (1972). To obtain T in a more efficient way, Tarjan first proposed

an O(mlog2 n) recursive algorithm (Tarjan 1982) and later improved his algorithm and reduced

the complexity to O(m log n) (Tarjan 1983). He assumed that the weights of the edges in the

digraph are distinct, i.e., w(uv) 6= w(u′v′) for two distinct edges uv and u′v′. Here we modify

the description of the algorithm so that it also works for the case when some edges have equal

weights. Note that the connectivity of the digraph is purely structural and is independent of the

edge weights. The only role that they play in Tarjan’s algorithm HD, is in the preprocessing step

that defines a permutation σ0 of the edges and in determining the ordering of the edges during

the course of the algorithm. We eliminate the necessity of this latter use by avoiding numerical

comparisons through just using the indices of the edges with respect to σ0. With this slight

modification, the algorithm remains correct even when some edges have the same weight which is

very important as many matrices have several or many nonzeros with the same numerical value.

HD uses a recursive approach and for every recursive call, it gets a digraph G = (V,E), a

permutation σ of the edges, and a parameter i as inputs such that G is strongly connected and

Gi is known to be acyclic, i.e., every vertex is a separate strong component (Tarjan 1983). For

the initial call, i is set to 0 and the initial permutation is set to σ0 which is a permutation of all

the edges in the original digraph.

For a call of HD(G = (V,E), σ, i), the size of the subproblem is set to |E|−i, the number of edges

that remain to be investigated (Tarjan used the term rank to denote the size of a subproblem).

Note that in the first step, HD knows that Gi (that is G0) is acyclic, that is there are |V | strong
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components of G0, one for each vertex. If the subproblem size is one, since G is strongly connected

and Gi is acyclic, the vertices in V are combined with the addition of the |E|th edge in σ. Hence

HD returns a tree T having a root labelled with σ−1
0 (σ(|E|)) and |V | leaves. If the subproblem size

is not one, HD performs a binary chop and checks if Gj , j = ⌈(i+ |E|)/2⌉ is strongly connected. If

Gj is strongly connected, then all of the strong components will be combined before the addition

of the (j + 1)th edge. Hence the algorithm calls HD(Gj , σ, i). Otherwise, a recursive call is made

for each strong component of size larger than one. A detailed pseudo-code of HD is given in

Algorithm 1.

Algorithm 1 T = HD(G = (V,E), σ, i) . For the initial call, σ = σ0 and i = 0.

1: if |E| − i = 1 then

2: Let T be a tree with V leaves. Root is labelled with σ−1
0 (σ(|E|))

3: return T

4: end if

5: j = ⌈(i+ |E|)/2⌉
6: if Gj = (V, {σ(k) : 1 ≤ k ≤ j}) is strongly connected then

7: return T = HD(Gj , σ, i)

8: else

9: for each strong component SCℓ = (Vℓ, Eℓ) of Gj do

10: if |Vℓ| > 1 then

11: σℓ = the permutation of Eℓ ordered with respect to σ

12: if i = 0 or (σ−1(uv) > i, ∀uv ∈ Eℓ) then

13: iℓ = 0

14: else

15: iℓ = max{k : σ−1(σℓ(k)) ≤ i}
16: end if

17: Tℓ = HD(SCℓ, σℓ, iℓ)

18: else

19: Tℓ = (Vl, ∅)
20: end if

21: end for

22: V1 = V2 = {Vℓ : SCℓ is a strong component of Gj}
23: V = {V1,V2}
24: GV = condense(G,V) = (V V2 , EV1)

25: σV = the permutation of EV1 ordered with respect to σ

26: if (σ−1(uv) > j, ∀uv ∈ EV1) then

27: iV = 0

28: else

29: iV = max{k : σ−1(σV(k)) ≤ j}
30: end if

31: TV = HD(GV , σV , iV)

32: replace the leaves of TV with the corresponding trees Tℓ

33: return TV

34: end if
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By the definition of i, Gi, the subgraph containing the first i edges of G in σ, is known to be

acyclic. Let iℓ be the number of these edges in the ℓth strong subgraph SCℓ = (Vℓ, Eℓ) of Gj , i.e.,

iℓ = |{uv ∈ Eℓ : σ
−1(uv) ≤ i}|. Since SCℓ is a subgraph of Gi, Gi being acyclic implies that the

subgraph of SCℓ containing only these iℓ edges is also acyclic. In Algorithm 1, lines 12–16 find iℓ
for each strong component SCℓ. This value is then used in the recursive call for SCℓ at line 17.

Since Gj has more than one strong component and G is known to be strongly connected,

with the addition of some edge(s) after the jth one at least two strong components of Gj will

be combined. To find this edge, another recursive call, HD(GV , σV , iV), is made for the condensed

graph GV = (V V2 , EV1). Since each strong component of Gj is reduced to one vertex in GV , a

subgraph of the condensed graph which contains only the edges from Gj must be acyclic. Hence

we can find the iV value in a similar fashion to iℓ. But this time instead of i we use j and set

iV = |{uv ∈ EV1 : σ−1(uv) ≤ j}| for the corresponding recursive call at line 31.

We investigate the size of each new subproblem for the complexity analysis of HD. At line 7 of

Algorithm 1, the size of the subproblem becomes at most j − i and for lines 17 and 31, there will

be smaller subproblems with size at most j− i and |E|− j, respectively. By definition of j, every

subproblem has a size at most 2
3 of the original problem size (consider the case when i = 0 and

|E| = 3). Note that every edge in the original problem corresponds to an edge in at most one

subproblem and, if we do not count the recursive calls, the rest of the algorithm takes O(|E|).
Let |E| = m, t(m, r) be the total complexity of a problem with m edges and r problem size, and

k be the number of recursive calls. Then

t(m, r) = O(m) +

k
∑

i=1

t(mi, ri).

Since
∑k

i=1mi ≤ m and ri ≤ 2r/3 for 1 ≤ i ≤ k, an easy induction shows that t(m, r) =

O(mlog r). Hence the total complexity of the algorithm is O(mlogm) which is actually O(mlog n)

since the original graph is a simple digraph (not a directed multigraph).

Let us sketch the algorithm for the digraph G = (V,E) in Figure 1(b). Assume that σ0 is

the ordering described in that figure. In the initial call, line 5 of Algorithm 1 computes j = 7

and checks if G7 is strongly connected. As Figure 3.4 shows, G7 has three strong components

where the first and second are the new subproblems solved recursively. Since the third strong

component contains only one vertex, HD does not make a recursive call for it. An additional

recursive call is made for the condensed graph. Figure 3.5 shows the graphs for the recursive calls

and the returned trees. The number of edges in Figs. 5(a), 5(b) and 5(c) are 4, 2 and 7, whereas

the corresponding problem sizes are 4, 2 and 6 respectively. Note that i1 and i2 are 0 for the first

two calls and iV = 1 for the last one with GV since GV
1 is known to be acyclic because j = 7 and

σV(1) = σ(7).

Because of the multiple edges between two vertices, the condensed graph in Figure 5(c) has 7

edges. However, the algorithm still works if we sparsify the edges of GV = (V V2 , EV1) and obtain

a simple digraph as follows: For a uv ∈ E such that u ∈ Vi and v ∈ Vj and i 6= j, there exists

vivj ∈ EV1 if no other u′v′ ∈ E exists such that u′ ∈ Vi and v′ ∈ Vj and σ−1(u′v′) < σ−1(uv).

That is, for multiple edges between u and v, we delete all but the first in the permutation σ.

In Figure 5(c), these edges, σ(7) and σ(8), are shown in bold. In (Tarjan 1983), Tarjan states

that although having less edges in the condensed graphs with this modification is desirable, in
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Figure 3.4: Strong components of G7 for the digraph G given in Figure 1(b)

practice the added simplicity does not compensate for the cost of the reduction of multigraphs

to simple digraphs. This is also validated by our preliminary experiments.

(a) Call for

SC1

(b) Call for SC2 (c) Call for the condensed

graph with three vertices

Figure 3.5: Three recursive calls for the digraph G and σ0 in Figure 1(b). Internal nodes in trees

are labelled with the σ−1
0 value of the corresponding edge. Note that the overall hierarchical

decomposition tree is already given in Figure 3.3.

3.1.2 HDPRE: Obtaining the initial block structure

As mentioned in Section 3.1.1, Tarjan proposed HD for hierarchical clustering purposes and sorted

the edges with respect to increasing edge weights. Thus, if σ0 is the permutation used for

hierarchical clustering w(σ0(i)) ≤ w(σ0(j)), for i < j. In this work, we propose using two

different approaches to obtain the permutation: the first solely depends on the weights of the

edges and sorts them in the order of decreasing edge weights, i.e., we define the permutation σ

such as w(σ(i)) ≥ w(σ(j)) if i < j. The second uses the sparsity pattern of the matrix. The

reverse Cuthill-McKee (RCM) ordering (Cuthill and McKee 1969) is used to find a symmetric

row/column permutation. Then the edges are ordered in a natural, row-wise order. That is, an

edge ij always comes before kℓ if i < k or, i = k and j < ℓ.

The decomposition tree T , as output from Tarjan’s HD algorithm, could be used for

preconditioning without modification, but we postprocess this tree to ensure that all leaf nodes

are as large as they can be but still have fewer than mbs nodes. For the decomposition tree T in

Figure 3.3, the cases for mbs = 2 and mbs = 3 are given in Figure 3.6. In T , for the case mbs = 2,

vertices 1, 2, and 3 cannot be combined since the number of vertices in the combined component

will be 3, which is greater than mbs. Hence, there will be 5 blocks after this phase. However,
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vertices 1, 2, and 3 can be combined for the case mbs = 3 and the number of blocks will be 3.

Note that for preconditioning, we do not need to construct the whole tree of HD. We only need to

continue hierarchically decomposing the blocks until they contain at most mbs vertices. Hence,

for efficiency we modify line 10 of HD to check if the current strong component has more than

mbs vertices (instead of a single vertex). Hence the modified algorithm will make a recursive call

for a strong component if and only if the component has more than mbs vertices.

(a) mbs = 2 (b) mbs = 3

Figure 3.6: Using the output of HD algorithm. Two cases, mbs = 2 and mbs = 3, are shown for

the decomposition tree in Figure 3.3.

To obtain denser and larger blocks, we incorporate some more modifications to HD as follows:

first, we modify the definition of V. Note that V = {V1,V2} for HD, where the parts in V1 = V2

are the vertex sets of the strong components of Gj . For preconditioning, we keep the definition

of V1 but use a finer partition V2 that contains the vertex sets of strong components obtained

by hierarchically decomposing the strong components of size larger than mbs. For example,

in Figure 3.4, we have 3 strong components of sizes 3, 2 and 1, respectively. Hence, V1 =

{{1, 2, 3}, {4, 5}, {6}}. If mbs = 2, SC1 will be further divided so V2 = {{1}, {2}, {3}, {4, 5}, {6}}.
However, if mbs = 3 no more decomposition will occur and V1 will be equal to V2. With this

modification, the algorithm will try to combine the smaller strong components and obtain larger

ones with at most mbs vertices. Note that setting V = {V2,V2} tries to do the same but will

fail since the only components that can be formed by this approach will be the same as those

in V1. Hence, by deleting the edges within the vertex sets in V1, we eliminate the possibility of

obtaining the same components.

A second modification is applied to the condense operation by deleting the edges between

two vertices νi, νj ∈ V V1 in the condensed graph GV , if the total size of the corresponding parts

Vi, Vj ∈ V2 is larger than mbs. Note that if we were to retain these edges, they would only be

used to form blocks of size more than mbs. We call this modified condense operation pcondense.

An example of the difference between condense and pcondense is given in Figure 3.7.

As Figure 3.7 shows, with this last modification, some of the graphs for the recursive calls

may not be strongly connected. Hence, instead of a whole decomposition tree, we may obtain a

forest such that each tree in the forest, which corresponds to a strong subgraph in the hierarchical

decomposition, has less thanmbs leaves. The modified algorithm HDPRE, described in Algorithm 2,

also handles digraphs which are not strongly connected. Note that, for preconditioning, the only

information we need is the block structure information. That is, we need to know which vertex is

in which tree in the forest after the modified hierarchical decomposition algorithm is performed.

Instead of a tree (or a forest), HDPRE returns this information in the scomp array.

The structure of the algorithm HDPRE is similar to that of HD. In addition to G, σ and i, HDPRE
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Algorithm 2 scomp = HDPRE(G = (V,E), σ, i, vsize) (mbs is global, i = 0 for the initial call).

1: if |E| − i = 1 then

2: find strong components of G

3: for each strong component SCℓ = (Vℓ, Eℓ) of G do

4: if
∑

v∈Vℓ
vsize(v) > mbs then

5: consider each v ∈ Vℓ as a strong component

6: else

7: ∀v ∈ Vℓ, scomp(v) = ℓ

8: end if

9: end for

10: return scomp

11: end if

12: j = ⌈(i+ |E|)/2⌉
13: if Gj = (V, {σ(k) : 1 ≤ k ≤ j}) is strongly connected then

14: return scomp = HDPRE(Gj, σ, i, vsize)

15: else

16: for each strong component SCℓ = (Vℓ, Eℓ) of Gj do

17: if
∑

v∈Vℓ
vsize(v) > mbs then

18: σℓ = the permutation of Eℓ ordered with respect to σ

19: compute iℓ as in Algorithm 1

20: vsizeℓ(v) = vsize(v), ∀v ∈ Vℓ

21: scompℓ = HDPRE(SCℓ, σℓ, iℓ, vsizeℓ)

22: update scomp according to scompℓ
23: end if

24: end for

25: V1 = {Vℓ : SCℓ is a strong component of Gj}
26: V2 = {Vℓ′ : SCℓ′ = (Vℓ′ , Eℓ′) is a strong component in scomp}
27: V = {V1,V2}
28: GV = pcondense(G,V,mbs) = (V V2 , EV1)

29: σV = the permutation of EV1 ordered with respect to σ

30: compute iV as in Algorithm 1

31: if iV 6= |EV1 | then
32: vsizeV(vℓ′) =

∑

v∈V
ℓ′
vsize(v), ∀Vℓ′ ∈ V2

33: scompV = HDPRE(GV , σV , iV , vsizeV )

34: update scomp with respect to scompV

35: end if

36: return scomp

37: end if

10



Figure 3.7: Difference between condense and pcondense operations for the strong components

of G7 given in Figure 3.4. Let mbs = 3 so all of the components have a desired number of vertices

and V1 = V2 = {{1, 2, 3}, {4, 5}, {6}}. Note that the condensed graphs obtained by condense and

pcondense are the same except that the latter does not have some of the edges that the former

has. For this example, the edges 7, 10, 11 and 13 are missing since the total size size of SC1 and

SC2 is 5, which is greater than mbs. As a result, for the condense graph, we obtain 3 blocks of

sizes 3, 2 and 1, respectively; whereas, for the pcondense graph, we have 2 blocks of size 3.

requires an additional input array vsize which stores the number of vertices condensed into each

vertex of V . For the initial call with G = (V,E), vsize is an array containing |V | ones. On the

other hand, for the condensed vertices, this value will be equal to the sum of the vsize values

condensed into that vertex. For the condensed digraph in Figure 5(c), vsize = {3, 2, 1} when

its vertices are ordered from left to right. To be precise, for a recursive call with G = (V,E),

the total number of simple vertices is
∑

v∈V vsize(v) and this number is larger than mbs for all

recursive calls because of the size check in line 17 of Algorithm 2.

For each call, HDPRE checks if the problem size |E|−i is equal to one. If this is the case, it finds

the strong components SCℓ = (Vℓ, Eℓ) ofG. If a strong component SCℓ has
∑

v∈Vℓ
vsize(v) > mbs

vertices then HDPRE considers each vertex in Vℓ as a different strong component. Otherwise, i.e.,

if the size of a strong component is less than or equal to mbs, that component is considered as a

whole. Following this logic, HDPRE constructs the scomp array and returns. If the problem size,

|E| − i is greater than 1, as was done for HD, HDPRE constructs Gj for j = ⌈(i + |E|)/2⌉ and, if

it is strongly connected, the search for the combining edge among the first j edges starts with

the call HDPRE(Gj, σ, i, vsize). If not, for every strong component SCℓ = (Vℓ, Eℓ) of Gj such that
∑

v∈Vℓ
vsize(v) > mbs, it makes a recursive call HDPRE(SCℓ, σℓ, iℓ, vsizeℓ) and updates the strong

component information for the vertices in Vℓ. This update operation can be considered as further

dividing the strong component SCℓ hierarchically until all of the strong components obtained

during this process contain at most mbs vertices.

Similarly to HD, at line 33, HDPRE makes one more recursive call for the condensed graph GV

where the definition of the vertex partition V (in line 27) is modified as in Fig. 3.7. In HD, each

vertex in the condensed graph corresponds to a strong component of Gj which defines a partition

V1. In HDPRE, these components are further divided until all of them have a size no larger than

mbs. A second partition, V2, is obtained from these smaller strong components and V = {V1,V2}
is defined. After obtaining the condensed graph GV , HDPRE checks if GV is acyclic. Note that if

iV = |EV1 |, no strong component with two or more vertices exists in GV and hence it is acyclic.
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If iV 6= |EV1 |, after obtaining scompV , HDPRE updates scomp if a larger strong component is

obtained.

For the matrix given in Figure 1(a), HDPRE generates the blocks for the cases mbs = 2 and

mbs = 3 as shown in Figure 8(a) and Figure 8(b), respectively. For mbs = 2, the condensed

graph has 5 vertices and no edges hence no combination will occur. For mbs = 3, as shown in

Figure 8(b), the condensed graph has 3 vertices where 2 of them will combine with the 12th edge

in σ0.

(a) mbs = 2 (b) mbs = 3

Figure 3.8: Initial block structure of the preconditioner after HDPRE algorithm. Two cases,

mbs = 2 and mbs = 3, are investigated for the matrix in Figure 1(a).

3.1.3 Combining the blocks

After HDPRE obtains a block diagonal partition, SCPRE performs a loop on the nonzeros which

are not contained in a block on the diagonal to see if it is possible to put more into the block

diagonal by combining original blocks. To do this, SCPRE first constructs a condensed simple

graph H where the vertices of H correspond to the diagonal blocks and inter-block edges of G in

both directions are combined as a single edge with a weight that is the sum of the weights of the

combined edges.

After H is obtained, its edges are visited in an order corresponding to a permutation σH . This

permutation is consistent with the original permutation σ0. That is, if the edges of the original

digraph are sorted in descending order with respect to the edge weights, σH permutes the edges of

H with respect to descending edge weights. On the other hand, if the initial permutation is based

on the RCM ordering we compute the RCM ordering of H, relabel the vertices of H accordingly, and

order the edges with respect to this RCM ordering. Let vsize(u) be the number of rows/columns

in a block corresponding to the vertex u.

Assume that SCPRE constructs σ0 by sorting the edges with respect to decreasing weights.

For the matrix given in Figure 8(a), if w(2) +w(4) > w(1) then vertices 2 and 3 are combined or

if w(2) + w(4) ≤ w(1) then vertices 1 and 2 are combined. Since mbs = 2 and there is no edge

between vertices 1 and 6, no further combinations are performed.

3.2 SCPRE: Extending to a BTF preconditioner

If the desired structure of M is block diagonal SCPRE stops. Otherwise, while preserving the

blocks, it tries to extend the block diagonal preconditioner to a block upper-triangular one. Note

that in this case the order of the blocks is important since it changes which nonzeros are in the

upper-triangular part of M. By permuting the blocks, SCPRE tries to put entries that are larger

in magnitude into the block upper-triangular part. Our preliminary experiments confirmed that
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having larger and more nonzeros in a SCPRE preconditioner increases its effectiveness. Since the

nonzeros in the diagonal blocks stay same while extending a block diagonal preconditioner to a

block triangular one, we focus on improving the nonzeros in the block upper-triangular part.

Let G = (V,E) be the digraph associated with the matrix and k be the number of diagonal

blocks. Let V1 = {V1, V2, · · · , Vk} be a partition of V such that the vertices in Vi correspond to

the rows/columns of ith block. Let V = {V1,V1} and GV = condense(G,V) be the condensed

multigraph. Note that if GV is acyclic, a topological sort in GV gives a symmetric block

permutation such that all of the nonzeros in the matrix will be in the upper-triangular part

of the permuted matrix. However, this only happens for a reducible matrix with blocks having

no more than mbs rows/columns.

The problem of finding a good block permutation, which maximizes the number of nonzeros

in the upper part of M, can be reduced to the problem of finding the smallest edge set E′ such

that G
V
= (V V1 , EV1 \ E′) is acyclic. For the weighted version of the problem, i.e., to maximize

the total magnitude in the upper part, we need to find an edge set E′ where G
V
is acyclic and the

sum
∑

uv∈E′ |w(uv)| is minimum. In the literature, the first problem is called the directed feedback

arc set problem and the second one is called the directed weighted feedback arc set problem. Both

problems are NP-complete (Garey and Johnson 1979, Gavril 1977).

Our simple heuristic proposed for this problem is a greedy algorithm: we first choose the block

row with the largest entries in the off-diagonal blocks and remove the corresponding rows/columns

in this block. We then do the same thing with the remaining block matrix to obtain the second

block row and continue in this way until a single block remains. More formally, we let GV be

the condensed graph described above. For each vertex u ∈ V V , let tweight(u) =
∑

uv∈EV w(uv).

The main body of the algorithm is a for loop where at the ith iteration, it chooses the vertex u

with maximum tweight and assigns it as the ith vertex in the permutation. It then removes u

from V V , its edges from EV , and continues with the next iteration. After permuting the matrix

with SCPRE, we expect that nonzeros with larger magnitudes are mostly placed in the diagonal

blocks and some in the upper-triangular part. We show in Figures 9(a) and 9(b) the matrix

ckt11752 tr 0 after scaling using MC64 and after the reordering from SCPRE, respectively. In the

reordered matrix of Figure 9(b) it is clear that the larger entries are in the diagonal blocks.

4 Using SCPRE with an iterative solver

The iterative solver we use in our experiments is the right-preconditioned GMRES (Saad and Schultz

1986) with restarts. A template for this can be found in Barrett, Berry, Chan, Demmel, Donato,

Dongarra, Eijkhout, Pozo, Romine and van der Vorst (1994). Let A = D+U+L be the scaled

and permuted matrix such that D, U, and L are the block diagonal, upper, and lower parts,

respectively.

If the desired structure is block diagonal, which is suitable for exploitation of parallelism,

M = D is the preconditioner. If this is not the case, M = D +U is the preconditioner for A.

For the latter case, the computation AM−1x becomes

AM−1x = (D+U+ L)(D+U)−1x = x+ L((D+U)−1x).

Note that SCPRE tries to maximize the total magnitude in D and U. As a consequence and as

in experiments not included here show, L usually contains many fewer nonzeros than A. Hence
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Figure 3.9: The matrix ckt11752 tr 0 after scaling (a) and after SCPRE (b), respectively. The

nonzeros are coloured w.r.t. their magnitudes. mbs is set to 5000.
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computing the vector z = Ly usually takes very little time and the main operation is to compute

y = (D+U)−1x = M−1x. . In our implementation, in addition to A, we store the LU factors

of the diagonal blocks, i.e., the factors Li and Ui such that Di = LiUi where Di is the ith

diagonal block. We reduce the memory requirements for these factors by ordering the blocks

using the approximate minimum degree (AMD) heuristic (Amestoy, Davis and Duff 1994, Davis

2006) before using the MATLAB sparse factorization. We then solve the upper block triangular

system My = x using these factors, starting with the last block, so that the off-diagonal part U

is only used to multiply vectors.

4.1 Robustness

The use of I-matrix scaling via MC64 helps to reduce the possibility of a singular preconditioner

M obtained by SCPRE because all the submatrices on the diagonal will also be I-matrices. But,

although it is very rare, these I-matrices can be singular and we still find cases in which some of

the blocks on the diagonal of M are singular.

When using the MATLAB factorization, we guard against this potential problem by using

the simple and cheap stability check proposed and used by XPABLO (Fritzsche 2010, Fritzsche et

al. 2007). That is, if ni is the dimension of Di, after computing Li and Ui, we check whether

∣

∣

∣

∣

1− ||Ui
−1Li

−1x||
||e||

∣

∣

∣

∣

<
√
ǫM , (4.2)

where e = (1, . . . , 1)T is an ni× 1 column vector, x = Die, and ǫM is machine epsilon. If a block

does not satisfy (4.2), XPABLO replaces Di either by Ui or Li according to whether it is solving a

block upper- or lower-triangular system, respectively. For SCPRE, we use the same test as XPABLO

but always use the factor having the largest Frobenius norm to replace Di, where the Frobenius

norm of an n× n matrix B is given by

||B||F =

√

∑

1≤i,j≤n

|Bij |2.

5 Experiments

All of the experiments are conducted on an Intel 2.4Ghz Quad Core computer, equipped with

24GB RAM with a Fedora Linux operating system. For the experiments, we use matrices from the

University of Florida Sparse Matrix Collection (Davis and Hu 2011). The matrices we use come

from circuit simulation problems (CSP), semiconductor device problems (SDP), electromagnetics

problems (EMP), and optimization problems (OPT). We run three sets of comparisons using

these matrices. The first set contains 45 matrices with m ≤ 2 × 106 nonzeros. For this set,

we use mbs = 2000 in the experiments. The second set contains 13 relatively large matrices

with m ≥ 2 × 106 nonzeros. For this set, we use mbs = 5000 since they are larger. The third

set contains 12 average-size optimization matrices with 106 ≤ m ≤ 2.5 × 106 nonzeros. In

constructing the sets, we do not use matrices whose largest blocks in their BTF form have less

than mbs rows/columns. We also exclude, from the tables, any matrices on which none of our

preconditioned iterative solvers converged. The lists of the remaining 37 matrices in the first set,

12 matrices in the second set, and 6 matrices in the third set are given in Table 5.1.
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Table 5.1: Properties of the matrices used for the experiments. n is the dimension of the matrix,
m is the number of nonzeros, and n1 and n2 are the size of the largest and second largest blocks in
the BTF form. Note that n2 = 0 means that the matrix is irreducible, i.e., n1 = n. The column
Type shows the application from which the matrix arises. The sets are sorted first according to
the type of the problem and then their n1 values.

Matrix Group n m n1 n2 Type

Hamrle2 Hamrle 5952 22162 5952 0
rajat03 Rajat 7602 32653 7500 1
circuit 3 Bomhof 12127 48137 7607 1
coupled IBM Austin 11341 97193 11293 1
memplus Hamm 17758 99147 17736 1
rajat22 Rajat 39899 195429 26316 7672
onetone2 ATandT 36057 222596 32211 2
onetone1 ATandT 36057 335552 32211 2
rajat15 Rajat 37261 443573 37243 1
ckt11752 tr 0 IBM EDA 49702 332807 49371 44
circuit 4 Bomhof 80209 307604 52005 7
bcircuit Hamm 68902 375558 68902 0
rajat18 Rajat 94294 479151 84507 52 CSP
hcircuit Hamm 105676 513072 92144 4927
ASIC 100ks Sandia 99190 578890 98843 2
ASIC 100k Sandia 99340 940621 98843 2
ASIC 680ks Sandia 682712 1693767 98843 2
rajat23 Rajat 110355 555441 103024 216

SET twotone ATandT 120750 1206265 105740 6
1 trans5 IBM EDA 116835 749800 116817 1

dc2 IBM EDA 116835 766396 116817 1
G2 circuit AMD 150102 726674 150102 0
scircuit Hamm 170998 958936 170493 216
transient Freescale 178866 961368 178823 11
Raj1 Rajat 263743 1300261 263571 5
ASIC 320ks Sandia 321671 1316085 320926 6
ASIC 320k Sandia 321821 1931828 320926 6
utm5940 TOKAMAK 5940 83842 5794 1
dw4096 Bai 8192 41746 8192 0 EMP
Zhao1 Zhao 33861 166453 33861 0
igbt3 Schenk ISEI 10938 130500 10938 0
wang3 Wang 26064 177168 26064 0
wang4 Wang 26068 177196 26068 0
ecl32 Sanghavi 51993 380415 42341 1 SDP
ibm matrix 2 Schenk IBMSDS 51448 537038 44822 1
matrix-new 3 Schenk IBMSDS 125329 893984 78672 1
matrix 9 Schenk IBMSDS 103430 1205518 99372 1

ASIC 680k Sandia 682862 2638997 98843 2
G3 circuit AMD 1585478 7660826 181343 0
rajat29 Rajat 643994 3760246 629328 71 CSP
rajat30 Rajat 643994 6175244 632151 0
Hamrle3 Hamrle 1447360 5514242 1447360 0

SET memchip Freescale 2707524 13343948 2706851 0
2 offshore Um 259789 4242673 259789 0

tmt sym CEMW 726713 5080961 726713 0 EMP
t2em CEMW 921632 4590832 917300 1
tmt unsym CEMW 917825 4584801 917825 0
para-4 Schenk ISEI 153226 2930882 153226 0 SDP
ohne2 Schenk ISEI 181343 6869939 181343 0

ex data1 GHS indef 6001 2269500 6001 0
boyd1 GHS indef 93279 1211231 93279 0

SET majorbasis QLi 160000 1750416 160000 0
3 c-73b Schenk IBMNA 169422 1279274 169422 0 OPT

c-big Schenk IBMNA 345241 2340859 345089 2
boyd2 GHS indef 466316 1500397 466316 0
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In our experiments, we restarted GMRES (Saad and Schultz 1986) after every 50 iterations.

The desired error tolerance for GMRES(50) is set to ǫ = 10−8 and the stopping criterion we use for

GMRES is
||AM−1z− b||

||b|| < ǫ

where z = Mx, with z the computed solution of the preconditioned system and x the computed

solution of the original system. After obtaining the solution x to the original system, we compute

the relative error ||Ax− b||/||b|| to the unpreconditioned system. For all cases, this error is

smaller than 10−7 and indeed, for most of the cases it is also smaller than ǫ.

The maximum number of outer iterations is set to 20, hence the maximum number of inner

iterations is 1000. In the tables, we give the inner iteration counts when this criterion is satisfied.

Otherwise, if the criterion is not satisfied, we put “− ” in the table to denote that GMRES did not

converge. Also, we put the lowest iteration count for each matrix in bold font.

To compare the efficiency of the preconditioner, we used a generic preconditioner, ILUT (Saad

1994, Saad 2003), from MATLAB 7.11 with two drop tolerances, dtol = 10−3 and 10−4. In

addition to ILUT, we also compared our results with those of XPABLO (Fritzsche 2010, Fritzsche et

al. 2007). For all of the preconditioners, we use MC64 and obtain a maximum product transversal

by scaling and permuting the matrix as a preprocessing step.

In the MATLAB implementation of ILUT, for the jth column of the incomplete L and U,

entries smaller in magnitude than dtol × ||A∗j || are deleted from the factor where ||A∗j || is the

norm of the jth column of A. However, the diagonal entries of U are always kept to avoid a

singular factor. For the ILUT based preconditioners, we use AMD before computing the incomplete

factorization of the matrix. For XPABLO preconditioners, we use the J variant for the block Jacobi

iterations, and LX and UX variants for the forward and backward block Gauss-Seidel iterations,

respectively, with the parameters given in Fritzsche et al. (2007). For the maximum block size of

XPABLO, we used the same mbs as for SCPRE. We note that the authors of XPABLO recommend a

value for mbs of 1000 (Fritzsche 2010) but, in our experiments, we found the value 2000 to work

better and found that it was necessary for our larger problems to avoid failure in XPABLO.

SCPRE will automatically find the BTF for a reducible matrix. To be fair to the other

algorithms that do not detect this form, we use this reducibility information also for the ILUT

and XPABLO preconditioners. That is, when using ILUT (XPABLO) for reducible matrices, we

first compute the BTF form and apply ILUT (XPABLO) only to the blocks on the diagonal. For

smaller blocks, we compute the complete factors. We then use these complete and incomplete

factors together while computing a matrix vector product using M−1. Our experiments show

that this approach is almost always better than using ILUT (XPABLO) in a straightforward manner

in terms of iteration count. We also tried this approach while using the J variant of the XPABLO

preconditioner. Surprisingly, even for the block Jacobi case, this approach helps to reduce the

iteration counts slightly for most of the reducible matrices. We call this variant J-red in the

tables below. Note that for the block Gauss-Seidel case, when we apply XPABLO (or ILUT)

only to the large blocks in the BTF form of a reducible matrix, we keep all of the nonzeros

in the preconditioner from the off-diagonal blocks. However, for block Jacobi iterations, we

automatically drop them from the preconditioning matrix M since its desired structure is block

diagonal, not block triangular.

In addition to the number of iterations required for convergence, we compare the performance

of the preconditioners according to the relative memory requirement with respect to the number

17



of nonzeros in A. Let nz(B) be the number of nonzeros in a matrix B. For ILUT, the relative

memory requirement is equal to

memILUT =
nz(L) + nz(U)

nz(A)
,

where L and U are the incomplete triangular factors of A. On the other hand, the relative

memory requirement for SCPRE and XPABLO is equal to

memSCPRE = memXPABLO =

∑k
i=1 (nz(Li) + nz(Ui))

nz(A)
,

where k is the number of blocks in the block diagonal D and Li and Ui are the lower- and upper-

triangular factors of the LU factorization of the ith block in D. Note that the relative memory

requirements of the preconditioners can give an idea for the cost of computing M−1x. Assuming

x is a dense vector, a preconditioned GMRES iteration will require approximately nz(A)(1+memX)

operations for the preconditioner generated by the algorithm X.

There are two parameters for the proposed algorithm: the first is the maximum block

size, mbs, the second is the permutation for the nonzeros, denoted by σ0. As expected, our

experiments (not reported here) show that increasing mbs usually reduces the iteration counts

and increases the relative memory requirements of the solver.

We conduct some experiments to show the effect of our choice of σ0 on the performance of our

algorithm. Note that in HD the edges are sorted in increasing order with respect to their weights.

In our implementation, we define the weight of an edge as the magnitude of the corresponding

nonzero and sort the edges in decreasing order. We test our decision by comparing its effect with

that of a random permutation. As Table 5.2 shows, our decision to sort the edges in decreasing

order with respect to the edge weights makes the solver converge more quickly.

Table 5.2: Effect of the permutation σ0 on the number of iterations. Two options are compared:
decreasing order with respect to the edge weights and a random order. Maximum block size for
SCPRE is set to 2000 where the structure of M is block upper-triangular. For each case, the ratio
of the total magnitude in M to the total magnitude in A, the relative memory requirement, and
the number of inner iterations for preconditioned GMRES are given.

Decreasing Random

Matrix
∑
|Mij |

∑
|Aij |

memSCPRE iters

∑
|Mij |

∑
|Aij |

memSCPRE iters

Hamrle2 0.998 2.03 16 0.993 2.05 157
rajat03 0.999 1.07 2 0.997 1.02 5
circuit 3 0.996 1.45 9 0.987 1.23 445
coupled 0.998 1.57 11 0.992 1.58 34
memplus 0.999 1.03 5 0.998 1.03 7
rajat22 0.973 1.20 21 0.962 1.15 -

5.1 Experiments with block Gauss-Seidel iterations

Table 5.3 shows the performance of SCPRE and XPABLO for block Gauss-Seidel iterations and their

comparison with ILUT. Note that both SCPRE(dec) and SCPRE(RCM) are robust; that is, the solvers

converge for most of the matrices. Although there are a few matrices for which the SCPRE(RCM)

preconditioned solver converges more quickly than that preconditioned with SCPRE(dec) (such as

ASIC 680k) and, amongst all preconditioners, only SCPRE(RCM) converges for matrices onetone1

and onetone2, SCPRE(dec) is almost always better and is our preferred preconditioner.
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In general, all the preconditioners work well for the matrices in the first set. However,

SCPRE(dec) is the most robust since the preconditioned solver fails to converge only for 3 out

of 37 matrices whereas the next best result is 9 by XPABLO variants. Thus SCPRE(dec) is the best

block preconditioner on this set of matrices. When comparing SCPRE(dec) to ILUT(10−4) on this

set we see that they are comparable in terms of the number of best performances but ILUT(10−4)

is less robust failing to converge for 10 matrices in this set and requiring more memory than

SCPRE(dec).

For the second set, ILUT(10−4) is the best preconditioner in terms of robustness and iteration

count. For the matrices in this set, the ILUT(10−4) preconditioned solver fails to converge in only

2 out of 12 matrices whereas SCPRE(dec) does not converge on 4. Although ILUT(10−4) is better

than SCPRE(dec) for 10 out of 12 matrices in the second set, its average relative memory usage

is 9.39 which is almost 3 times as much as the relative memory requirement of SCPRE(dec). Note

that, for the second set, even ILUT(10−3) uses slightly more memory than SCPRE(dec). However,

it fails to converge on 7 matrices. Hence, if memory is the bottleneck, SCPRE(dec) may be a

suitable choice for preconditioning.

The performance of the SCPRE-based preconditioners depends on the application. For example,

as Table 5.3 shows, SCPRE(dec) preconditioned GMRES fails to converge in 3 out of 7 matrices from

electromagnetics applications. On the other hand, it fails to converge on only 4 of the remaining

42 matrices. Hence its performance is much better for circuit and device simulation applications.

Note that, even though some of these matrices are reducible, they have a large reducible block

with size much larger than mbs. That is, we still have a large subproblem to deal with. On the

circuit simulation and semiconductor device matrices, SCPRE works better than XPABLO which is

another block based preconditioner with a promising performance in practice for several matrix

classes (Benzi et al. 1997, Choi and Szyld 1996, Dayar and Stewart 2000). Note that we used

the BTF forms of the reducible matrices for both the XPABLO and ILUT preconditioners. Hence,

reducibility alone is not a reason for the good performance of SCPRE-based preconditioners.

5.1.1 Memory usage

As Table 5.3 shows, the memory usage of ILUT(10−4) is much more than that of XPABLO and

SCPRE. Table 5.4 shows the results of additional experiments conducted to further compare the

memory usage of SCPRE and ILUT preconditioners. There are 6 optimization matrices in the set.

SCPRE-based preconditioned solvers converged for 5 of them. For ILUT-based solvers with drop

tolerance 10−3 and 10−4, the numbers of matrices for which the solver converged are 4 and 5,

respectively. Hence, on this matrix set, SCPRE is as robust as ILUT. With respect to the number

of iterations, ILUT is much better with 7–8 iterations on the average instead of 36 for SCPRE. The

main reason for such a big difference is the matrix c-73b where the SCPRE preconditioned solver

requires 127 inner iterations. On the other hand, the average relative memory usage of ILUT

is 11–18 times more than that of SCPRE. This difference is due to the matrices c-73b and c-big

where ILUT’s relative memory requirements are 28.47 and 61.89, respectively. Additionally, for

the matrix boyd2 , ILUT could not generate a preconditioner since the maximum memory available

in the system, 24GB, is exceeded. Given that only 28MB is used to store boyd2 , the relative

memory requirement of ILUT is excessive. This shows that although SCPRE-preconditioned solvers

require more iterations than ILUT-preconditioned ones, SCPRE can still be a good replacement for

some matrix classes if the matrices are big and memory is the main bottleneck.
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Table 5.3: Number of inner iterations for GMRES using XPABLO, ILUT and SCPRE preconditioners
and block Gauss-Seidel iterations. For SCPRE and XPABLO, mbs is set to 2000 and 5000 for the
first and second sets, respectively. For SCPRE, we give the results using two permutations for
σ0, based on descending order and RCM. For XPABLO, we give the results for both the UX and LX
variants. For ILUT, the drop tolerance is set to 10−3 and 10−4. A ‘-’ sign indicates that the
preconditioned solver did not converge. Average relative memory requirements are computed by
taking the averages over the cases when the solvers converge.

XPABLO SCPRE ILUT

Matrix UX LX dec RCM 10−3 10−4

Hamrle2 31 31 16 28 6 4

rajat03 2 2 2 2 2 2

circuit 3 135 137 9 61 - -
coupled 12 12 11 13 6 4

memplus 9 9 5 18 15 9
rajat22 36 37 21 61 36 16

onetone2 - - - 248 - -
onetone1 - - - 297 - -
rajat15 - - 120 467 - 33

ckt11752 tr 0 197 188 19 323 - -
circuit 4 100 81 39 346 - -
bcircuit - - 40 620 568 93
rajat18 - - 11 - 393 54
hcircuit 8 9 9 21 9 5

ASIC 100ks 9 10 9 10 4 4

ASIC 100k 9 9 10 10 4 4

ASIC 680ks 3 4 3 4 4 4
rajat23 40 41 16 88 47 18

mbs = twotone - - 25 128 - 48
2000 trans5 9 9 5 7 7 6

dc2 13 12 12 11 10 6

G2 circuit - - 444 834 124 30

scircuit 741 764 317 977 - -
transient - - 33 - - -
Raj1 775 789 636 - 269 39

ASIC 320ks 4 4 1 4 2 2
ASIC 320k 5 5 2 3 3 3
utm5940 - - - - - 29

dw4096 881 798 13 141 24 10

Zhao1 7 7 4 9 4 3

igbt3 29 29 20 17 94 12

wang3 107 105 54 58 18 9

wang4 39 38 21 36 11 6

ecl32 99 99 30 32 32 13

ibm matrix 2 - 249 10 16 - -
matrix-new 3 85 86 30 41 - -
matrix 9 146 90 98 88 - -

Avg. relative memory 2.95 3.04 3.36 3.19 2.12 4.02

ASIC 680k 2 2 27 2 3 3
G3 circuit - - 357 422 212 81

rajat29 - - 11 - - -
rajat30 12 12 14 15 7 5

Hamrle3 - - - - - 17

mbs = memchip 26 27 10 20 8 5

5000 offshore 330 327 488 451 - 15

tmt sym - - - - - 69

t2em - - 876 - 132 38

tmt unsym - - - - - 136

para-4 - - - - - 433

ohne2 - - 196 - - -

Avg. relative memory 3.58 3.58 3.23 2.51 3.36 9.39
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Table 5.4: Number of inner iterations and relative memory usage of GMRES using SCPRE or ILUT
preconditioners with block Gauss-Seidel iterations for optimization matrices. For SCPRE, mbs is
set to 2000, and σ0 is obtained by using the descending order. For ILUT, the drop tolerance is
set to 10−3 and 10−4. The ‘*’ sign indicates that the memory of our machine (24 GBytes) is not
sufficient to obtain the preconditioner. The ‘-’ sign indicates that the preconditioner is obtained
but the solver did not converge in fewer than 1000 iterations. Average number of iterations
and relative memory requirements are computed by taking the averages over the cases when the
solvers converge.

SCPRE(dec) ILUT-10−3 ILUT-10−4

Matrix iters mem iters mem iters mem

ex data1 14 0.60 - - 23 0.47

boyd1 18 0.19 7 0.77 5 1.03
majorbasis 10 2.50 4 1.20 3 1.87
c-73b 127 0.72 10 14.19 5 28.47
c-big - - 6 30.39 4 61.89
boyd2 13 1.17 * * * *

Avg. 36 1.04 7 11.64 8 18.75

5.2 Experiments with block Jacobi iterations

Table 5.5 shows the performance of SCPRE and XPABLO preconditioners for block Jacobi iterations.

ILUT is not included here since it does not explicitly give a block diagonal structure. Similar to

the experiments with block Gauss-Seidel iterations, performance of SCPRE(dec) is better than

that of SCPRE(RCM) for the matrices in our sets. For XPABLO, applying the preconditioner only

to the blocks in the BTF form, variant J-red, reduces the number of iterations on 11 matrices.

Furthermore, for 5 of the matrices J-red converges whereas J does not. Note that there are

32 reducible matrices in the sets and J-red differs from J only for these matrices. Although

J-red required more iterations for convergence for matrices matrix new 3 and matrix 9, for the

matrices in our experiments, J-red generally performs better than J.

As Table 5.5 shows, SCPRE(dec) preconditioned GMRES converges for 36 matrices whereas

XPABLO’s J-red variant converges for only 24 matrices. The XPABLO based preconditioner has the

least number of iterations in only 8 cases whereas the SCPRE variants are better on 35 matrices.

The difference in the performance is not due to the relative memory usage of SCPRE variants. For

the first set, SCPRE(dec) uses only 8% more memory than XPABLO(J-red) on average and, for the

second set, its memory usage is much less.

In the right-hand side of Table 5.5, the execution times of the GMRES solver are given. As

the table shows, for most of the cases, the best solver in terms of iteration count has also the

best execution time. Note that there are some exceptions such as matrix 9 for which the solver

preconditioned by XPABLO(J) requires 49 iterations fewer than when preconditioned by SCPRE but

its execution time is slightly more. This is because, for this matrix, memXPABLO(J) = 8.43 and

memSCPRE(dec) = 3.69, and the cheaper cost of computing M−1x more than compensates for the

difference in iteration counts. For 39 matrices, a SCPRE variant has the best or very close to the

best time. In summary, SCPRE(dec) performs better than XPABLO variants in our block Jacobi

experiments.
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Table 5.5: Number of inner iterations and solver times (in seconds) for GMRES using XPABLO
and SCPRE preconditioners and block Jacobi iterations. The maximum block size mbs is set to
2000 and 5000 for the first and second sets, respectively. For SCPRE, we give the results using
two permutations for σ0, based on descending order and RCM. For XPABLO, we give the results
for the J variant which is used with the parameters suggested in Fritzsche et al (2007). The
J-red variant, described in the text, also uses the same parameters. A ‘-’ sign indicates that the
preconditioned solver did not converge. Average relative memory requirements are computed by
taking the averages over the cases when the solver converges.

# iterations solver time (in secs.)
XPABLO SCPRE XPABLO SCPRE

Matrix J J-red dec RCM J J-red dec RCM

Hamrle2 99 99 31 96 0.32 0.32 0.08 0.30
rajat03 7 3 4 4 0.03 0.01 0.01 0.01

circuit 3 680 327 19 179 3.72 1.81 0.07 0.93
coupled 43 22 21 25 0.22 0.09 0.08 0.11
memplus 17 17 8 33 0.08 0.08 0.03 0.19
rajat22 190 77 42 124 3.03 1.61 0.63 1.88
onetone2 - - - 627 - - - 9.62

onetone1 - - - 622 - - - 14.95

rajat15 - - 265 - - - 4.85 -
ckt11752 tr 0 - 776 36 - - 20.28 0.83 -
circuit 4 - 864 112 - - 27.48 3.33 -
bcircuit - - 107 - - - 3.06 -
rajat18 - - 16 - - - 0.39 -
hcircuit 16 15 16 40 0.43 0.47 0.43 1.55
ASIC 100ks 17 17 16 18 0.46 0.50 0.44 0.50
ASIC 100k 17 16 17 18 0.48 0.52 0.49 0.51
ASIC 680ks - 8 - 8 - 0.72 - 0.74

rajat23 203 140 32 208 9.29 7.65 1.17 9.09
twotone - - 49 322 - - 2.70 17.11
trans5 23 16 9 13 0.75 0.47 0.24 0.36
dc2 76 21 20 20 3.32 0.67 0.64 0.64

G2 circuit - - 833 - - - 56.55 -
scircuit - - 682 - - - 49.25 -
transient - - 186 - - - 13.60 -
Raj1 - - - - - - - -
ASIC 320ks 5 6 1 7 0.43 0.70 0.19 0.54
ASIC 320k 11 9 3 10 0.91 0.85 0.42 0.61
utm5940 - - - - - - - -
dw4096 - - 24 - - - 0.11 -
Zhao1 12 12 7 16 0.12 0.12 0.08 0.19
igbt3 60 60 32 26 0.52 0.52 0.21 0.17
wang3 263 263 140 138 3.26 3.26 1.96 1.78

wang4 91 91 39 79 1.24 1.24 0.54 1.02
ecl32 - - 79 90 - - 2.50 3.08
ibm matrix 2 - 344 22 30 - 12.29 0.65 1.09
matrix-new 3 184 248 71 95 13.21 20.20 4.64 6.79
matrix 9 208 240 257 346 14.85 18.80 14.41 21.83

Avg. relative memory 2.67 3.10 3.35 3.32

ASIC 680k - 3 - 3 - 0.54 - 0.54

G3 circuit - - 674 - - - 516.38 -
rajat29 - - 18 - - - 3.03 -
rajat30 43 22 24 27 11.84 4.59 5.12 6.12
Hamrle3 - - - - - - - -
memchip 41 50 17 38 53.39 74.55 14.60 38.82
offshore 883 883 - - 189.98 189.98 - -
tmt sym - - - - - - - -
t2em - - - - - - - -
tmt unsym - - - - - - - -
para-4 - - - - - - - -
ohne2 - - - - - - - -

Avg. relative memory 3.58 2.84 1.81 0.92
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5.3 Cost of generating the preconditioner

It has been the aim of this paper to establish the viability of using hierarchical decompositions

to obtain a block preconditioning matrix that greatly reduces the number of iterations of Krylov

solvers without requiring too much additional memory.

However, the cost of obtaining the preconditioning matrix is also important, especially if it

is being generated for the solution of a single system. The analysis presented in Section 3.1.1

shows that the complexity of the HD algorithm is O(m logm) which means that it scales well

as problem sizes increase. However, we note that the complexity of XPABLO is O(m + n) which

is thus linear in the order and number of entries in the matrix and could be expected to have

smaller generation execution times than SCPRE.

A straight comparison of generation times is not meaningful as our implementation is fully

in MATLAB without any low-level optimization whereas, for XPABLO, we used the available

implementation in C, for which the compiler directly optimizes the code for the machine. It is the

intention in future work to develop and optimize the implementation, but it is certainly outside

the scope of this present work.

However, there is no doubt that although our algorithm has good complexity bounds it is

quite complicated so we did time the generation of the SCPRE preconditioner on some of our test

matrices. For example, for the CSP matrices of Table 5.1, we found that SCPRE took between 2.5

and 9.5 seconds whereas XPABLO required between 0.25 and 1.40 seconds. Thus, although our

algorithm takes much longer, and would still be slower with an efficient implementation (which

we estimate would be about 5 times faster), the times are not unreasonable and indicate that our

approach is feasible even for one-off solutions. Indeed, if we look at the total cost, we are still

faster than XPABLO on several problems in the one-off case, and of course the greater robustness

of our more costly preconditioner compensates for this extra cost.

Table 5.6: Preconditioner generation times for 10 CSP matrices from the first matrix set in
seconds. For SCPRE and XPABLO, mbs is set to 2000. For XPABLO, the UX variant is used, and for
SCPRE, σ0 is obtained by using the descending order. For ILUT, the drop tolerance is set to 10−3.
Results are the averages of 5 executions.

Matrix XPABLO SCPRE(dec) ILUT-10−3

rajat15 0.23 5.92 0.71
ckt11752 tr 0 0.45 3.97 0.23
circuit 4 0.15 8.13 0.11
bcircuit 0.21 3.95 0.12
rajat18 0.23 7.31 0.08
hcircuit 0.28 5.03 0.09
ASIC 100ks 0.35 9.65 0.24
ASIC 100k 0.43 9.50 0.19
ASIC 680ks 1.40 9.96 0.28
rajat23 0.29 7.64 0.08
twotone 1.02 9.09 12.41

6 Conclusions and future work

Given a linear system Ax = b, we have proposed a method to construct generic block diagonal

and block triangular preconditioners. The proposed approach is based on Tarjan’s algorithm HD

for hierarchical decomposition of a digraph into its strong subgraphs. Although our preconditioner

SCPRE, is outperformed by ILUT for electromagnetics matrices, we obtain promising results for
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many device and circuit simulation matrices and we suggest using it with these types of problems.

In future research, the structure of graphs for different classes of matrices can be analysed to try

to understand the reason for the difference in performance.

There are two main parameters for the algorithm: the permutation σ0 of the edges and the

maximum block size mbs. For σ0, we used two approaches: the first sorts the edges in order of

decreasing weights. With this approach, we wanted to include nonzeros with large magnitudes in

our preconditioner. The second approach uses the well known reverse Cuthill-McKee ordering.

We tested this approach since a sparsity structure with a small bandwidth may be useful for

putting more nonzeros into the preconditioner. The permutation decisions are validated by the

experiments which also show that the first approach is usually better than the second. In future

work, other ways to generate σ0 can be investigated.

The second parameter, mbs, affects the memory requirement of the matrix significantly, and

hence the number of iterations required for convergence. The experiments show that for the

preconditioners ILUT, SCPRE and XPABLO, the memory requirement and the number of iterations

are inversely correlated. For the proposed preconditioner SCPRE, mbs needs to be set by the user

without knowing how much memory will be required by the solver. In future work, we will look for

a self-tuning mechanism which enables SCPRE to determine mbs automatically given the memory

available to store the preconditioner. A straightforward tuning mechanism, which combines the

blocks only when sufficient memory for the factors is available, can be easily implemented and

integrated into SCPRE. However, this simple idea still needs to be enhanced to optimize the

execution time of SCPRE and further reduce the number of iterations required for convergence.
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