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Abstract 

In the context of a Universal Seesaw model implemented in a left-right symmetric 

theory, we show that, by allowing the two left-handed doublet Higgs fields to develop 

different vacuum-expectation-values (VEV's), it is possible to account for the observed 

structure of the quark mass spectrum without the need of any hierarchy among the Yukawa 

couplings. In this framework the top-quark mass is expected to be of the order of its 

present experimental lower bound, mt ~ 90 to 100 GeV. Moreover, we find that, while 

one of the Higgs doublets gets essentially the "standard model" VEV of approximately 250 

GeV, the second doublet is expected to have a much smaller VEV, of order 10 GeV. The 

identification of the large mass scale of the model with the Peccei-Quinn scale fixes the 

mass of the right-handed gauge bosons in the range 107 to 1010 GeV, far beyond the reach 

of present collider experiments. Also all FCNC processes are consequently suppressed, in 

agreement with the present bounds. 
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The observed hierarchical structure of fermion masses does not have a satisfactory 

explanation in the Standard Model (SM) and in the conventional Grand Unified Theories 

(GUT's). In the quark sector, for example, which will be the subject of the present paper, 

the masses range from about 10 MeV for the u- and the d-quarks, to more than 100 

GeV for the top-quark. In the context of the SM, one can account for this large mass 

difference only assuming a corresponding hierarchy in the Yukawa coupling constants, 

which should then range from ~ 10-5 to ~ 1. Apart from the problem of understanding 

such a hierarchy, also the need of introducing unnaturally small ( 0(10-5)) dimensionless 

parameters is quite unpleasant, especially if we compare them with, e.g., the magnitude 

of the gauge couplings. In particular, since all masses, included those of the gauge bosons, 

arise from the Higgs-condensation mechanism as a consequence of the vacuum-expectation

value (VEV) V£~ 250 GeV developed by the SM Higgs doublet, it would be more natural 

to expect all masses to be of order 100 GeV. In other words, it is not easy to understand 

the lightness of the first and second generation fermions with respect to the weak scale. 

We recall that an analogous problem is the one related to the extreme lightness of the 

neutrino (mve :::; 18 eV), if compared for example to the electron mass. In this case, as is 

well known, a satisfactory explanation is furnished by the so-called "seesaw" mechanism 

(1], where the standard neutrinos get very suppressed masses as a consequence of the 

introduction of very heavy "singlet" fermions, the right-handed (RH) neutrinos ( v R "' vc L). 

The extension of this idea to all fermions give rise to the so-called "Universal Seesaw" 

(US) models (2-6], extensively studied in the literature by many authors and with many 

variants. These models are especially addressed to the study of two particular problems 

which do not find a satisfactory explanation in the context of the SM, namely the fermion 

mass hierarchy and the understanding of the family replication which is observed in the 

fermionic sectors. Although the observation we wish to make in the present paper is rather 

model-independent, we shall mainly refer to the various versions [3,5] of the particular US 

model which was proposed by Davidson and Wali in ref. [2]. 

Here we shall briefly summarize the main features of these models, referring for the 

notation and for further details to the papers in refs. [2-5]. Essentially the idea which lies 

behind this type of models is, as anticipated above, the extension of the neutrino-seesaw 

mechanism to all fermions. The model, which is naturally implemented in the context of 
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a left-right symmetric theory based on the gauge group SU(3)c ® SU(2)L ® SU(2)R ® 

U(1)B-L, is obtained by enlarging the fermionic content of the theory. More precisely, for 

each left- and right-handed fermion (JL(R)), is introduced a new heavy SU(2)L ® SU(2)R

singlet (FL(R)), which mimics the role of the RH neutrino of the standard (neutrino) 

seesaw scenario. That is, each ordinary fermion f (included the RH neutrino) has a singlet 

heavy partner F, with the same electric and color charges. While the fermionic sector is 

extended in this way, the Higgs sector of the model, on the other hand, is kept as minimal 

as possible; in fact, at the one-generation level there are only one left- and one right

handed Higgs doublets1
, if>L(2, 1)1 and if>R(1, 2)1 (respectively with VEV's V£ and VR), 

which couple the ordinary fermions to the heavy singlets. The latter get their large mass 

through the coupling with an extra odd-parity singlet Higgs field a(1, 1)0 which, developing 

a very large VEV, x, can also be used to induce the spontaneous breaking of the left-right 

symmetry a la Chang-Mohapatra-Parida [7]. In the multi-generation models, as we shall 

see below, in order to produce a mass hierarchy between the various fermion generations, 

one must introduce a suitable discrete symmetry broken spontaneously by < a >= X· In 

the previous papers [2-5], this symmetry, which also plays the role of a global horizontal 

symmetry, was identified with the axial U(1 )A introduced by Peccei-Quinn (PQ) in order 

to solve the strong-CP problem [8]. In this case the mass scale x will be in the range 1010 

to 1012 GeV [9]. Furthermore, as a consequence of the introduction of such an axial global 

symmetry, we have to double the number of the Higgs-doublets2 , resulting in two left- and 

two right-handed doublets, if>£1( 2)(2, 1)1 and if>R1 ( 2)(1,2)1 , distinguished by their opposite 

PQ-charge, and whose VEV's are denoted by v Ll(2) and v Rl(2). The important feature 

of the model is the absence of the "standard" (i.e., common to all conventional left-right 

symmetric models [10]) bidoublet Higgs field if>(2, 2)0 , resulting in the vanishing, at the 

lowest order, of Dirac masses for the ordinary fermions. This is the reason for which in 

this type of models the fermi on masses may only arise at higher order, and are therefore 

naturally suppressed. More explicitly, after the breaking of the gauge symmetry one gets, 

in a basis (!,F) (where fL(R) and FL(R) denote, respectively, some ordinary fermion and 

1 We adopt the standard notation, where (i,j)k label respectively SU(2)L, SU(2)R 

representations, and k is the quantum number of U(l)B-L· 
2 So that both the up- and the down-charge sectors get Yukawa couplings with the 

Higgs doublets [2,4]. 
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its heavy singlet partner), the following mass matrix of "seesaw-type" [2-5): 

(1) 

where ML, MR, Mu represent mass terms proportional, respectively, to the VEV's VLi, 

VRi, (i=1,2) and X· The diagonalization of this type of mass matrix leads, in view of the 

hierarchy among the VEV's, v Li ~ v Ri ~ X (which, as shown in ref. [3), corresponds to 

the minimum of the Higgs potential), to a very heavy singlet (F) of mass Mu (ex x), and 

a light "ordinary" fermion c~ f) with mass~ MLMR/Mu ( ~ vL), much smaller than the 

weak scale v L without the need of unnaturally small Yukawa couplings. This is the essence 

of the explanation, in the context of the US models, of the relative lightness of the first 

two generation fermions. The diagrammatic origin of their mass in the present model is 

shown in Fig.l of ref.[4). 

However, if in the SM the problem is the understanding of the smallness of some of 

the fermion masses, in the US models the problem is why, for example the top quark, is so 

heavy, with a mass unsuppressed with respect to the weak scale. This means that one must 

find a way of protecting the heavy fermions from getting a seesaw-suppression mechanism. 

At a naive single-generation level, this protection may be obtained by setting to zero in 

eq.(l) the mass term Mu for the corresponding singlet partner. In this case, in fact, the 

mass matrix in eq.(l) yields a heavy singlet with mass ~ MR and an ordinary fermion 

with an unsuppressed mass of order ML ( ~ MwL ), in agreement with our expectations 

for mt. The absence of the mass term Mu for the singlets may be imposed by introducing 

a suitable discrete symmetry, which, as shown in refs.[2-5), may be identified with the 

axial U(l)A global symmetry of Peccei-Quinn. In a more realistic multi-generation model, 

this protection from the US mechanism may be obtained by imposing the mass matrix for 

the heavy singlets to be singular (Det( Mu) = 0), and with a rank equal to the number 

of generations with masses much smaller than MwL. This is very important, because it 

means that in the framework of the US models, it may be possible to explain not only the 

relative lightness of some of the fermions, but also their hierarchical structure, without the 

need of assuming a corresponding hierarchy in the Yukawa couplings. 

In the previous papers [2,5), however, where for simplicity the VEV's of the two 

left- and the two right-handed Higgs doublets were assumed to be equal, z. e, V£ 1 = V£2 
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and Vrl = v R2, ·it was possible to generate a mass hierarchy only between the first two 

generations and the third one (m1 ,2 ~ V£VR/X, m3 ~ V£), without accounting for the 

mass difference between the first two. In ref.[5], for example, the mass splitting between the 

electron and the muon was obtained by fine-tuning the Yukawa couplings. In the present 

paper, on the other hand, in a model-independent way3 , we shall show that by relaxing 

the above assumption on the VEV's, and allowing in particular v Ll =f v L 2 , it is possible 

to explain the full structure of the quark mass spectrum, also obtaining a prediction for 

the top-quark mass. We recall that the only constraint on the two left-handed (LH) Higgs 

doublet VEV's is that ( v Ll 
2 + v L2 

2 
)

1 12 = v L ~ 250 Ge V, in order to reproduce the correct 

mass for the SM gauge bosons. 

Now, let us analyse in detail the structure of the quark mass spectrum. Of course, as 

usual when one studies the structure of mass matrices, it will be understood throughout 

the paper that all masses are actually the "running" masses evaluated at a fixed scale, say 

1-" = 1 GeV. The Review of Particle Data 1992 [11] and the results given by Leutwyler and 

Gasser in Ref.[12] then suggest the following structure: 

mu = 5.6 ± 1.1 Me V , md=9.9±1.1MeV, 

m 8 = 199 ± 33MeV, 

me = 1.35 ± 0.05 GeV, mb = 5.3 ± 0.1 GeV, 
(2) 

mt ~ 150GeV, 

where we have conveniently put on the same line the quarks characterized approximately 

by the same mass scale4 , namely the u and d, as well as the c and b. According to 

eq.(2), all quark masses may essentially be arranged in four distinct classes. The first two 

(including the u, d, and s quarks) require a seesaw suppression, while the last two ( c, b, 

and t quarks) should get unsuppressed masses. In particular, the top-quark mass being 

of the order of MwL, it may be assumed to arise from the contribution of the LH Higgs 

doublet whose VEV, v L2 , is of the order of the SM vacuum-expectation-value, v L ~ 250 

3 Our analysis is model-independent in the sense that it does not depend, for example, 

on the particular discrete symmetry chosen to protect the heavy fermions from the seesaw 

suppression mechanism. 
4 The lower bound of 150 GeV for mt(1 GeV) corresponds to a physical top-quark mass 

of about 91 GeV [11,12]. 
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GeV; so that mt = Y V£2 = L2, where Y is a "characteristic" Yukawa coupling constant. 

Then, we may give smaller masses (but still unsuppressed) to c and b by assuming their 

coupling to the other Higgs doublet, whose VEV, V£1, is taken to be much smaller than 

v L2 (so that v L2 ~ v L); so that mc,b ~ Y v L 1 = L1. As a consequence, the ratio of the 

two LH Higgs doublet VEV's may be fixed by choosing a specific value for the top-quark 

mass. In particular, if mt is taken to be of the order of its present lower bound, we get 

tan f3 = V£1/V£2 ~ mc,b/mt ~ 1/30. Now, we notice that this is also approximately equal 

to the ratio of the mass scales characterizing the first two classes, mv.,d/m 8 • Therefore, 

we may be able to fit all masses, by saying that the three smaller quark masses are all 

suppressed, but while u and d couple to the Higgs doublet whose VEV is v L 1 , the s-quark 

couples to the other one, with the larger VEV equal to V£2 . More explicitly, we shall set 

mu,d ~ YvLlvR/X = L 1R/K, and m 8 ~ Yv£2VR/X = L2RjK. Since in the present model 

the fermion mass hierarchy does not arise from large differences of the Yukawa couplings, 

we are essentially assuming that they are all within one order of magnitude5 . The above 

structure of the spectrum can easily be implemented in an ansatz for the up- and the down

quark mass matrices, written respectively in a basis (ui, Uj) and (di, Dj), where i,j=1,2,3, 

are generation indices. Referring to the notation introduced in eq.(l), where now ML, MR, 

and Mu are of course 3x3 matrices, we have6 : 

(
L1 · · ) 

· L1 · 

· L2 
(3a) 

diag(K,O,O), (3b) 

for the up-quark sector, and: 

(4a) 

5 Actually, we are assummg that also the Yukawa couplings in the RH and in the 

singlet sectors are similar to those characterizing the couplings with the LH doublets, i.e., 

R ~ Yv R , and K ~ Y X. 
6 For simplicity, we assume all mass matrices to be real, disregarding the possibility of 

spontaneous CP violation. 

6 



Mud = diag(K, K, 0), ( 4b) 

for the down-type quarks. In both cases the lower-left sub-matrix M R may be any arbitrary 

non-singular 3x3 matrix with elements proportional to the VEV of the RH Higgs doublets, 

VR1 = VR2 = VR· In the upper-right sub-matrices ML we have fixed only the diagonal 

elements, with L 1 = YvL 1 and L2 = YvL 2 ; the off-diagonal "dots" standing for (relatively 

small) unspecified terms responsible for the observed quark mixing. Since here we are 

mainly interested in understanding the structure of the mass spectrum, leaving aside the 

problem of explaining the observed structure of the Cabibbo-Kobayashi-Maskawa (CKM) 

mixing, we shall not try to fix these off-diagonal elements. It is interesting to notice, from 

eqs.(3b) and ( 4b ), the different rank of the singlet mass matrices Mu (where, we have set 

K = Yx) in the two sectors, corresponding to the seesaw-suppression of two generations 

for the down-quarks, and of only one generation for the up-quarks. 

Since these 6x6 mass matrices, being of the form shown in eq.(l), are non-symmetric 

and therefore non-hermitian, in order to evaluate the corresponding (real and positive) 

eigen-masses, one must consider the hermitian matrices MuMu T and MdMdT, whose 

eigenvalues give in fact the fermion masses squared. We have explicitly studied the leading 

behaviour of the invariants (6.1 =Trace, ... , 6.6 = Determinant) of these matrices, for an 

arbitrary form of MR (also including small off-diagonal terms in ML which generate the 

mixing among the different generations). In particular, using the hierarchy K ~ R ~ 

L2 ~ Lt, and also taking into account the changing of the rank of Mu and M d in the 

limits V£1(2)/VR --? 0 and VR/X --? 0, we get the following relations for the eigenvalues 

Aiu(d) ( i = 1, ... , 6) of MuMu T and MdMdT: 

>.sd + >.6d ~ 6.1d, 

>.3d ~ 6.4d/ 6.3d , 

and: 

where, in leading order: 

A4u + Asu ~ 6.zu/ 6.1u, 

A2u A3u ~ 6.su/ 6.3u, 

7 

>.4d ~ 6.3d/ 6.2d , 

Atd >.2d ~ 6.6d/ 6.4d, 

A4u Asu ~ 6.3u/ 6.1u, 

Atd ~ 6.6u/ 6.su , 

(5a) 

(5b) 



~Id~ 2K2
, ~2d ~ K 4

, 

~4d ~ K 4 R 2 L1 2 
, ~sd ~ K 2 R4 L1 2 L2 2 

, 

and: 

~2u "' 2K2 R2 
, 

A ,....., K'2R4L 2L 2 L.l.5u - 1 2 , 

~3d~ 2K4 R2
, 

~6d ~ R6 L1 4 L2 2 
, 

~3u ~ K 2 R4
, 

~6u ~ R 6 L1 4 L2 2 . 

(6a) 

(6b) 

Since the .Xiu(d) 's are, for i=1,2,3, just the masses squared of the three ordinary up- (down-) 

quarks, from eqs.( 5,6) we get the following formulre: 

(7) 

consistent with the observed structure of the mass spectrum, as given in eq.(2). Of course, 

these formulre give the correct masses up to small (of order 0( 1)) numerical factors, which 

depend on the particular form chosen for MR and for the (small) off-diagonal elements in 

M£. Eqs.(7) are our main results. By using the actual quark masses, they allow us to 

predict the various parameters of the model. First of all, we see that in our framework the 

not yet observed top quark is predicted to have a mass (at p;=l GeV) of order: 

mt ~ mb ( ms ) ~ 150 GeV, 
mu,d 

(8) 

equivalent to a physical mass of the order of its present lower bound, ~ 90 to 100 GeV. 

Then, as we have already shown above, we predict tan ,8 - V£1/V£ 2 ~ mu,d/ms ~ 1/30, 

which corresponds to a VEV for the second LH Higgs doublet of the order ~ 10 GeV. 

Moreover, since V£1 ~ V£2 ~ VL ~ 250 GeV, the order of magnitude of the Yukawa 

coupling for all quarks is expected to be of order Y ~ mt/v L2 ~ 0.6. Such a magnitude 

for this dimensionless parameter is certainly much more natural than the value needed in 

the SM to accomodate the first generation fermions (YsM ~ 0(10-5 )). Of course, since 

in the present model we may only account for the four different mass scales occuring in 

the quark spectrum according to eq.(2), the observed splitting between me and mb, and 

between mu and md, may be explained through the differences in their actual Yukawa 

8 



coupling constants; the important feature is that in this model all Yukawa's are all of 

the same order, and do not need to be chosen unnaturally small. Furthermore, the three 

lighter quarks allow us to predict the size of the "seesaw" suppression factor; e.g.: 

R VR md 1 _,.....,_,.....,_,.....,_. 
K- X - mb- 600' (9) 

(if we had used the mass ratios mu/me and mt/m8 , we had obtained, respectively, 1/300 

and 1/750, all within about a factor of two). In order to estimate the actual scale of the 

SU(2)R 0 U(1)s-L breaking down to U(1)y, we need to fix the large mass scale x = 
< a >. In view of the identification [2-5] of the singlet Higgs field a(1, 1 )0 with the scalar 

responsible for breaking the Peccei-Quinn U(1)A symmetry a la Dine-Fishler-Srednicki 

(DFS) (14], we may use the astrophysical and cosmological constraints [9] on the axion to 

restrict X in the range 1010 to 1012 GeV. Consequently, from eq.(9) we may conclude that 

in the present model the mass scale of the RH gauge bosons WR, Z', is very large, say 107 

to 1010 GeV, far beyond the reach of the present terrestrial experiments. Incidently, this 

also implies that not only the right-handed current interactions are suppressed, but also all 

flavour-changing neutral current (FCNC) processes, which as shown in ref.[4] are always 

proportional to the ratio v L 4 
/ ( v RX?, are well consistent with the present experimental 

bounds. 

In conclusion, we have considered a Universal Seesaw model which, allowing the two 

LH Higgs doublets to develop different VEV's, may account for the observed structure 

of the quark mass spectrum as given in eq.(2), without requiring any hierarchy or any 

unnaturally small value for the Yukawa coupling constants. In this framework the top 

quark mass is expected to be in the region of its present lower bound. Furthermore, we 

have been able to predict that, while one of the LH Higgs doublets gets a VEV essentially 

equal to the Standard Model one (vL2 ~V£ ~ 250 GeV), the other doublet, responsible 

for the mass of the b- and the c-quarks (but also for the seesaw-suppressed masses of u 

and d), has a much smaller VEV of order 10 GeV. In this paper we have not considered 

explicitly the quark mixing and CP violation. A more detailed model, also addressed to 

the understanding of the structure of the CKM mixing matrix is in progress, and will be 

presented elsewhere (14]. 
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