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Abstract 

. 
lll 

We present a general scheme for generating (2, 2) symmetric fermionic stri~ 
models and classify the models in D = 8 and D = 6 space-time dimensions with one 
twist. It is pointed out that they allow the geometrical interpretation as generalised 
torus compactifications. Their relation to other compactifications is discussed and 
the overlap with orbifolds is determined. 
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Since string theory is an appealing candidate for the unification of gravity with gauge in­
teractions, an extensive knowledge of the possible string theories in four dimensions is of wide 
interest. The most promising candidate so far is the heterotic string, but its construction can 
only be considered to be unique in D .= 10 space-time dimensions (if we choose the rriore promis­
ing version with gauge group Es ® E~). Any further reduction of space-time dimensions leads 
at first glance to an embarrassingly large number of models. This is especially true in the case 
of D = 4. Further studies however, have revealed that there are a suprisingly small number 
of (potentially phenomenological viable) models. Let us review the present situation for three 
large classes of models: 

Compactifications on Calabi-Yau manifolds have been partially classified in Ref.(2]. Many 
of the models are related and· there are only a few three generation models (3,4]. Of special 
interest here is the subclass of models that may also, .be realised by means of minimal N = 2 
superconformal models (5]. They belong to special Calabi-Yau manifolds with fixed moduli and 
therefore allow the extraction all information relevant to their phenomenology (6]. In addition, 
four dimensional string theories may be constructed from superconformal theories directly (7]. 
However only a little is known about them. · 

Orbifolds are an especially interesting class of compactified string models. Their phenomena­
logical implications have been studied in great detail (9]. ZN ® ZM orbifolds seem to correspond 
to some of the (2, 2) compactifications by N = 2 minimal superconformal models (10], whilst 
ZN orbifolds do not. 

The last large class of models uses free fermions to construct models directly in four di­
mensions, and the task of finding a phenomenologically viable model has received considerable 
attention [13]. They again belong to compactifications with fixed moduli. This class has been 
compared to orbifolds in Ref.[17] by using theta-function identities. We will confirm their result 
from another point of view. 

Since the fermionic construction is very well suited for model building, one should try to 
clarify its relation to the other classes of compactification which to date remains rather obscure. 
In order to do this we shall attempt to classify fermionic string models, and to compare them 
to other models systematically. We begin ·in this letter with the case of D = 8 and D = 6 
and postpone the study of D = 4 to Ref.[20]. This is because in these higher dimensions the 
models are reduced drastically in number, but still show the main features of their respective 
compadifications. 

We furthermore restrict ourselves to symmetric (2, 2) models with the maximal gauge group 
g®Ev;2+4®E~ where g is a model dependent gauge group of rank 2,5,8 forD= 8,6,4 respectively 
(for details see [19]). Further breaking of the gauge group by embeddings of twists s~10uld 
then work in the usual way, and will not spoil the relevance of the classification. Nonabelian 
embeddings that lower the rank are also not considered. They correspond to using real fermions 
in the fermionic string formulation. In addition, restricting the discussion to left-right symmetric 
models also allows a direct interpretation as a compactification. 

We begin with a general discussion of the construction of (2, 2) fermionic strings that possess 
left-right symmetry. We shall construct the models using the formulation of Ref.[12] with only 
complex fermions. The internal fermions then have phases associated with them ar, br, er; 1' = 
1, · · · 5- D /2 which come in triplets for left and right movers and fulfill the constraint 

mod(1). (1) 

This constraint follows from the periodicity or antiperiodicity of the superpartner of the stress-
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energy tensor. As shown in Ref.[12] one derives the N = 1 superconformal algebra on the 
world-sheet. The extension toN = 2 (18] is rather cumbersome, and it is not possible to realise 
the N = 2 algebra for co~plex fermions in a closed form. In general only matrix elements of 
the conformal fields are known. The exception to this statement is the case where one complex 
fermion is only ever periodic or antiperiodic in its boundary condition. It is then possible to 
immediately form an N = 2 superconformal algebra 

T(z) = 

c+(z) 
c-(z) 

J(z) 

1 3 - --L: (: 1/JJh/Ji: +: tPiOtPi :) 
2 i=1 
-it/11(: 1fi3tP3: -i: 1fi2tP2 :) 

-i1fi1 (: 1fi3tP3 : +i : tP2tP2 :) 
(2) 

m a complex notation related to the real one by t/J = ~( t/;1 + it/;2), X = ~(X1 + iX2). 
Furthermore the space-time supersymmetry generator may only be realised in a. closed in the 
simplest of cases. In order to compare models with only free fermions to any of the models 
with internal manifold coordinates we can simply bosonise two of the complex fermions into one 
complex boson for each triplet (here we also require left-right symmetry); 

•1 •. -· eiH . o/'l -. • (3) 

With this bosonisation we get immediately a torus compactification. But this torus with its 
coordinates Hi does not always have the usual compactified former ten dimensional coordinates 
as such. This is already obvious from the fact that supersymmetry requires that a compactified 
coordinate Xi and its supersymmetric partner tPi fulfill the following boundary conditions: 

gXi( u1. u2) = Xi( u1 + 271', u2) 

hXi( u1. u2) = Xi( u1o u2 + 271') 

g-1 Si{u1, u2) = Si(u1 + 21r, u2) 

h - 1 Si( u1, u2) = Si( u11 u2 + 271') 

= e-211'ill; Xi( 0'1, u2) + 11'Vi 

-211'i"'·x ( ) = e '~'• i 0'1, 0'2 + 7l'Ui 

= e+211'ill; Si( O't. u2) 

= e +211'i,P; si ( 0'}1 0'2)' (4) 

where for an abelian orbifold g, hare commuting elements of an abelian discrete group and Ui, Vi 

are bosonic shifts that define a lattice. Here only fermions with diagonal boundary conditions are 
used, and so a model without twists on the Hi is created. The above relations including twists 
may be fulfilled using fermions with periodic and anti-periodic boundary conditions however. 
In the case of several compactified dimensions, it has been conjectured Z2, Z4 and Zs orbifolds 
are realised in this way [17,16]. This fact also gives a simple interpretation for the connections 
between the theta-functions found in Ref.[17]. 

Only for the special choice of boundary conditions above (i.e. 81, </>1 E {0,!}) do we have 
the ~sual bosonic interpretation, by making the identification 

The algebra is then 

T(z) 

c+(z) 

a-(z) 

J(z) 

hox = i(: 1fi3t/J3: -i: 1fi2t/12 :). 

1 - - -
"2 : tP10tP1 : + : tP10tP1 : - : oX oX : 

-../2t/J1oX 
-../21/JioX 
: ;jjl tP1 : 
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as required. Nevertheless our approach is in the above sense more general than that of Ref.[8] 
in that we do not require the relations in Eq.( 4) to hold for fermionic and bosonic coordinates 
simultaneously. We simply include all cases where, in the algebra in Eq.(2), twist in the fermionic 
'1/Ji 's are .compensated by phases in the other fermions or after bosonisation by lattice shifts r.ather 
than twists in the bosonic coordinates. This corresponds to an embedding of the shifts ui, Vi 

into the gauge group for the left movers. We are effectively therefore considering tori with more 
complicated spin-structures1 . 

It is these spin structures which can lead to more complicated models possibly related to 
orbifolds. To be more explicit, what we require for an orbifold interpretation are identifications 
along the lines of Eq.(5), but such identifications are of course only possible if the partition 
function remains the same. This has been shown for a Z2 orbifold in for example Ref.[14]. 
fu fact searching directly for this equivalence of partition functions was exactly the approach 
adopted in Ref.[17]. 

At this point we should also state the relation to the orbifold construction of Ref. [11]. Here 
one uses the heterotic string in a fully b<;>sonised form for the left movers and also requires ( 4). 
Our interpretation belongs to using mixed R- V vectors of the type R - V = (0, ek, (0, vk) I 
(0r,vr)), k = 1,2,3, I= 1, · · ·, 11 in the authors notation. 

fu addition to the Z2 , Z4 , Z8 orbifolds there is another class of models that may overlap with 
fermionic strings. As already pointed out in Ref.[l6J, there is the possibility of fermionic strings 
with nondiagonal boundary conditions. In the case that the boundary conditions of the fermions 
transforming into each other are the same, we find permutational orbits of fermions. Now it is 
possible that such a permutational modding may be absorbed into different diagonal boundary 
conditions in the fermionic string. On the other hand it could belong to a permutational modding 
of the compactified bosonic coordinates via Eq.(3), or to a phase modding in a diagon~lised 
bosonic basis or all of the above. This open question will be discussed further in Ref.[20]. 

Having concluded our general discussion we now set up the framework and the conventions 
for the classification. We shall use the notation of Ref.[12] in which the light cone gauge is 
chosen to render the string action down to that of a free field theory on the world sheet, and all 
the internal degrees of freedom are expressed as fermions. In general one expects the fermions to 
transform into each other after being parallel transported around the world sheet. However we 
will restrict ourselves here to a basis in which these boundary conditions become simple phase 
shifts on the fermions. In the case of complex boundary conditions we are restricted to gauge 
groups of a fixed rank of 18,20,22 in D = 8, 6, 4 respectively. A set of linearly independent 
'basis vectors' wi is chosen to generate all the possible boundary conditions for the fermionic 
degrees of freedom in a particular model. Sectors are represented by different points on the 
lattice 'spanned' by the basis vectors, aW = I:i aiWi mod(1), where ai may take only integer 
values. For the heterotic string in D dimensions, the vectors Wi may take the form 

Wi={ (si)D/ 2-l,(ai,bi,ci) \ wi ], (7) 

where r = (1, · · ·, (10- D)/2) and l = (1, · · ·, 26- D). The explicit form of the world sheet 
supercurrent also implies the triplet constraint, 

mod(1). (8) 

1Such an embedding implies a non trivial cohomology for the exterior derivative, dH, of the field 
strength associated with the antisymmetric tensor B. Furthermore this requires additional terms in 
the 10 dimensional supergravity action used in the er model approach, reflecting the non-perturbative 
character of the string solution. 
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Imposing modular invariance yields a set of vector constraint&, 

kij + kji 

mjkij 

1 
kii + kio +si- 2 wi · wi 

wi.wj 
0 

0 mod(1), (9) 

where the kij are the structure constants, and ffij is the least common denominator of the 
boundary conditions appearing in Wj. The dot product is defined by 

""""' w~w~-LJ ~ J L WfWj. (10) 
left k right k 

In addition to the above, modular invariance gives us a set of GSO projections, which req:uire 
that physical states must satisfy 

mod(1), (11) 

where Na.w are the number operators, and a summation over repeated indices is implied. In 
terms of the charge operator 

{12) 

we have 
mod(1). (13) 

Our purpose here is to generate (2, 2) models. Without loss of generality (as we shall show 
presently) we choose the first four vectors to be of the form, 

Wo [ ( ~ )D/2-1 ( ~ ~ ~ )(10-D)/2 I ( ~ ~ ~ )(10-D)/2 ( ~ )(6+D)/2 (~)a 
2 '2'2'2 2'2'2 '2 '2 ] 

W1 [ (~)Df2-1,(a~,b~,c~) j (O,O,o)(10-D)/2,(o)(6+D)/2,(0)a J 

w2 [ (O)D/2-1, (O, O, 0)(10-D)/2 (ar br er) (~)(6+D)/2 (O)a 
1' 1' 1 ' 2 ' ] 

W3 [ (O)D/2-1, (O, O, o)PO-D)/2 (O, O, 0)(10-D)/2, (0)(6+D)/2, (~)a ] . (14) 

The W 0 vector is needed to have a modular invariant theory, and to give the gravity multiplet. 
The W 1 and W 2 vectors implement supersymmetry on the right and left side (which for the 
heterotic string implies an En; 2+4 gauge group). Finally, in order to give a second E~ factor in 
the gauge group we have the W 3 vector. Thus we get copies of N = 2 algebras on each side, 
establishing a (2, 2) model. In this sense the models can be viewed as a Gepner-like construction 
with internal copies of the N = 2 minimal superconformal models from free fields. 

The numerical survey of the spectra generated by the above vectors reveals the remarkable 
fact that, for any choice of (a}, b'J:, c'J:), the theory generated has the maximal supersymmetry 
(and so Ea® E~ gauge groups), and therefore corresponds to a torus compactification in the usual 
sense. Specifically this means that in IY = 8, 6, 4 we find N = 1, 2, 4 space-time supersymmetry 
respectively, and an Ea ® E~ gauge group. 

Before continuing, we need to show that with such a choice of vectors one may obtain all 
possible left-right symmetric models_ To do this we prove a useful general result, which is that 
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a set of {Wi} is equivalent to any other {WH, (i.e. gives the same set of models) provided that 
the boundary conditions generated are identicat This will then ensure that the choice of vectors 
in Eq.(14) is sufficient to cover all possible models without twists if one includes all values of 
kij's. 

The proof is as follows. Since we wish to generate the same boundary conditions we must be 
able to express each Wi as a linear combination of {Wi}· So consider the case where we have 

w~ 
t 

W'· 
J 

wi for i =1- j, 

Wt + Wj, lE i. (15) 

Clearly the WL i =/:- j projections in Eq.(ll) for any sector a.W are unchanged if kij = kij +kit· 
The kji are then determined by Eq.(9). The remaining projection is 

W'-·Nw 3 a k'··CXi + s'· + k0' · - W'· · a.W 3t 3 J J 
I --

-(kij + kit)ai + Sj + St + koj + kot- wj. (a.W- a.W) 

-(kij + kiz)ai + Sj + sz + koj + kot- (Wj + Wz) · ( a.W- a.W) 

Wj · Naw + Wt · Naw mod(1). (16) 

Thus the modular invariance conditions are also satisfied in the new basis. Since kij = kij + kit 
is satisfied for one choice of structure constant, any model generated in the old basis is also 
generated in the new basis. Extrapolation to general linear combinations then follows trivially. 

To go beyond torus compactification, we will need to add more vectors to break down 
supersymmetry. Such additional vectors, which we shall refer to as compactification vectors, 
may be either left-right symmetric, 

W [ (o)D/2-1 ( r b'" r) I (a,.
4

, br
4

, cr
4

), (0)(6+D)/2
7 

(0)8 ] , 4 = , a4, 4• c4 

or may occur in left-right symmetric pairs, 

(O)D /2-1 (a'" b'" er) 
' 4• 4' 4 

(O)D/2-1 (ar br c'") 
' 5• 5, 5 

(a~, b~, c~), (o)(6+D)/2, (0)8 ] 

(a~, b~, c~), (o)(6+D)/2, (0)8 ] , 

(17) 

(18) 

and so on. Such a model including W 4 or W 4, W 5 will be called "twisted", since it has the 
properties we already associate with a twist in other compactifications.For example we have an 
additional projection on the already existing untwisted sectors and the appearance of additional 
twisted sectors. For N = 1 the theories generated have the gauge group 

(19) 

where the first group, g, is some product of low rank subgroups coming from the compactified 
degrees of freedom. The selection of vectors above is not sufficient to guarantee a (2,2) com­
pactification since we still have to choose the structure constants. A poor choice of kij can spoil 
the (N = 2) algebra by projecting out some of the supersymmetry generators via the modular 
invariance conditions in Eq.(ll). This can lead to (0,2) or (2,0) models. Thus even at this stage 
we can have the equivalent of Wilson line breaking. Other compactifications like Calabi-Yau 
and Gepner models allow analogous breakings. In order to guarantee a (2,2) model we need to 
impose a condition on the structure constants. We do this by insisting that, given a gauge group 
G, there are the requisite number of gravitino degrees of freedom. 
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~et us now show that this is always possible by a suitable choice of ki;'s. The adjoints 
needed for building up G are always found in the W 0 sector. Thus we need only consider the 
sectors of the form 

Since the vacuum energy is [ER, EL] = [ -1/2, eL], they give the fermionic representation vectors 
for building up the exceptional group. These are of the form 

(21) 

where 6 is some combination of excitations and la) is a spinorial ground state. There always 
exist the sectors in which the boundary conditions of the left and right movers are swopped 
(except for the fermions building up E~), which we refer to as reflected and denote with a tilde, 

As the vacuum energy of these sectors is [ER, EL] = [eL, -1], we potentially have the gravitinos 
as the reflected states of Eq.(21); 

{23) 

All that we need to do is to ensure modular invariance. We know that the physical states in 
Eq.(21) satisfy 

W· · N w- k··a· + s· + k0 ·- W· · aW l er - lJ 3 1 l t mod(1) (24) 

for all i, so that it is sufficient to show that 

W·. N-w- k· ·cc+ s· + k-o·- W·. aW t er - tJ J t t t mod(1). (25) 

for states ofthe type shown in Eq.(23). Since Wi·aW + Wi·aW = 0 and Wi·Nerw+Wi·NerW = 
0 this translates into the condition 

mod(1). {26) 

In addition Wi · Wi + Wi · Wi = 0 implies that kii + kii + kii + kii = 0 by Eq.(9). Thus a 
sufficient condition for a (2,2) compactification is 

mod(1). (27) 

So in general, for any gauge group G, the appropriate gravitino states exist by a suitable choice 
of kij· 

Let us now discuss the results of the systematic numerical study of models with one twist, 
(i .e. boundary vectors Wo toW 4 ) in D = 8 and D = 6 space-time dimensions along the lines 
just given. 

7 



D = 8 Dimensions 

The highest number of supersymmetries in D < 10 dimensions is N = 2(8:__D)/ 2 and may be 
achieved using a torus compactification. The models with the highest N in any dimension have 
no matter fields, only gauge and gravity multiplets. Thus in D = 8, since there is only N = 1 
supersymmetry, singlets together with gauge bosons and their superpartners form full gauge 
supermultiplets, and the compactification is essentially trivial. 

Nevertheless it will prove useful to examine this case, since it will allow us to observe some 
general aspects of our scheme which we can apply to the more complicated lower dimensional 
models. The most obvious feature of (2,2) compactifications is the dramatic reduction in the 
number of models. In fact searching over the rv 105 models up to order 20 (which very probably 
contain all possible distinct models), we find only two supersymmetric ones. These models, 
which have E8 ® E~ symmetry are shown in table (1). 

In addition we find that the different models are generated by the compactification vec­
tors, regardless of the supersymmetry vectors. Thus given the order of the supersymmetry, 
a model (i.e. the gauge group, number of generations and singlets) is defined mainly by the 
compactification vectors. 

Let us now compare the results of table (1) with other compactifications. Because of the 
requirement of absence of tachyons, there exist no orbifolds. From the table it is clear that 
there is no equivalent to the maximal Gepner model with g = SU(3) [5], but an additional 
model with g = SU(2) ® U(1). In fact the first configuration for an SU(3)would requi:r;e the 
boundary conditions of the internal degrees of freedom to be degenerate. This is disallowed by 
the modular invariance conditions. Despite this it does seem that fermionic strings and Gepner 
models in D = 8 correspond to the torus at different points in moduli space. However a direct 
bosonisation as discussed in the introduction is only possible with periodic and anti-periodic 
boundary conditions resulting in model 1. Here one also realises that no orbifolds are possible 
due to the modular invariance conditions. 

Alternatively the fermionic strings could also be interpreted as generalised tori as outlined 
above. Furthermore, we find that the supersymmetry may be broken entirely by adding just 
one W 4 , if the phases chosen are complicated enough. This contrasts with the techniques used 
by most model builders who frequently introduce many vectors with the simplest twistings . 

D = 6 Dimensions 

In this case we may haveN= 2 with G = g ® E 8 ® E~, or N = 1 with G = g ® E 7 ® E~. We 
searched through rv 106 models and find only 37 distinct cases. These are displayed in table (2). 

As in the case of D = 8, we find that imposing (2, 2) symmetry drastically reduces the 
number of available models. The models are repeated many times with vectors of arbitrarily 
high order. The minimal allowed gauge group is U ( 1 )5 , and the number of generations is nearly 
always less than ten which corresponds to the K3 manifold and the ZN orbifolds. We observe 
that, with the exception of three models, the number of singlets is a multiple of the number of 
generations. 

Clearly for the first six models the spectrum of the the Ti torus with enlarged gauge group 
emerges. Bosonisation is restricted as above and gives models 1 and 3. In the fully bosonised 
formalism simple torus compactification corresponds to having only one vector V0 (in which all 
the entries are t in the notation of Ref.[ll]) and gives N = 1, 2, 4 and Ea ® E~ in D = 8, 6, 4 
dimensions respectively). In the case of the Gepner models one obtains g = SU(3) ® SU(2) 2. 
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However, at this point we are also able to identify four spectra in models 9-12 in which the 
number of generations, and of untwisted generations match those · of the four ZN orbifolds in 
D = 6 [15]. These orbifolds have already been ~tudied in Ref.[15] and it was found that all of 
them may be blown up into the K3 manifold. ror example, the choice of vectors which have 
the non-zero entries 

ci = ~' a~=~· h~ = c~ = ~~ (r = 1, 2) (28) 

generates model 10. In addition to the single untwisted generation, we find single generations 
coming from the sectors Wo ± 2W4, Wo ± 4W4 and W1 + W2 ± 2W4, and 3 generations from 
each of the sectors W 0 + 6W4 and W 1 + W 2 + 6W4. (These sectors give the 12 representation 
and acting with the analog of the supersymmetry on the left side (W 2) gives the 32 to build 
up 56 of E7 .) The generations in model 10 are always distributed in this way. In fact there is a 
parti.cular characteristic distribution of generations for each of the models 9-12. 

This is an intriguing connection, but direct reformulation as an orbifold along the lines given 
in the introduction is only possible for the case of the Z2 orbifold. This is acheived using vectors 
which have only periodic or anti-periodic boundary conditions. There are only two possible 
non-trivial cases. The first has a single W 4 vector with the entries 

(r=1,2). (29) 

The second can be ~ade from the first by adding an additional symmetric vector, W 5 , to the 
above, with entries 

a~ = c~ = b~ = d = ~ 
2 

(30) 

and all others zero. Both models have exactly the same spectrum as the Z2 orbifold [15] accom­
panied by additional, matching pairs of gauge bosons and singlets. Thus we see that the relation 
of these fermionic string models to the Z2 orbifold is identical to that between the supercon­
formal models and the K3 manifold. We therefore deduce that the fermionic string belongs to 
a Z2 orbifold on a point in moduli space with enlarged symmetries. Using real fermions one 
may then break the rank of the gauge group. We should stress that in D = 6 the modular 
invariance conditions prohibit the construction of the Z4 orbifold in a similar manner even with 
real fermions. 

In addition to the above, we have two rather peculiar models with 13 and 17 generations. 
These have particularly symmetric configurations. For example the series of models with the 
non-zero boundary conditions 

r 1 b1 _ ~ 1 2 m- 1 2 m+ 1 b42 = 2(m + 1) 
cl= 2' 4- m' c4 = c4 = ----:;;;--• a4 = ~· 3m (31) 

generates only these spectra. 
Having made a systematic study of models with one compactification vector of the W 4 type, 

let us make some remarks about the case of symmetric pairs (18). If we choose a W4, Ws with 
(a5, b5, c5) = (0, 0, 0), then it is possible to generate more vectors of the W 1 variety. In this 
case the W 4 and W 5 vectors usually project out as many gravitino degrees of freedom as new 
ones are generated, and the order of the supersymmetry is unchanged. The gravitinos may then 
appear in more complicated sectors of the form a W = W o + a1 W 1 + a 4 W 4, which depend on 
the choice of the structure constants kij. We have found this to be true for various cases and 
we believe this to be a general mechanism. 
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For the general case of several compactification vectors no simple pattern is obvious, hut the 
classification of models so far suggests that there should be only models with a smaller number 
of generations than the those already found. 

The results of our classification of fermionic strings in D = 8 and D = 6 dimensions are the 
following. In D = 8 we find only the torus with different gauge groups g. In D = 6 we find 
nearly all the possible generation numbers below 10, which is the result for the K3 manifold and 
ZN orbifolds, and in addition models with 13 and 17 generations. The overlap with orbifolds 
consists of the Z2 compactification, for which a direct bosonisation procedure exists even in this 
case of purely complex fermions. The spectrum of the Z2 orbifold is generated in many.more 
cases where direct bosonisation is not possible, and this leads us to conjecture that the three 
additional10 generation models may be linked to the Z3 , Z4 and Z6 orbifolds. This will possibly 
be explained by a study of fermionic strings with permutational moddings. Either way it seems 
to be always possible to interpret fermionic strings as tori with generalised spin structures. 

A similar study for D = 4 is under way and should shed more light on these questions. 
There a systematic study is much more complicated because of the huge number of possible 
models. Nevertheless our observations in higher dimensions have given some idea as to what we 
can expect to find. 

Acknowledgement We thank D. C. Dunbar and H-P. Nilles for useful discussions. 
We would also like to thank the RAL computer division, especially Dick Roberts. 

Table Captions 

Table 1 Supersymmetric (2,2) models in D = 8. U is the number of untwisted generations, 
and n 6 is the number of singlets. The gauge group is g ® E8 ® E~. The singlets together 
with the gauge bosons and their superpartners form full gauge supermultiplets. Where 
possible we express g as a product of special unitary groups. 

Table 2 Supersymmetric (2,2) models in D = 6. The gauge group is g ® E6+N ® E~. For 
N = 2 the singlets are incorporated in gauge multiplets . 
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Table 1· 
nmnber N group g gen gen u n8 

1 I SU(2)2 2 2 4 6 
1 1 SU(2) ® U(1) 2 2 4 4 
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Table 2· 
number N group g gen gen u n .. 

1 2 SO(B) 2 2 4 34 
2 2 SU(4 ) ® U(l) 2 2 4 22 
3 2 S U(2)"" 2 2 4 18 
4 2 SU(2)3 ® U(l ) 2 2 4 16 
5 2 SU(2)3 ® U(l ) 2 2 4 16 
6 2 SU(2)2 ® U(1)2 2 2 4 14 
7 1 U(1) 5 17 0 1 51 
8 1 U{1)5 13 0 1 52 
9 1 SU(2)5 10 0 2 80 
10 1 SU(2) 2 ® U(1 )3 10 0 1 32 
11 1 SU(2) ® U(1)4 10 0 1 54 
12 1 U{1)5 10 0 1 30 
13 1 U(l)5 9 0 1 36 
14 1 U(l) 5 9 0 1 27 
15 1 SU(2)3 ® U(1 )2 8 0 2 40 
16 1 SU( 2)2 ® U(1 )3 7 0 1 20 
17 1 SU(2) ® U(1)4 6 0 2 30 
18 1 U(l) 5 5 0 1 25 
19 1 U(1) 5 5 0 1 20 
20 . 1 U(1) 5 5 0 1 15 
21 1 SU( 4) ® U(1) 2 2 0 1 14 
22 1 SU(4) ® U(1) 2 2 0 1 12 
23 1 SU(2)2 ® U(1)3 2 0 1 10 
24 1 SU(2) 2 ® U(1 )3 2 0 1 8 
25 1 SU(2)2 ® U(1)3 2 0 2 6 
26 1 SU(2) ® U(1) 4 2 0 1 6 
27 1 SU( 4) ® U(1) 2 1 0 1 6 
28 1 SU(3) ® U(1}3 1 0 1 10 
29 1 SU(2)3 ® U(1) 2 1 0 1 10 
30 1 SU(2)3 ® U(1) 2 1 0 1 8 
31 1 SU(2) 2 ® U(1)3 1 0 1 5 
32 1 SU(2) 2 ® U(l)s 1 0 1 4 
33 1 SU(2) ® U(1)4 1 0 1 6 
34 1 SU(2) ® U(1) 4 1 0 1 5 
35 1 SU(2) ® U(1)4 1 0 1 3 
36 1 U(1)5 1 0 1 4 
37 1 U(1 )5 1 0 1 3 
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