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Abstract 

We examine the validity of using the BFKL equation for deep-inelastic scattering 

calculations in the HERA region. In particular, we discuss the theoretical uncer-

tainties which arise from the sensitivity to infra-red physics and from the imposition 

of energy conservation. We concentrate on restoring energy conservation to the 

equation via the introduction of an ultra-violet cut-off, the importance of which is 

demonstrated in terms of the kT diffusion of emitted gluons. Our results show that, 

at low to intermediate values of Q2
, the ultra-violet cut-off leads to a suppression 

of the growth (with decreasing x) of the gluon structure function. This effect is of 

special relevance to the DESY ep collider, HERA. 
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1 Introduction 

The perturbative pomeron, generated by the Balitsky, Fadin, Kuraev, Lipatov 

(BFKL) equation [1] has provoked much interest in the area of 'semi-hard' physics 

(Abcv « Q2 « EbM ). It is expected that, over the next few years, data from 

the DESY ep collider HERA will comprehensively probe this region. In particular, 

deep-inelastic scattering (DIS) at small Bjorken-x, heavy-quark production, minijet 

production and large-t elastic/diffractive scattering are all expected to yield impor-

tant information [2]. Encouragingly, the first measurements from HERA on the 

deep-inelastic structure function, F2(x, Q2 ), at small x point to a large perturbative 

component [3]. 

In this paper we focus on DIS at small x. Theoretical predictions for the small-x 

region have been made [4, 5] using the formalism developed by BFKL. The procedure 

is to sum the leading logarithms in 1/x which become large in the semi-hard regime, 

i.e. the leading log 1/x approximation (11(1/x)A). The resulting equation describes 

the behaviour of the unintegrated gluon distribution function, f(x, k2
), in terms of 

the transverse momentum, k2 , and the longitudinal momentum fraction, x, of the 

probed gluon. The equation takes the form 

1 d I oo dk'2 
f(x,k2) = f(o)(x,k2) + 1 :, la k'2 K(k'2,k2)f(x',k'2). (1) 

The gluon distribution function, xg(x, Q2), is defined in terms of f(x, k2 ) through 

the equation: 
Q2 dk'2 

xg(x, Q2) =la k'2 f(x, k'2) (2) 

and the kernel, K(k'2
, k2

), is defined by 

K(k'2,k2)f(x,k'2)=3a,k2( f{:D , k'2) - f(x,P) + f(x,k2) ) 
7r lk'2 - k21 ( 4k'4 + k4 )1/2 . 

(3) 
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Notice that, for fixed coupling, the resulting equation is infra-red finite. The intro-

ducti on of a running coupling is a sub-leading correction to the LL( 1/ x )A and we 

shall have more to say on this issue in section 2. 

The term J<0l(x,k2
) in eq.(1) specifies the gluon content of the parent hadron 

in the absence of any BFKL evolution. If we suppose it to be driven by the non-

perturbative pomeron then it is expected to be rather fiat for small x [6). This 

(unknown) inhomogeneous function is often eliminated by re-writing eq.(1) in the 

form 
rro d I {00 dkl2 

f(x , k2
) = f(xo , k2) + lx ; Jo k'2 K(k12

, k2)f(x' , k'2), (4) 

with xo chosen to be small enough to ensure that J(0l(x ::; x 0 , k2 ) ~ f(0l(x0 , k2 ). 

Equivalently, we can write an evolution equation of the form 

fJJ(x , k2) ( "' dkl2 
fJln(1/x) = }

0 
k'2 lf(k

12
,k

2
)f(x,k'2). (5) 

The evolution then begins at x = x0 and determines the structure function at 

smaller x. Again, the necessary boundary condition is f(x 0 , k2
) for 0 ::; k2 

::; oo . 

Equation (1) can be solved analytically for asymptotically small x [7) resulting in 

the behaviour 

( 
k2 )

1
/

2 
(-1n(k2jk2)) 

f(x , k2)"'x->. ln1/x exp ~.Xln1/; 

where>. is the leading eigenvalue of the kernel, K, and is given by 

3a, 
.X= -4log2, 

rr 

and ~ (which determines the width of the k distribution) is 

~ = 14((3) 
ln2 

(6) 

(7) 

(8) 

( ( is the Riemann zeta function). The parameter k5 determines the centre of the kr 

distribution and is completely specified by the boundary condition, i.e. 

Ink~ = __ d_ [ln t'" dk2 (k2)-3/2-iv f(xo, k2)] I . 
d(w) Jo v=O 

(9) 
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In particular, k5 = m 2 for the case f(x 0 ,k2 ) = o(k2 - m 2
). 

It is unclear whether the behaviour described by eq.(6) will manifest itself in DIS 

measurements at HERA. In order to understand why, it is necessary to examine the 

possible failings of the BFKL formalism, when applied to DIS. Therefore, in the 

next section we examine the uncertainties that arise from sensitivity to unknown 

infra-red physics and from allowing the coupling to run. In section 3, we discuss a 

modification to the BFKL equation which arises on imposing energy conservation. 

Importantly, we find that this modification can lead to significant deviations from 

the LL(1/x)A prediction of eq.(6) . In section 4, we discuss the significance of our 

modification in terms of the diffusion in kT of the emitted gluons and return to the 

issue of infra-red sensitivity, discussing it in the context of this diffusion. In section 

5 we present numerical solutions to our modified BFKL equation and compare them 

with those of the formal LL(1/x)A. Finally, in section 6, we present our conclusions. 

2 Infra-Red Sensitivity and a Running Coupling 

The BFKL equation is derived from standard perturbation theory and so is not 

capable of describing the soft physics of the infra-red regime. As a result, the 

contribution to the solution from the region with transverse momenta below values 

of order 1 GeV cannot be trusted. It is only when this contribution is small that it 

is possible to obtain a physically meaningful solution. A simple way of determining 

the importance of the infra-red contribution is to impose a lower cut-off (J.L 2
) on 

the integral over the transverse momenta. If the solution is insensitive to J.L 2 then 

the contribution from the infra-red is small. Unfortunately for DIS calculations, 

the values of the cut-off at which the solution is no longer sensitive tend to be 

much smaller then 1 GeV. This can be seen from fig.(1), where we have used eq.(5) , 

with a lower cut-off, to evolve down from x = 0.01 (using the boundary condition 
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specified by eq.(15)). Only for very small values of 11-2 (i.e. 11-2 ~ 10-3 GeV2) are the 

. results insensitive to its value, implying that a large contribution is coming from the 

infra-red regime. 

In order to regain some predictive power, one can try to modify the infra-red 

region so as to include what one believes to be the relevant physics. For example the 

inclusion of a dynamical gluon mass and/or a form factor suppression of the low-k2 

physics might well improve the situation. 

As well as the problems of the infra-red physics, one should also worry about the 

possible importance of sub-leading corrections. To be sure that the LL( 1/ x )A pro-

vides sensible answers one really needs to check that the next-to-leading logarithmic 

(NLL) terms are indeed small. In the absence of a NLL calculation, it is natural to 

try modifying the LL(1/ x )A by introducing some well motivated sub-leading correc-

tions. If such corrections turn out to be significant, one might then worry as to the 

size of the remaining sub-leading terms and hence the usefulness of the LL(1/x)A. 

One of the most natural modifications that has been tried in the past is the 

inclusion of a running coupling. The scale of the coupling is usually chosen to 

ensure that the BFKL equation reduces to the double-leading-log form when strong 

ordering of the transverse momenta is imposed. This requires the choice a. -+ 

a.(k2
). However, it is now necessary to modify further the BFKL equation in 

order that it remain infra-red finite. The minimal modification would be either to 

freeze a. at some scale, K
2

, or to impose an infra-red cut-off, 11- 2 , on the transverse 

momentum integral. Such modifications result in a leading eigenvalue which depends 

quite strongly upon the value of the new parameter (K2 or 11- 2 ) [5, 8]. Again the only 

hope to improve things is to modify the theory in the infra-red region [8, 9]. 
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3 Energy Conservation and an Ultra-Violet Cut­
off 

The main aim of this paper is to study the effect of imposing an energy conserving 

ultra-violet cut-off upon the BFKL equation. The need to impose an ultra-violet 

cut-off is not entirely new: Collins and Landshoff considered the case of fixed upper 

and lower limits on the BFKL equation [11]. They found that the leading eigenvalue 

of their modified equation was within 0.1 of that of eq.(7) only when the ratio of 

ultra-violet to infra-red cut-offs was in excess of 104
. In this paper, we wish to 

extend the work of ref. (11] to make definite statements regarding DIS at HERA. 

Referring to fig.(2), energy conservation dictates that s 2:: 0, where 

s (q + k)2 

Q2(x/xB- 1)- k} (10) 

and we have used the small-x relation k~"k~" ~ -k}. The variable XB is the Bjorken-x 

of the probed gluon, defined by 
Q2 

XB=--
2p.q 

(11) 

where Q2 is the modulus of the probe virtuality. 

In addition to this constraint, we ought to impose energy conservation to the 

bottom part of the ladder, i.e. (p- k) 2 2:: 0. However, this is a far more difficult 

constraint to include and we therefore neglect it. 

Thus, the modified equation now reads: 

f(x, k 2
; XB, Q2

) = j(xo, k 2
; XB, Q2

) (12) 

1
xo dx' {Q2(x' /xB-1) dk'2 

+ x 7 Jo k'2 K(kn, k2)f(x', k'2; XB, Q2). 

As in the case ofthe LL(1/x)A we can write this in the form of an evolution equation: 

lJJ(x, k2; rt_s , Q2) = {Q,(x/xB-1) dk'2 K(k'2 k2)J( k'2. Q2) 
lJln(l /x.) lo k'2 ' x, 'XB, 

( 1:3) 
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with an initial distribution specified at x = .T0 . This equation differs in an essential 

way from eq.(5). The variable x determines the position along the ladder (between 

x0 and XB) and f(x, k2; XB, Q2
) determines the momentum distribution at some 

position (defined by x) along the ladder which is being probed by some scale Q2
• 

Hence to determine the gluon structure function we need to use 

Q2 dk'2 
XB9(XB, Q2

) = { -
2 

f(xB, k12
; XB, Q2

). Jo k' 
(14) 

In section 5 we shall solve this equation numerically. First, we illustrate the poten­

tial significance of our ultra-violet cut-off by considering the diffusion in the gluon 

transverse momentum as one moves along a ladder which is determined by the tra­

ditional BFKL equation (i.e. with no ultra-violet or infra-red cut-offs and fixed a.). 

Considering this diffusion will also lead us to understand the observed sensitivity to 

the infra-red physics. 

4 G luon Diffusion in the BFKL Equation 

The nature of the diffusion of transverse momentum within the gluon ladder is well 

known to take the form of a random walk [7]. Indeed, the result of eq.(6) illustrates 

the effect of diffusion: as x falls, so the width of the distribution in k2 broadens. This 

is the result of diffusion along a gluon ladder which is unbounded, i.e. the ladder 

does not terminate with, for example, a quark box. The recent work of Bartels and 

Lotter has shown how to quantify this diffusion for the case of DIS with an extra 

identifiable jet [12]. Here we use their approach for the case of simple DIS which 

requires the kT distribution to be constrained by the quark box at one end. At the 

proton end, we use the distribution: 

k2 
k2 Q2)- ~ --f(xo, ;xB, - k2+m2 (1.5) 
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with m2 = 1 GeV2 . This expression describes a gluon distribution at the bottom of 

the ladder which has some spread in kT which is centred on values of order 1 GeV. 

We expect this to provide a reasonable description of DIS, where there is no hard 

scale to prevent the input transgressing into the dangerous infra-red regime. 

In fig.(3), we show the diffusion in transverse momentum as one moves along the 

ladder. The resulting cigar-like region defines theRMS spread of the kT distribution 

along the ladder, i.e. the width of the cigar at some x determines the width of the 

gluon kT distribution at that x. Specifically, we follow ref.[12] in determining the 

relevant kT distribution. It is specified by a product of distributions, in our case, 

obtained by evolving from the distribution of eq.(15) at one end (to give f(x, k2
)) 

and from the quark box at the other end (to give j(x/xB, k2)), i.e. the product 

which determines the kT distribution is 

f(x, k2) j(x/xB, k2) 

-Jk2 -Jk2 
(16) 

It is clear that, for any scenario where the kT distribution at the proton end is 

peaked in the low-P region (as we expect for DIS and reflected in eq.(15)), the 

subsequent diffusion is such that one is always sensitive to the infra-red physics. 

This expected sensitivity is illustrated by the shaded region below 1 GeV in fig.(3) 

and is qualitatively independent of whether the coupling is fixed or allowed to run. 

Thus we are able to understand the observed sensitivity to the infra-red regulators 

discussed earlier, and illustrated in fig.(1). One might hope to reduce sensitivity to 

the infra-red physics by working at high Q2
, i.e. by tilting the cigar. But the need to 

sum logarithms of Q2 in this region means that one would now not trust the BFKL 

approach. There is clearly a need for a formalism which sums both the logarithms 

in Q2 and those in 1/x. Towards this goal, one might consider in more detail the 

'angular ordering' approach of ref.[10], which has the present disadvantage that it 

cannot be formulated as an evolution equation in x. 
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Also shown in fig.(3) is the curve corresponding to our kinematical ultra-violet 

cut-off. Importantly we see that it cuts into the cigar as x -+ XB. We expect this 

cut-off to be important if there is a significant area between the cigar and this curve 

in the region of not-too-high k2 . This observation suggests that such a cut-off will 

noticeably influence the solution of the BFK1 equation at low values of Q2
. The 

numerical results of the next section confirm this. 

5 Results 

We now turn to our numerical analysis. We have solved eq.(13) with the form factor 

of eq.(1.5) providing the boundary condition at x = xo. By taking the boundary 

condition to be XB independent we are implicitly assuming that there is a suffi­

ciently large rapidity gap between the bottom of the ladder (xo) and the top (xB)· 

Thus we cannot claim to be making predictions in the region where XB ~ xo. To 

understand this , consider performing evolution from some known f(x~) , k 2
; x~) , Q2

) 

and f(x~l, k 2 ; x~l , Q2). The two evolution paths will converge as x rises towards x 0 

and will, for x~l « x 0 , result in the same f(x 0 , k 2
; x~l, k2 ). Throughout, our results 

are computed with a fixed coupling, i.e. a 8 = 0.18. 

Fig.( 4) shows our results for the gluon structure function at three different values 

of Q2
• Also shown are the results of 11(1/x)A evolution. The effect of imposing 

energy conservation is clearly significant for Q2 not too high. In particular, we see 

that the onset of the traditional BFK1 behaviour is delayed to smaller x , resulting 

in a suppression of the gluon structure function in the x- Q2 range which is to be 

probed at HERA. 

In fig.(5) we show how the evolution with an ultra-violet cut-off approaches that 

of the 11( 1/ x )A as Q2 rises. What is shown is the variation of the slope of the gluon 

structure function at x = 10-4 with Q2
• Notice that, even in the strictly leading log 
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case, the slope does not approach a constant as Q2 rises, rather it slowly rises with 

Q2 over the range considered. This is not unexpected - for example consider the 

double logarithm case where the slope rises exponentially with the square root of 

log Q2 • We see that, for x as small as 10-4
, the slope calculated with an ultra-violet 

cut-off is almost identical to that obtained by the BFK1 equation. Thus the main 

effect of our ultra-violet cut-off, for x ~ 10-3 , is to suppress the gluon structure 

function relative to the BFK1 prediction whilst preserving the slope. 

6 Conclusions 

Small-x DIS at HERA presents a significant theoretical challenge. There are other 

processes which are conceptually better tests of semi-hard QCD but none which is 

so easy to measure. As a result, the difficulties which have been emphasised here 

need to be addressed. In particular, in light of the recent HERA measurements 

of the structure function , F2 (x , Q2 ), we feel that perturbative QCD is in evidence 

and that it is a worthwhile endeavour to modify (phenomenologically) the infra-red 

behaviour of the BFKL kernel, whilst at the same time paying close attention to the 

effects of energy conservation. 

It is clear that there remains much theoretical work to be done before we can 

claim to have serious QCD predictions for DIS in the small-x regime. We have high­

lighted the importance of including sub-leading corrections through a kinematical 

cut-off. It is certainly desirable to have a full next-to-leading order BFKL equa­

tion, to enable predictions in the semi-hard regime to be made with rather more 

confidence than hitherto. 
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Figure Captions 

Figure 1 Sensitivity of BFKL evolution to the value of the infra-red cut-off, p, 2
, at 

Q2 = 20 GeV2
• 

Figure 2 A gluon ladder defining the DIS kinematics. 

Figure 3 : Figure illustrating the diffusion in transverse momentum as one moves 

along the gluon ladder (shown above the graph). The region below 1 GeV is shaded 

to illustrate the potential sensitivity to infra-red physics, and the upper shaded 

region is that into which the gluons are forbidden from diffusing by energy conser­

vation. 

Figure 4 : Comparison of BFKL evolution and that of eqn.(13) for three values of 

Q2 and with p, 2 = 10-4 GeV2 • 

Figure 5: Comparison of),= oln(xBg)/8ln(1/xB) as a function of Q2, as calcu­

lated using BFKL evolution and eqn.(13) and at XB = 10-4 • 
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