
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2000; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

A Workflow Portal

Supporting Multi-Language

Interoperation and

Optimisation

L. Huang1, A. Akram2, D.W. Walker1,∗,†,
R.J. Allan2, O.F. Rana1 and Y. Huang1

1Computer Science, Cardiff University Queen’s Buildings, 5 The Parade, Roath, Cardiff
CF24 3AA, UK
2e-Science Centre, CCLRC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK

SUMMARY

This paper presents a workflow portal for Grid applications; which supports different
workflow languages and workflow optimisation. We present an XSLT converter that
converts from one workflow language to another and enables the interoperation between
different workflow languages. We discuss strategies for choosing the optimal service from
several semantically-equivalent Web services in a Grid application. The dynamic selection
of Web services involves discovering this set by filtering available services based on
metadata, and selecting an optimal service based on real-time data and/ or historical data
recorded during prior executions. Finally we describe the framework and implementation
of the workflow portal which aggregates different components of the project using Java
portlets.

key words: workflow, portal, portlets, Web services, optimization, Grid

1. INTRODUCTION

Web service technologies are actively being used in industry, commerce, and research institutes.
The Web service standards, SOAP, WSDL and UDDI, simplify the integration and interaction
between heterogeneous service providers and consumers. A variety of Web service composition
languages such as PDL, XPDL, BPSS, EDOC, BPML, WSCI, ebXML, and BPEL4WS are
available today [1] with corresponding workflow engines, which however all differ in their

∗Correspondence to: Computer Science, Cardiff University Queen’s Buildings, 5 The Parade, Roath, Cardiff
CF24 3AA, UK
†E-mail: d.w.walker@cs.cf.ac.uk

Received 31 January 2000
Copyright c© 2000 John Wiley & Sons, Ltd. Revised 19 September 2002



2 L. HUANG

configuration, deployment specific description, and performance. It is also often the case that
workflow undertaken to support scientific computing has many differences from workflow
approaches used for business applications [9]. Scientific workflow often requires support for
large data volumes, parameterized execution of large numbers of jobs, dynamic configuration
of services at runtime, adapting to a changing environment, and hierarchical and complex
workflows.

Three issues of concern are therefore mechanisms to: (1) discover and invoke Web services
dynamically; (2) optimize workflow performance by choosing suitable Web services from set of
available services; and (3) interoperate between different workflow languages and corresponding
engines. A key requirement is to allow interoperability between different workflow systems,
without violating security or performance. Dynamic Web service selection for workflow
optimization is beneficial especially to scientific workflows mainly because applications are
computationally intensive, and may be long running – some scientific procedures last weeks
or even months. Selection of optimal Web Services among the available ones can shorten the
overall computation time.

This paper presents results of the EPSRC-funded Workflow Optimisation Services for e-
Science (WOSE) in developing a WOSE portal.

2. WORKFLOW PORTAL

The WOSE project consists of different components, e.g. a client to upload workflow, language
converter, proxy service and result displayer, all of which are tightly coupled together and
need user interaction. The Workflow portal integrates all these high level services providing
component views on a single portal page. For instance a portlet imports source data from
an external XML-based parameter file uploaded by the user with the Getparameters Web
service. This approach has the advantage of allowing the sources data to be changed at run-
time and makes a uniform interface possible. At the sink of the workflow another service
adds the results to a file with a display format XML tag. The aim of the Workflow portal is
to extend the functions of the existing workflow languages and enactment engines by co-
coordinating additional services at runtime, to minimize the changes in workflow and its
deployment descriptor. The only changeable sections are the data and control flows. The
WOSE portal encapsulate the following services:

WOSE shell service: The WOSE shell service is a Web service that listens to, and response
to, the client. It uses the WoseWebService to accept parameter file name from the client used
as data source.

Getparameters service: This service retrieves parameter data from an external XML file
specified by the client. The source data can be written into a workflow script with an assign
statement in BPEL4WS or a stringconstant processor in Scufl. Normally changes in the source
data require modification in workflow and re-deployment, but putting the data in the XML
parameter avoids this.

Sink: The workflow results may be of many types and can be stored in many different
formats. The WOSE framework uses XML to store results. From the format and semantic

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



WORKFLOW PORTAL SUPPORTING OPTIMISATION 3

description, we can use XSLT to transform the results to different display formats such as
HTML or Scalable Vector Graphics (SVG) †.

The WOSE portal includes a source input portlet to upload workflow scripts to be
transformed and deployed, and a client portlet to upload the parameter file. The latter is
a unified interface for inputting source data and getting the result back. The WOSE client
portlet will invoke a workflow engine (such as an ActiveBPEL engine) and displays results in
the client browser.

3. INTEROPERABLE WORKFLOW FOR PROBLEM SOLVING ENVIRON-

MENTS

A variety of workflow management systems for Grid computing have been reported in the
literature. These range from portal-based interfaces to connect components together, to non-
HTTP systems that allow composition and deployment of a set of services. Often these systems
are categorized as being a Problem Solving Environment (PSE). In many ways, a PSE is seen
as a mechanism to integrate software construction and management tools and application
specific libraries, within a particular problem domain. One can therefore have a PSE for
financial markets [2], for gas turbine engines [3], etc. Focus on implementing PSEs is based on
the observation that in the past scientists using computational methods wrote and managed
all of their own computer programs. However, now computational scientists use libraries and
packages from a variety of sources, and those might be written in many different computer
languages. Engineers and scientists now have a wide choice of computational modules and
systems available, so that navigating this large design space has become a challenge in its
own right. A survey of 28 different PSEs by Fox, Gannon and Thomas (as part of the Grid
Computing Environments RG of the Global Grid Forum) can be found in [4], and practical
considerations for implementing PSEs can be found in Li et al. [5]. Both of these papers
indicate that such environments generally provide some backend computational resources,
and convenient access to their capabilities. Furthermore, workflow features significantly in
both of these descriptions. In many cases, access to data resources is also provided in a
similar way to computational resources. Often PSE and Grid Computing Environment are
interchangeable terms, as PSE research predates the existence of Grid infrastructure. We
believe that a key element within a PSE is the provision of a workflow engine that enables a set
of services (provided by one or more scientists) to be executed, in the context of a particular
application. We therefore envisage the workflow to utilize a set of pre-defined components
(services) discovered via a registry service such as UDDI.

The large number of PSE projects over the years has resulted in a range of language
specifications for describing workflow, and an even greater number of execution environments to
host the services (based on different implementation technologies) that are part of the workflow
description. This has led to a problem of interoperability between different systems, making

†http://www.w3.org/TR/SVG/

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



4 L. HUANG

it difficult for a scientist to effectively construct an application by combining services from
different sources, where services may themselves be composed hierarchically from other services
and the composition expressed in terms of a particular workflow language. Interoperability
issues also arise due to differences in data types used to describe service interfaces, and in
configuration parameters needed to initiate execution within a particular environment. To
overcome these issues we use Web services as the key implementation technology for invoking
and describing services. To achieve this, it is necessary for a translation mechanism to be
provided that takes existing service descriptions and converts these into a format that can be
used. The workflow descriptions are therefore specified in XML. This also permits translation
between different workflow languages to be achieved using an XSLT converter ‡ to achieve
interoperation of different workflow engines.

3.1. Architecture of WOSE framework

Figure 1 shows the overall architecture of the WOSE framework including the portal. The
workflow deployment portlet imports the workflow scripts and semantic descriptions of Web
services and workflows. An XSLT converter transforms one workflow language to another based
on pre-defined rules. The resulting workflow script is then deployed in the workflow engine
compliant with the chosen language. Once execution finishes, a portlet encapsulating the sink
service displays output according to formatting metatag and associated rules. The current
focus of the project has been to evaluate such a translation for the Taverna/ Scufl § workflow
system, and integrate this with a publicly available BPEL4WS engine, such as ActiveBPEL ¶.

In general, all languages based on Web services share the same core model based on a directed
(usually acyclic) graph, making transformation between them quite easy. XSLT is particularly
useful for translation as it provides a high-level declarative programming language that can
allow frequent changes to be made in the XML document describing the service. The XSLT
converter is also beneficial in dealing with aspects beyond the current workflow languages
such as performance, QoS, etc. and transforming them into the implemental scripts of publicly
available workflow engines.

Consider the transformation from Scufl to BPEL4WS as an example. The Simple Conceptual
Unified Flow language (Scufl) is a high-level conceptual workflow language. The Business
Process Execution Language for Web service (BPEL4WS) resulted from a merger of Microsoft
XLANG ‖ and IBM’s WSFL ∗∗, and is a block-structured programming language. Table 1
shows the correspondence between Scufl and BPEL4WS elements. The XSLT-rules column
shows the XSLT rules applied to transform from Scufl to BPEL4WS. The Assign rule takes
the value from a string constant processor in the Scufl script and assigns it to a variable in the
BPEL4WS script. The arbitraryInvoke rule takes the endpoint and operation from the Scufl

‡http://www.w3.org/TR/xslt
§http://taverna.sourceforge.net/
¶http://www.activeBPEL.org/
‖http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm
∗∗http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



WORKFLOW PORTAL SUPPORTING OPTIMISATION 5

Figure 1. Workflow Portal Framework

Table I. Correspondence between Scufl and BPEL4WS

Scufl BPEL4WS Xslt-rule WOSE Service

stringconstant Assign Assign

Arbitrarywsdl Invoke arbitraryInvoke

Source Receive DataInput Getparameter

Sink Reply OutputResult Tail service

Data link Sequence activity DatalinkAnalysis

Concurrency constraint Control activity ControllinkAnalysis

script and uses these as parameters for invoking Arbitrarywsdl Web service in the BPEL4WS
script. The DataInput rule gets the parameters from an external parameter file by invoking
the getparameter service. The OutputResult rule adds an XML display format tag into the
results file. The DatalinkAnalysis rule analyses the sequence of activities and dataflow in Scufl
and generates the corresponding sequence of activities in BPEL4WS. The ControllinkAnalysis
rule analyses the control structure of activities in Scufl and generates the control structure of
the corresponding activities in BPEL4WS.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



6 L. HUANG

Figure 2. Dynamic Web Service Selection for Workflow Optimisation

4. WORKFLOW OPTIMIZATION STRATEGY

In a rich service environment, “similar” copies of the same service can exist with different
performance or other user defined set of criteria; and best suitable service from these multiple
instances cannot be selected at design time due to unpredictable performance parameters
at the actual time of execution. Workflow optimisation is achieved by selecting optimal web
services at run-time and integrating dynamic selection of web service into workflow.

Figure 2 shows the architecture of dynamic Web service selection for workflow
optimisation [7, 8]. Currently, the Universal Description Discovery and Integration (UDDI)
registry is used to host service descriptions. This registry primarily provides an identifier
for a service, a service metadata for semantic definition, and the location of the WSDL file
describing the service interface (via a URL). The database shown in Fig. 2 contains the history
data on previous service invocations, such as the response time of services. Proxy service is an
adaptor for dynamic selected service in workflow. When many semantically equivalent copies
of a service are found by Discovery service, the optimization service selects an optimal service
based on the history database, and real-time data such as the peak speed, current load, and
current available memory of the machine hosting the service by invoking monitor service.

Proxy service: The Proxy Service is an adaptor for dynamically selecting and binding
Web service in a workflow script. In a workflow application, some activities are critical in terms
of their execution time or fault-tolerance properties. We use a Proxy Service to replace these

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



WORKFLOW PORTAL SUPPORTING OPTIMISATION 7

activities at the appropriate place in the workflow script, and make use of semantic metadata,
from which semantically equivalent services are discovered. Among these, an optimal service is
selected and invoked and its output is passed to the next activity in the workflow. The Proxy
Service is also a Web service. Its parameters include servicemeta, which gives a semantic
definition to the abstract service and is used by the Discovery Service to find semantically
equivalent services, querymethod, which specifies the query mechanism used to search for
services, optimizationMETA, which gives a description of the problem-specific optimization
model, optimizationMode, which is the mode for selecting the optimal Web Service, such as
execution time, degree of trust in results, etc. operation, which corresponds to the actual
function performed by the late binding service, and parameters, which are the parameters
to be passed to the late binding services. ServiceProxyReturn is the result returned by the
late-binding service.

Discovery service: A discovery service discovers a list of services from registries.
querymethod is the method used by the Discovery Service to find and filter the services
available. There are three methods: byNAME, byMETA and byONTOLOGY. The byNAME
method is used to query all semantically equivalent services with a specified name. The
byNAME method would typically be used where the services are registered by the same
business entity but with different ways to access the service (i.e. the existence of different
bindingTemplate in UDDI. No extensions are needed to the information contained in the
UDDI registry. The byMETA method is used to query all services by examining the services’
metadata. The byMETA method would typically be used where all service providers conform
to a particular metadata specification, and have the ability to publish their own services in
the UDDI registries. By using the metadata, the Discovery Service can find the semantically
equivalent services. This method needs to register metadata information in the UDDI registry
by similar method to the work of Miles et al. [4]. This information includes service name, service
ID, list of operation names, operation IDs, and their input, as well as output, and data types.
These items are registered in the vector of description entities in the business service entity.
The description entity uses <wosemeta> and </wosemeta> to indicate that the description
is for metadata information. The byONTOLOGY method is used to query all semantically
equivalent services by semantic matchmaking. This would typically be used where there are
many service providers who publish the services according to the schema encoded in a service
ontology. The service providers are loosely connected or without any relationship. Due to the
generally large size of an ontology for defining services and WSDL items, we register the URL
of an XML file for the ontology into the description of business services. Matchmaking is based
on the OWL-S ontology [7].

Service selection: The Optimization Service selects the optimal service from the list of
semantically equivalent services based on the criteria for optimization set by user. The criteria
may cover many different aspects such as performance, quality of service, trust, cost, etc. The
input to the Optimization Service is the list of semantically equivalent services. The output
is the selected optimal service. Optimisation service uses real-time data (by invoking monitor
service) and history data to evaluate the scale of optimisation (such as performance) to select
the optimal service, and return the optimal service location to the Proxy service.

Service invocation: When Proxy service gets optimal service location, it invokes the
selected service dynamically. The WSDL file is downloaded from this URL and parsed. And

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



8 L. HUANG

the service is invoked using Dynamic Invocation Interface (DII) to achieve late binding. The
input parameters are passed to optimized service from Proxy service; and optimized service
sends the output result to Proxy service. Proxy service will output the result to the Web service
in the next step. The actual contents of the input and output data structures are described
in XML. We have many adaptors to transform the String type of input or output data of a
Proxy Service into various data types to match the ports of other Web Services which link the
Proxy Service to other services in the workflow script.

The Proxy Service enables the fault-tolerant execution of workflow scripts. If a service fails,
then an alternative semantically equivalent service will be substituted. Because the Proxy
Service is independent of the workflow engine used, specific logging data can be obtained and
stored in databases. In general, the logging data includes the optimal Web Services that were
invoked, the source of the input data, etc. Scientists can judge the trustworthiness of the
scientific conclusions obtained through the execution of the workflow by examining the logged
data.

5. IMPLEMENTATION

In this section we present the implementation of different components of WOSE Framework and
Portal. The XLST converter we implemented is transformation form Scufl script to BPEL4WS
and enacts it in a BPEL4WS workflow engine (ActiveBPEL), which is installed in Tomcat.

5.1. Scufl to BPEL4WS converter

Scufl is different from BPEL4WS in vocabulary and structure. Moreover, BEPL4WS has
partnerlink types, variables and different namespaces. We retrieve the port types and
namespaces of Web services from WSDL files, which are downloaded in the transformation
process. For every operation of a standard Web service, we use a pair of variables to hold the
requested input parameters and returned output data. The flow chart of the XSLT converter,
which transforms from a Scufl file into BPEL4WS, begins with generating namespaces and
ends with generating activities (see Figure 3).

After importing the Scufl script using the WOSE source input portlet, the XSLT converter
transforms it into the BPEL4WS definition and process files, and other two files specific to
ActiveBPEL.

5.2. Workflow input portlet and WOSE portal

The WOSE source input portlet is for inputting Scufl scripts via a Web browser. Once all files
are transformed, into BPEL4WS, the workflow script is deployed in the ActiveBPEL engine.
Before executing the workflow, the user uploads the parameter file via another portlet, and
then the portal invokes the ActiveBPEL engine by inputting the parameter file name and
workflow service endpoint of this workflow application into the ActiveBPEL engine. This will
start the execution according to the BPEL4WS script in the ActiveBPEL engine. Finally, the
ActiveBPEL engine will generate results and send these back to the WOSE portal. The example

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



WORKFLOW PORTAL SUPPORTING OPTIMISATION 9

Figure 3. XSLT flow chart for transformation of SCUFL to BPEL4WS

used here involves three Web services. InvokeBrowser gets raw protein data, getproteinseq gets
pure protein sequence, and blastall retrieves protein information from protein database. In our
example the Blastall service is dynamically selected. In the workflow script, the Proxy service
is then replaced by the blastall service.

We have used Tomcat and Axis as our Web service container. The historical database of
different services is stored in mySQL database. The JUDDI registry maintained by the Welsh
e-Science Centre is used as the UDDI registry. We have installed a blastall service in 7 different
machines–ygrid01, ygird01, ygrid03, ygrid04, ygrid05, ygrid06. Desktops running Linux and
laptops using windows are used as clients for testing. Different instances of the blastall service
are deployed on different machines and registered with jUDDI with their unique access points.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the design and first trial of a portal supporting interoperation
and optimization of workflows. We used an XSLT converter to translate workflow languages

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



10 L. HUANG

to achieve workflow interoperation. We used a Proxy service as adaptor of dynamic selected
service to optimise the workflow. We discovered semantically equivalent services by a strategy
of UDDI extensions. We used a Performance service to select optimal services by getting real-
time data with a monitoring service. We used the portal to achieve multi-language support
(workflow source input) and make it parameter-independent and display-independent (WOSE
client).

In future work we plan to extend BPEL4WS to provide more steering capabilities at runtime
to enable graceful recovery from unpredictable situations such as connection failure or service
un-availability. We will also develop a a workflow monitoring service. Scientists will then be able
to stop/ pause/ resume workflows or parts of a workflow, add breakpoints, monitor status at
breakpoints, and log input/ output parameters. For a portal based monitoring service there are
limitations in Web Clients [11] which may mean not all user requirements can be fulfilled and
an interactive desktop may be preferable. The Web Service Invocation Framework (WSIF) [12]
will be investigated for this purpose.

REFERENCES

1. van der Aalst W.M.P., Don’t go with the flow: Web services composition standard exposed, IEEE Intelligent
Systems, Jan/Feb 2003.

2. Bunin O., Guo Y. and Darlington J., Design of Problem-Solving Environment for Contingent Claim
Valuation, Proceedings of EuroPar, LNCS 2150, Springer Verlag, 2001.

3. Fleeter S., Houstis E., Rice J., Zhou C. and Catlin A., GasTurbnLab: A Problem Solving Environment for
Simulating Gas Turbines, Proceedings of 16th IMACS World Congress, 104-5, 2000.

4. Fox G., Gannon D. and Thomas M., A Summary of Grid Computing Environments,
Concurrency and Computation: Practice and Experience (Special Issue), 2003. Available at:
http://communitygrids.iu.edu/cglpubs.html.

5. Li M., Rana O.F., Walker D.W., Shields M. and Huang Y., Component-based Problem Solving
Environments for Computational Science, Book chapter in Component-based Software Development (Ed:
Kung-Kiu Lau), World Scientific Publishing, 2003.

6. Dewan R., Seidmann A. and Walter Z., Workflow Optimization through Task Redesign in Business
Information Processes, Proceedings Of The Thirty-First Hawaii International Conference On Systems
Sciences (HICSS’98), 1998.

7. Huang L., Walker D.W., Rana O.F. and Huang Y., CCGrid 2005,
http://dsg.port.ac.uk/events/conferences/ccgrid05/wip /schedule/Paper13.pdf
http://dsg.port.ac.uk/events/conferences/ccgrid05/wip/talks/talk13.ppt

8. Huang L., Walker D.W., Huang Y. and Rana O.F., Dynamic Web Service Selection for Workflow Opti-
mization, in the proceedings of AHM2005, http://www.allhands.org.uk/2005/proceedings/papers/423.pdf,
http://www.nesc.ac.uk/talks/ahm2005/423.ppt

9. Singh P.P. and Vouk M.A. Scientific workflows: Scientific computing meets transactional workflows,
http://www.csc.ncsu.edu/faculty/mpsingh/papers/databases/workflows/sciworkflows.html

10. Akram A., Chohan D., Wang X.D., Yang X. and Allan R.J. A service oriented architecture for portals
using portlets, UK e-Science AHM2005, September 2005.

11. Akram A., Chohan D., Wang X.D., Meredith D., and Allan R.J. CCLRC portal infrastructure to support
research facilities, GGF Workshop on Science Gateways, GGF14, Chicago, IL, USA, June 2005.

12. Web Service Invocation Framework http://ws.apache.org/wsif/ [1st December 2005]

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls


