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1. Prologue 

All text books on solid-state physics, and most text books on the broader scope of 

condensed matter physics, report experimental results obtained by the technique of 

neutron scattering. In fact, neutron beam techniques contribute not only to studies in 

these fields of research but also biology, materials science, chemistry, and various forms 

of industrial research (radiography, small angle scattering, resonance thermometry, etc.). 

One of the great attractions is that measured quantities are related quite directly to 

atomic-level variables used to describe basic properties of materials, such as, lattice 

vibrations (phonons), spin waves (magnons), excitons, and spatial distribution functions 

for nuclei and magnetic atoms. In view of this, it is not really surprising that data 

obtained with neutron beam techniques pervade so many branches of science, or that 

there is a tradition of strong exchanges between neutron beam experimental studies and 

theoretical chemistry and physics (analytic and computational studies). 

The aim of these notes is to provide some information on basic concepts for the 

interpretation of neutron scattering experiments at an atomic level of description. The 

presentation is very much at the descriptive level, so there are no examples of the actual 

working out (algebra) to be done in arriving at results. Readers who wish to see such 

detail can consult one of the many cited review articles and books. 

In compiling the references, preference has heen given to recent works which are 

pertinent to the covered topics or which themselves give full references to earlier 

relevant literature. The interested reader can then refer back through the literature, if 

desired. 

2. Neutron properties 

The utility of neutron scattering as an atomic-scale probe of condensed matter 

stems from the relative weakness of neutron-matter scattering, the compatibility of 

neutron energies and wavelengths with characteristic energies and lengths of atomic 

motions in solid and liquids, and the magnetic moment of the neutron (Scherm, 1988). 

The neutron-matter interaction is so weak that first-order perturbation theory is wholly 

adequate to account for the slow neutron scattering cross-section (This point might need 

clarification since neutron-proton scattering involves what particle physicists call strong 

interactions - the interaction between hadrons with a coupling constant large compared 

to the fine structure constant :: 1/137. Nevertheless, the scattering of slow neutrons by 

nuclei (neutron energies - few eV) is adequately described by first-order perturbation 

theory - Born approximation - using an appropriate (Fermi) pseudo-potential which, in 

fact, is so simple that it is characterized by a single complex number, usually called the 
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scattering length). In other words, neutron scattering provides infolnlation on the 

chemical and physical properties of matter that is undistorted by the radiation. 

Furthelnlore, the interpretation of the measured cross-section is not clouded by 

uncertainty about the nature of the radiation-matter interaction or specification of the 

cross-section. 

Neutrons interact with the nuclei and electrons in matter, and the scattering cross­

sections are similar in magnitude. It is possible to discrimate between scattering events 

involving nuclei and electrons. In consequence, the neutron scattering technique 

provides unambiguous infolnlation on the positions and motions both of nuclei and of 

electrons. Moreover, since neutrons penetrate deeply into matter they provide an ideal 

probe of the bulk properties of matter. (However, neutrons are also absorbed in matter.) 

In the past few years there has been an expolosion of activity in the use of neutron (near 

critical) reflection to study surfaces and interfacial phenomena (Penfold and Thomas, 

1990 and Russell, 1990). 

Neutron nuclear scattering, as well as the absorption, cross sections vary from 

isotope to isotope in a more or less random manner. In many applications it is 

particularly advantageous that the scattering cross sections for the proton and deuteron 

are very different. The cross section for a proton is a massive 82 barns (1 barn = 
1Q-24cm2) whereas for a deuteron it is an order of magnitude smaller. Hence, the proton 

function in macromolecules, membranes, etc., is readily studied, while deuteration 

enables us to pick out properties of the host environment. The magnitude of neutron 

scattering and absorption cross sections for some selected nuclei are given in Table 1. 

The energy E for a neutron with a wave vector k is 

(1) 

where k = lkl and m is the neutron mass. Energies are often given in units of 

meV = 1Q-3eV, and (h2/2m) = 2.08 meV A.-2. In terms of the neutron wavelength A we 

have, 

9.04 E-112 (2) 

where ')... is in A and E is in meV. Here we have chosen the energy unit favoured by 

physicists. Other energy units frequently used in spectroscopy are related to the me V 

through 

1 me V = 0.24 THz = 8.07 cm-1 = 11.61 K, 
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and the conversion to temperature is included for completeness. (It is also useful to 

remember 1i.::: 0.66 me V ps.) 

It is perhaps useful at this junction to recall that, in contrast to neutron scattering 

from materials, photon scattering (Agarwal, 1991) is dominated by the photon-electron 

interaction, described by quantum electrodynamics. Absorption of photons due to the 

photo-electric process and Compton effect severely reduce photon penetration in matter, 

and so the technique is highly surface sensitive. The photon-matter interaction contains 

complicated processes, some of which involve nonlinear events not described within the 

framework of linear response theory that underpins the interpretation of neutron 

scattering (excluding events that involve compound nuclear resonance states). 

The high intensity of photon beams from electron synchrotron sources make it 

feasible to exploit magnetic photon scattering (a relativistic correction to the Thompson 

amplitude) as a probe of condensed matter (Lovesey, 1993a). This technique has some 

advantages with respect to magnetic neutron scattering, although it is likely to be 

confined in the near future to elastic (diffraction) and Compton scattering studies for the 

most part. 

By and large, selection rules, which are manifestations of high symmetry 

conditions, operate more forcefully in photon scattering than in neutron scattering. In 

optical spectroscopy, for example, the change in photon wave vector, K, is so small that 

events are restricted by the dipole selection rule, whereas in a corresponding neutron 

induced event K can be relatively large and additional processes are engaged. Similar 

reasoning holds for the excitation of states in a crystal. Selection rules are manifest at 

points of high symmetry in the Brillouin zone, such as the zone centre and boundary, and 

generally absent at an arbitrary point on a dispersion curve. 

3. A potted history 

Joliot-Curie's communication of 28 January 1932, reported that alleged y-rays from 

the a-beryllium reaction were capable of ejecting protons from paraffin. When the paper 

reached Chadwick, at the Cavendish Laboratory, he went to work and on 17 February 

submitted a paper entitled "possible existence of a neutron" in which he proposed that 

the a-beryllium reaction is a + 9Be = 12C + n. Chadwick's discovery of the neutron, in a 

few days of strenuous work, concluded a search that, off and on, had been conducted at 

the Cavendish for more than a decade. 
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In early 1934 Fermi submitted the first in a series of articles on radioactivity 

induced by neutron bombardment. With this paper Fermi started experimental studies in 

neutron physics that made him perhaps the world's leading authority on the subject 

during the nineteen thirties. His pseudopotential method, applied to neutron scattering 

by nuclei in condensed matter, appeared in 1936 and it remains the cornerstone of the 

interpretation of low energy neutron-nucleus scattering experiments. 

In the same year Bloch predicted that the electromagnetic neutron-neutron 

amplitude is similar in magnitude to the classical electron radius, and therefore 

comparable to nuclear scattering amplitudes. The following year Schwinger queried 

Bloch's calculation: the latter is now known to be incorrect, and Schwinger provides the 

correct result although his reasoning is erroneous. A correct calculation, and physical 

interpretation, is provided by Migdal in a paper submitted in July 1938 to a Russian 

Journal. However, Migdal's work was unnoticed in the West, and the alleged Bloch­

Schwinger controversy was finally settled in 1951 when two independent experiments 

found unambiguous evidence to support the result given by Schwinger, the basis of the 

interpretation of neutron-electron scattering experiments is the paper by Halpem and 

Johnson published in 1939. (Although these authors subscribe to the Schwinger view 

they nevertheless propose experiments to settle the Bloch-Schwinger controversy.) 

The major sources of neutrons in the early nineteen thirties were radium-beryllium 

sources. Even though it was possible to demonstrate the diffractive properties of 

neutrons, the low intensities from radium-beryllium did not permit the practical use of 

neutron beams to study the properties of condensed matter. The latter began to flourish 

with the development of nuclear reactors. The Oak Ridge Graphite Reactor and the 

CP-3 reactor at the Argonne National Laboratory became operational in 1943 and 1944, 

respectively. 

Neutron intensities produced by modem, high-flux reactors are three orders of 

magnitude larger that those obtained with the early reactors at the Oak Ridge and 

Argonne Laboratories. Moreover, new vistas have been opened with advanced 

spallation sources which utilize protons to liberate a very large supply of energetic 

neutrons from heavy metal targets (Williams and Lovesey, 1989 and Tomkinson et al., 

1991). The ISIS spallation source is pulsed (50 Hz) whereas SINQ at PSI, to be 

commissioned in the next few years, is continuous like most reactor neutron sources. 

5 



4. Perspective 

The geometry of a neutron scattering experiment is sketched in Fig. (1), which also 

serves to define some notation. Not mentioned in the figure are the states of polarization 

of the incident and scattered neutron beams. Polarization analysis offers some very 

significant advantages but, unfortunately, the accompanying intensity penalty is often too 

large (Williams, 1988). Even so, various spectrometers exist at reactor sources and their 

use, particularly for studies of magnetic materials, have produced very interesting 

scientific results (Boni, 1993) that are possibly not obtainable by other experimental 

techniques. 

In a neutron scattering experiment one measures the fraction of neutrons of 

incident energy E scattered into an element of solid angle dQ with an energy between E' 

and (E' + dE'). The measured quantity is the partial differential cross-section, denoted by 

The cross-section a has the dimension of area, and so the partial differential cross­

section has the dimension of (area/energy.solid angle). 

In more general terms, the quantity ( d2a/dQdE') is a measured response function; 

it provides the response of the target sample to an incident beam with energy E and wave 

vector k (and possibly a finite polarization). As such, it is a purely real quantity which is 

positive or possibly zero. Since slow neutron scattering is a weak process, the formalism 

for interpretation of data on ( d2a/dQdE') is linear response theory; this is based on 

Fermi's Golden Rule for transition rates or, equivalently, the first Born approximation in 

scattering theory (Lovesey, 1986). With regard to the latter, it is perhaps worth 

mentioning that the theory we describe comes under the heading of the kinematical 

theory of neutron scattering that neglects macroscopic multiple-scattering effects. In the 

case of Bragg reflection from crystals, these multiple-scattering effects are referred to as 

dynamical diffraction effects and include, for example, extinction and anomalous 

absorption. Dynamical and kinematical theories of diffraction are associated with the 

names of Ewald and Laue, respectively. (The distinction between dynamical and 

kinematical theories of diffraction is meaningful only for radiation for which the index of 

refraction is close to unity; cf. Sears 1989). 

Once can contrast neutron scattering, and NMR and muon spin resonance, by the 

observation that resonance experiments provide information on bulk response functions 

whereas neutron scattering measures a differential response function, i.e. the relaxation 

times T 1 and T 2 are akin to the specific heat, say (integrals over relevant degrees of 
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freedom). Hence, a neutron scattering experiment is seen to provide a wealth of detailed 

information on the static and dynamic properties of the sample. 

Linear response theory, which underpins most experiments that probe properties of 

condensed matter (including neutron scattering but excluding, for example, 

photoemmission) is often written in terms of correlation functions depend on time (t) and 

spatial co-ordinates (R) and usually written <A(R,t) B (R',t')> where A and B are 

quantum mechanical operators for observable quantities (in which case A, B are 

Hermitian operators) and the angular brackets denote a thermal average. Such a 

correlation function is a complex quantity, and for A = B the imaginary component is 

related to quantum aspects of the system. The neutron cross-section is proportional to 

the Fourier transform of <A(R,t) A (R',t')> with respect to time and spatial co-ordinates; 

the conjugate variables in the Fourier transforms are the energy (nw) and wave vector 

(K) transfers, respectively. 

5. Some examples of cross-sections 

Since the scattering of slow neutrons is a weak process it can be described by 

first-order perturbation theory, i.e., Fermi's Golden Rule for transition rates. In 

consequence, we treat the incident and scattered neutron states as plane waves with 

energies E,E' and wave vectors k,k' , related as in eq. 1, and illustrated in Fig. (1). 

The cross-section, or response function, is described in a four dimensional space spanned 

by the variables 

nw = E- E' (3) 

and 

K k-k' (4) 

If the target sample is spatially isotropic the response function depends only on w and 

K=IKI. 

The differential cross-section is readily expressed in terms of correlation functions 

that are determined solely by the chemical and physical properties of the target sample. 

This is by far the most elegant and powerful representation, and the one adopted here. 

Further details, including an exposition of linear response theory, are found in Lovesey 

(1986) and Lovesey (1987). We will separately describe nuclear and magnetic 

scattering, though some basic concepts are common to both, of course. A wide ranging 
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review of neutron scattering science is found in the many articles gathered in a three­

volume treatise edited by Price and SkOld (1986). 

5.1 Nuclear scattering 

Slow neutron scattering is described by a single parameter, namely a scattering 

length b which is assumed to have minimal energy dependence. The imaginary part of b 

gives rise to absorption. This is extremely large for some isotopes, e.g., about 15000 

barns for He3 and sA neutrons. 

The nuclear scattering cross-section is a scattered length weighted sum of 

correlation functions. Let i,j label the scattering nuclei, and denote the correlation 

function by Yi
1
{K,t). With this notation the partial differential cross-section is, 

()() 

(E/E'i12 Jdt(1/2nh)e-ioot4 b>jYij(K,t), 
IJ 

(5) 
-oo 

where dQ is the solid angle subtended by the detector as shown in Fig. (1). The function 

Yij(K,t) possesses properties that make the right-hand side of (5) both real and either 

positive or zero, as required for a response function. It is necessary to average the cross­

section over the distribution of nuclear spins (assumed to be completely random), 

isotopes, substitutional disorder, etc. We will deal with those averages as and when 

required. 

5.1.1 Purely elastic scattering. This is generated by the value of the correlation 

function at infinite time; Yij (K, oo) with K ~ 0 is finite for crystals and fully arrested 

supercooled liquids, for example, but vanishes for normal liquids. For a crystal, it is 

customary to write, 

(6) 

where Ri is the equilibrium lattice position of the i'th atom and the remaining terms are 

Debye-Wailer factors. An explicit expression for W(K) valid for a harmonic lattice is 

given following eq. (16). 

Bragg scattering is elastic and coherent and occurs under special geometrical 

conditions. It is generated by a perfect crystal, which means that the appropriate cross­

section is formed with the square of the average of the effective scattering length per unit 

cell. Let the crystal contain N unit cells of volume u 0 in which the atoms are at sites 

defined by position vectors d. The elastic coherent cross-section is then 

8 



( do )el 
(j'Q coh N((2:nl I u 0 )}: jFN(-t)j

2 
b(K- 't) 

't 

in which {'t} are reciprocal lattice vectors and the unit cell structure factor, 

FN(K) - }:bdexp(iK·d-Wd(K)) 
d 

(7) 

(8) 

where b is the scattering length averaged over isotope and nuclear spin distributions; 

representative examples of b are provided in Table I. From (7) it is evident that 

scattering occurs only when the condition 't = K is satisfied, which is a statement of 

Bragg's Law. 

The difference between the total elastic scattering and the Bragg intensity from a 

solid is due to disorder and defects in the crystal, nuclear spins and mixtures of isotopes. 

By definition, it is not coherent and it occurs to some extent at all scattering angles. It Is 

customary, but not completely logical, to use the term incoherent scattering for non­

Bragg scattering generated by nuclear spins and isotope mixtures (note that a sample of a 

pure isotope can produce incoherent scattering if the nuclear spin is finite, e.g., He3). All 

the remaining non-Bragg scattering is called diffuse scattering. 

Incoherent elastic scattering from a crystal measures the quantity, 

(9) 

This can be interpreted as the sum over atoms in the unit cell of the Debye-Wailer factor 

weighted by the mean-square fluctuation in the scattering length. 

As an example of elastic diffuse scattering consider a binary system in _which type-2 

atoms (impurity atoms, say) occur with concentration c. All other things being equal 

apart from a difference in coherent scattering lengths, diffuse scattering occurs which is 

proportional to, 

(10) 

A more realistic model would allow for the difference in Debye-Wailer factors and the 

deformation in the host lattice created by the impurity atoms. In the latter case, the 

appropriate cross-section is proportional to the absolute square of the spatial Fourier 

transform of the deformation, which can be compared to theoretical predictions. For 
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more information on the use of neutron scattering to study material properties such as 

defects see, for example, the volumes edited by Kostorz (1979) and Price and Skold 

(1986). 

5.1.2 Total scattering. For a liquid strictly elastic events occur only if K = 0, 

which corresponds to no scattering. Hence, the total scattering is measured in a neutron 

scattering experiment without energy analysis. This quantity is the response function 

integrated over all neutron energy transfers. With a monatomic sample, in which 

quantum effects are negligible (achieved with large A atoms at relatively high 

temperatures), the total coherent scattering, at constant K, is proportional to the 

structure factor, 

S(K)=1+f\l dre 1 [g(r)-1], I 'Kr 
(11) 

in which p0 is the particle density and g(r) is the pair distribution function. It is perhaps, 

useful to note that r2g(r) is the probability distribution for the particle density about the 

origin. Hence, the number of particles within a sphere of radius R prescribed about a 

given particle is 

(12) 

In the limit R -+ oo this quantity approaches the total number of atoms in the sample, as 

required. 

Before turning to inelastic scattering we draw attention to a basic difference 

between Bragg scattering and total scattering. The latter is readily shown to be 

proportional to Yij(K,O), i.e., the instantaneous value of the correlation function. On the 

other hand, Bragg scattering is proportional to the square of a time-averaged variable (a 

basic principle in statistical physics is that statistical averaging is completely equivalent to 

time averaging). The difference between these two extreme limits of the correlation 

function is related to the appropriate isothermal susceptibility, i.e., the mean-square 

fluctuation in the number density. We conclude that the difference is small except in the 

vicinity of a phase transition, when fluctuations take macroscopic values. One final point 

to make is that total scattering is often referred to as the static approximation to the 

cross-section, the choice of terminology being more or less self-evident in view of what 

we have just said. 

5.1.3. Spectroscopy. This corresponds to scattering events for which w ;I! 0 and 

thus are termed inelastic. It is customary to use the label quasi-elastic for the part of the 
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inelastic spectrum which arises from random, or stochastic, processes that occur over 

relatively long time scale (Bee, 1989), e.g., diffusive motion of an atom in a liquid. If 

classical statistics apply, the incoherent (single-particle) scattering cross-section is in this 

case determined by the correlation function 

Y(K, t)- exp ( -K2Ditl) (13) 

where D is the self-diffusion constant. The corresponding cross-section is, 

(14) 

in which oi is the incoherent cross-section (79.8 barns and 2.0 barns for a proton and 

deuteron, respectively). A similar result holds for a particle jumping between interstitial 

sites of a lattice, e.g., hydrogen diffusion in metals. In this instance D = £2/t, where I is a 

length, of order the lattice constant, and 't is the residence time at a given site. 

The generic form of the correlation function that appears in quasi-elastic scattering 

is, to a good approximation, 

Y(K,t) = exp(-K2!!(t)/2), (15) 

in which 3!-l(t) is the mean-square displacement after a timet. The result !l(t) -ltl found 

for uncorrelated jumps on a lattice is characteristic of a random-walk process. 

If a particle is bound in a crystal, or macromolecule, then often a useful starting 

point is to consider scattering from a harmonically bound particle. The scattering 

response for a particle with a natural frequency w0 is, 

00 

exp[-2W(K)+(1/2)1iw~] 2: In(y)b[1iw-n1iw0 ]. (16) 
n- -oo 

The interpretation of (16) is straightforward; the scattering vanishes unless w = nw0 , and 

the integer n measures the number of units of energy 1iw0 lost (n > 0) or gained (n < 0) 

by the neutron. The various quantities in (16) are; ~ = 1/k8T (T is the absolute 

temperature), ln(Y) is a Bessel function of the first kind, and using the dimensionless 

variables x = (1iw0~!2) and y = (1iK2!2Mw0) where M is the mass of the scattering 

particle, y = y /sinh (x) and W = (y /2) coth (x). Note that the elastic contribution (n = 0) 

contains I0(y ). This factor arises from thermal fluctuations of the bound particles, which 

are negligible if the particle participates in a bulk collective motion. 
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The terms in (16) with n = ±1 are usually labelled the fundamental modes. If y « 1, 

as is often the case, the intensity of high-order modes is very small in comparison with 

the fundamental since, 

In the limit (1iK2/Mw0) » 1, which can be achieved with a pulsed neutron source, it is not 

possible to select the fundamental mode in the response. A palisade of modes of near 

equal amplitude are engaged in scattering, so the expansion leading to the representation 

(16) is of minimal value. It can be shown that, in the limit of large K, the scattering 

response tends to a Gaussian envelope function centred at the recoil energy (1iK)2/2M 

with a mean-square width of 2w0
2W(K). 

A far more realistic model of single particle dynamics is achieved by considering 

the particle as a defect in a host matrix. Two parameters characterize the particle-matrix 

system, namely the ratio of the two masses and the deviation of the particle-matrix 

stretching force from that in the bulk matrix. The dynamics of the particle can be 

obtained in closed form if the stretching forces are harmonic. Calculations with this 

model reveal that a light mass (e.g. proton in a macromolecule) creates a high frequency 

mode which is well separated from the maximum phonon frequency in the pure host. By 

using a Debye model for the latter the frequency of the new mode is 

where (M/M') is the host-particle mass ratio, assumed to be large, and wD is the Debye 

frequency. This formula accounts for hydrogen mode frequencies in metal-hydrogen 

systems apart from those using palladium, which display other slightly unusual properties 

(Kostorz, 1979). 

Detailed numerical calculations of the scattering response for a particle embedded 

in a matrix show that it contains a myriad of features. For the two extreme cases of 

K - 0 and K - oo the response is well approximated by the fundamental contributions 

and a Gaussian envelope function, respectively. But, for intermediate K the line shapes 

are highly structured. Satellites to the harmonics appear which can be traced back to 

structure in the host density of states. Such features are understood by viewing the light 

mass particle as a probe of host lattice vibrations. 

We return now to scattering from collective atomic motions, or phonons. Neutron 

scattering is the established method of measuring phonon dispersion curves. To 

understand how this is possible consider the fundamental contribution to the harmonic 
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oscillator response given in eq. (16); this vanishes unless the neutron energy change 

matches the energy of one quantum. When scattering from a collective motion the 

energy selection-rule is supplemented by a wave vector selection-rule, K = q + 't wher q 

is the lattice wave vector (confined to a Brillouin zone) which labels the phonon mode. 

In an experiment both K and ro are determined, and hence a point on the phonon 

dispersion curve is established. 

The one-phonon scheme we have just described has no value in tackling the 

interpretation of coherent scattering from a liquid for which two extreme limits are well 

understood. For small K and w we can appeal to linear hydrodynamics. The response 

for fixed K is found to consist of an elastic peak (Rayleigh line) and two inelastic peaks 

(Brillouin lines) at w = ± Kc0 where c0 is the velocity of sound. In the opposite limit of 

large K the response resembles that of a free particle, namely a Gaussian centred at the 

recoil energy ER= (1iK)2!2M with a mean-square width proportional to (k8TE~. While 

much has been learnt about the nature of physical processes engaged at intermediate K, 

the subject is on-going, particularly with regard to molecular liquids and the super­

cooled state. 

5.2. Magnetic scattering 

Neutrons scatter off the magnetic field generated by unpaired electrons in a sample. 

Note that the number of electrons involved is generally a small fraction of those engaged 

in an X-ray experiment. In the latter case, charge (Thomson) scattering engages all 

electrons whereas in magnetic, neutron or photon, scattering it is only the relatively small 

fraction of unpaired electrons that contribute to the scattering process. 

The magnetic field has two sources. First, the spins of electrons lead to a dipole­

dipole interaction. Second, mobile electrons generate a field obtained from Biot-Savart's 

formula. In the forward direction (K - 0) the neutron-electron interaction is simply 

related to the total magnetic moment. Here, for an atom characterized by total spin and 

angular momentum S and L, respectively, the forward scattering amplitude is generated 

by (L + 2S). 

The general form of the neutron-electron interaction for arbitrary K is quite 

complicated. Calculation of the matrix elements required in the interpretation of 

neutron-electron spectroscopy of isolated ions requires the full battery of Racah algebra 

used in atomic and nuclear spectroscopy (Balcar and Lovesey, 1989). Even so, we can 

give insight into the behaviour of magnetic neutron scattering by employing a relatively 

simple expression for the interaction, valid for modest values of K. 
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5.2.1. Purely elastic scattering. For not too large K, the magnetic interaction 

operator is 

r0 (1 I 2)gF(K)J (17) 

where the interaction strength r0 = - 0.54 x 1Q-12cm, g J is the magnetic moment 

operator and F(K) is an atomic form factor. For a spin-only ion g J - 2S, whereas for 

a rare earth ion J = L + S and g is the Lande splitting factor. The form factor is defined 

to be unity in the forward direction, and decreases monotonically to a value of 

.... 0.2 at K .... sA-l in a typical case. 

The definitions of Bragg and total scattering carry over from the previous 

discussion of nuclear scattering. We begin our discussion with the total scattering from 

N paramagnetic ions, namely, 

~g = N[(r0 12)gF(K)]\213)J(J+1), (18) 

where J is the magnitude of the spin, i.e. J · J = J(J + 1). This formula shows that the 

cross-section is large for large values of J, just as we might expect from physical 

intuition. The dependence on the scattering vector K comes only through the form 

factor F(K). 

There is, of course, a very strong K dependence in Bragg scattering from an 

ordered magnetic material. First, scattering vanishes unless K = "t where { "t} are 

reciprocal lattice vectors for the magnetic structure. A second dependence arises from 

the fact that the componenet of J perpendicular to K is observed. This feature often 

enables the moment orientation to be established. No such factor is explicit in (18) 

because the paramagnetic ions are randomly orientated. The Bragg cross-section for a 

collinear magnetic structure is, 

(~g)~h = rJN((2:nl I uo) }: b(K-1:)e -ZW("t)IFM("t)i2 [1- (i·i))2], (19) 
't 

where it is a unit vector that defines the preferred magnetic (easy) axis and 

(20) 

in which ~d = ± 1 according to the orientation of the magnetic moment relative to the 

referred axis. Several features merit explicit mention. The total Bragg scattering from a 

magnetic material is described by the sum of (7) and (19). The moment, proportional to 

the thermal average <1>, vanishes at the phase transition to the paramagnetic state. 

14 



Bragg intensities can be used to obtain the critical exponent for the continuous decrease 

of the magnetization in the immediate vicinity of the transition. A magnetic material 

usually forms domains, in which case the orientation factor {1- (i · T])2} must be 

averaged over the easy axes for T]. If all directions in space were equally likely, then 

clearly (i · T])2 would average to (1/3). The same result is also correct for cubic 

symmetry. 

Diffuse magnetic scattering is observed with a mixed system. If one component of 

a binary system occurs with a small concentration then the diffuse cross-section can be 

shown to be proportional to the square of the spatial Fourier transform of the 

magnetization defect created in the host matrix. Analysis of measurements on such 

systems has been central to the development of the theory of the electronic structure of 

magnetic alloys. As the temperature of the alloy is raised toward the critical 

temperature, the spatial range of the defect increases. In consequence, the diffuse cross­

section as a function of K becomes increasingly narrow, and it is believed to be singular 

at the critical temperature. 

5.2.2. Inelastic events Next we discuss the elements of neutron-electron 

spectroscopy. To be concrete consider the matrix elements for transitions between 

J-multiplets in the energy level diagram of a rare earth ion. The ion can be regarded as 

isolated, to a good approximation, and not subject to a significant molecular field, for 

example. (The expression (17) is no longer valid since it is based on the relation 

L + 2S = gJ which is retricted to aJ-multiplet.) 

The matrix element <.TMjL + 2SV' M'> vanishes except for V- J'l = 1; thus, for 

small K, we observe dipole-allowed transitions. Beyond the limit of small K higher­

order transitions contribute to , the cross-section. Even though the higher-order 

transitions are very weak compared to dipole-allowed contributions they have been 

unambiguously observed (Osborn et al., 1991). It is found that the energy separation 

between multiplets is essentially the same in concentrated and dilute magnetic systems if 

the levels come from a single Coulomb term. Significant differences are seen in data for 

the two types of system for levels that belong to different terms. This feature is 

attributed to screening of the Coulomb interaction by conduction electrons. 

Data on dilute magnetic systems are readily obtained by optical spectroscopy. This 

technique is constrained by the dipole-selection rule, and it is not useful for concentrated 

metallic magnets. At present, neutron-electron spectroscopy, which is free of both 

constraints, has been successfully applied to transitions with energy separations up to 

2.0 eV, and the technique is very much in its infancy. 
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Another form of magnetic spectroscopy is the study of crystal field levels. This is 

now very well established as a tool for direct observation of the crystal field energy level 

scheme, in 3d, rare earth and actinide compounds (Furrer, 1977 and Prick and 

Loewenhaupt, 1986). 

The introduction of exchange interactions between ions couples the single-ion 

crystal field states discussed in the preceding paragraph. Collective excitations are 

formed from phase-related linear combinations of the single-ion transitions. These 

exciton states, as they are usually called, display significant dispersion which can be 

followed throughout the Brillouin zone in many cases. The limiting factor is neutron 

energy, but this has been ameliorated with the development of advanced pulsed sources 

and appropriate time-of-flight instrumentation. 

A spin wave is the coherent propagation of a single unit of spin deviation. It is, in 

some respects, the magnetic analogue of a phonon, in as much that the neutron cross­

section vanishes unless there is simultaneous conservation of energy and wave vector. 

spin wave and phonon excitations can usually be distinguished in the scattered spectrum 

by one of several simple tests. First, spin wave intensities decrease with increasing K 

because of the atomic form factor, whereas phonon intensities increase, with a K2 

dependence. Secondly, a spin wave is an excitation away from an ordered state so it 

vanishes above the critical temperature. Hence, spin wave excitations are usually more 

sensitive than phonons to variations in temperature. On approaching the transition 

temperature spin waves soften and become more heavily damped. 

Neutron polarization analysis affords a completely unambiguous method by which 

to identify spin waves (Lovesey, 1987 and Williams, 1988) because creation or 

annihilation of a spin wave induces polarization in an unpolarized neutron beam. 

Phonons do not produce such an effect, as might be expected from physical intuition. 

Polarization analysis is even more useful when it comes to isolating paramagnetic 

spin fluctuation scattering, particularly when it is a case of studying a material with high 

transition temperature and hence a strong phonon background. In the case of a 

paramagnet, which does not possess a preferred axis, there is no creation of polarization. 

An initially polarized beam has a final polarization in the direction of K, and a magnitude 

controlled by the projection of the incident polarization onto K. Hence, the final 

polarization vanishes if the incident polarization and K are perpendicular, and it achieves 

a maximum value when they are parallel. 

The main problem in practice has been to obtain efficient methods of producing 

polarized beams or of analysing the polarization of a beam scattered by the sample. 
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Inelastic scattering events are typically 10-3 of the elastic intensity, so a relatively 

inefficient polarizing method that is tolerable for elastic studies may render inelastic 

measurements impossible. 

At the time of writing there is renewed interest in the dynamics of critical and 

paramagnetic spin fluctuations. Various experimental groups have reported, over the 

past few years, careful measurements of the paramagnetic response of insulating (EuO, 

EuS) and metallic (Fe, Ni, Pd2 MnSn) systems. The consensus opinion is that the 

response evolves with increasing K from a l...orentzian-like function centred at w = 0 to a 

squarer or top-hat function. Recent data for Gd shows a peak at finite w for large K, 

near the zone boundary, with a strong dispersion. This feature persists deep into the 

paramagnetic region, and it is quantitatively explained by a calculation based on the 

couple-mode approximation for spin fluctuations (Westhead et al., 1991). 

Another feature of magnetic systems that has recently been a focus of attention is 

the influence of dipolar forces on paramagnetic and critical fluctuations (Boni, 1993). 

Dipolar forces, present to some extent in all magnetic materials, are responsible for the 

bulk effect of demagnetization fields. It was not until the comparatively recent 

development of high resolution neutron spectrometers, with polarization analysis, that 

their influcence on dynamic processes in the vicinity of the critical temperature became 

apparent, through a series of careful experiments on metallic magnets and magnetic salts. 

The essential features of the data are in accord with predictions obtained for a 

Heisenberg magnet, including dipolar interactions, treated within the coupled-mode 

approximation. (l...ovesey, 1993b). 
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Table 1. Neutron scattering and adsorption data for some selected elements 

Element A % abundance }, a, a a 

H I 100. -0.3741 81.87 0.3326 
2 0.0149 0.6674 7.63 0.000519 
3 0.494 3.03 < 0.000006 

He 0.326 1.21 <0.001 
3 0.000 14 0.574 5.6 5333. 

4 100. 0.326 1.21 -o 
Li * -0.203 1.40 70.5 

6 7.5 0. 187 0.98 940 . 
-0.026i 

7 92 5 -0.220 1.44 0.0454 

c 0.6648 5.564 0.00350 
12 98.89 0.6653 5.564 0.00353 
13 1. 11 0.62 5.5 0.00137 
14 < 10 - ' 

0 0.5805 4.234 0.00019 
16 99.762 0.5805 4.234 0.00019 
17 0.038 0.578 4.20 0.24 
18 0.200 0.584 4.3 0.00016 

Na 23 100. 0.363 3.23 0.530 

Cl 0.9579 16.63 33.5 
35 75.77 1.17 21.62 44.1 
37 24.23 0.308 1.2 0.433 

K * 0.367 2.10 2. 1 

39 93.258 0.379 2. 19 2.1 

40 0.012 34. 

41 6.73 0.258 0.83 1.46 

V * -0.0382 4.953 5.08 

50 0.25 60. 

51 99.75 -0.0414 4.946 4.9 

Fe 0.954 11.66 2.56 
54 5.8 0.42 2.2 2.3 

56 91.72 1.01 12.8 2.6 
57 2.2 0.23 <I. 2.5 

58 0 28 1.5 28. 1.28 

Ni * 1.03 17.56 4.5 

58 68.27 1.44 25.87 4.6 
60 26. 10 0.28 0.96 2.9 

61 1.13 0.76 7.23 2.5 

62 3.59 -0.87 9.6 14.5 

64 0.91 -0.038 0.02 1.52 

Ag 0.597 5.09 63.3 

107 51.83 0.764 38. 

109 48.17 0.419 91. 

Pb 0.9401 11.11 0.17 

204 1.4 0.66 

206 24.1 0.0305 

207 22 .1 0.709 

208 52.4 0.00049 

Bi 209 100. 0.8533 9.156 0.033 

b(l0-12cm): Coherent scattering length for bound atoms. Complex values correspond to 
0 

a neutron wave length of 1 A . 
as(barns ): Total scattering cross section of bound atoms for thermal neutrons. 

aa(barns: Absorption cross sections for thermal neutrons (2200ms-1 ). 

* Natural isotope mixture 
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wave vector 
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