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Abstract 

Many of the calculation procedures for determining the thermal transport through building walls 

are based on thermostat directed graph networks. These procedures relate the heat flux and 

temperature in one region of the wall to the heat flux and temperature in another region of the 

wall. Recently an ASHRAE sponsored project examined the ability of such procedures to 

correctly predict the performance of a number of wall types. That study showed indicated that 

the design calculations were only accurate to the 50% level. 

A thermal transport processes can be represented in either a local constitutive convolution form 

or as a directed graph network form. Both the local constitutive convolution and network 

representations are based on response factors which can, in principle, be used to estimate 

dynamic thermal transmission of the building components. 

The purpose of this paper is to show that only the local constitutive equations yield, for all 

cases, consistent and accurate values for the physical properties of the materials under test, 

whereas the directed graph network representations are unreliable. This is because the network 

representations are ill posed and are likely to lead to erroneous predictions in designing the 

performance of buildings. The constitutive representation allows the measurement of thermal 

conductivity and transmission of building components under real meteorological conditions. It is 

then used to measure the convective and radiative coefficients of a wall and the representation 

can be extended to the nonlinear thermal transport case. 



Introduction 

An observed thermodynamic flux can be characterised in terms of the observed thermodynamic 

forces with the constants of proportionality being the transport coefficients. Mitalas and 

Stephenson [1,2] have applied the response factor form of the directed graph network approach 

to the characterisation of thermal flow in buildings. Their method is used in heating and cooling 

load calculations for design [3]; however it has proved difficult to extract accurate and 

consistent response values from experimental data [ 4]. In order to assess the impact of a 

particular construction on energy transport, information about the thermal transport processes 

and their thermodynamic properties interactions with the thermodynamic properties is essential. 

Thus this paper presents a constitutive convolution form that provides information on the 

thermodynamic interactions. 

The most simple case to examine is the one dimensional thermal conduction in a solid body. A 

thermal transport processes can be represented in either a local constitutive convolution form or 

as a directed graph network form. Both the local constitutive convolution and directed graph 

network representations are based on response factors which can, in principle, be used to 

estimate dynamic thermal transmission of the building components. The thermal conductivity of 

the solid is estimated using each of the representations and these estimated values are then used 

to test the ability of each representation to predict the future behaviour of the building. The 

response factors can be estimated directly from the time series data of the physical observables 

under general stochastic boundary conditions. 

The first part of this paper examines the ability of the constitutive and directed graph network 

representations to accurately characterise and to predict the thermal performan~e of a well 

defmed thermal transport problem. Of these, only the constitutive convolution equation 

representation based on the response factors was consistently able to determine accurate values 

for the thermal conductivity of a wide range of building materials. The second part of this paper 

considers the simultaneous extraction of the conductive, convective and radiative thermal 

transport coefficients from building performance time series data. 
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A specially constructed test facility was used to measure the thermal conductivity of a wide 

range of common building materials. The thermal conductivity of each material being 

determined under dynamical meteorological boundary conditions. The time series data were 

analysed by two representations and compared to the ratio of mean's method and to available 

published data. The actual duration of data collection being chosen to be greater that three 

times the relaxation time of the thermal conduction process, and the number of time series data 

points being sufficient to perform a detailed analysis, typically several hundred points. 

Representations of the thermal process 

The representations for thermal transport used in this work are: 

1. the directed graph network representation, where the heat flux and temperature in one 

region of the solid is related to the historical heat flux and temperature in another region. 

2. the local constitutive representation where the one dimensional heat flux in the solid 

material is assumed to be related to the historical temperature gradients. 

The moment hierarchy method [5] is used to calculated the coefficients for each of these 

representations. 

Directed graph networks 

One way to characterise the relationship between subsystems within the thermodynamic 

environment by analogy with electrical multiport networks. The most simple directed graph 

network case to examine is the relationship between the heat flux and the temperature field 

measured on each side of a plane parallel slab, which can be regarded as a vector constitutive 

problem. Carslaw and Jaeger [6] first considered the relationship between the heat flux, 

{ Qk (t)}, and the temperature values, {T(t)}, on each surface of a parallel sided homogeneous 

isotropic slab to be a matrix algebra problem in the z domain. 
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Mitalas and Stephenson [1] have extensively applied the response factor form of the directed 

graph network approach to characterise the one dimensional thermal conduction problem in the 

building envelope, in the z domain their representation is given by 
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where 81 (z) and 82 (z) are the z transformations of the heat fluxes, where <1>1 (z) and <1>2 (z) 

are the z transformations of the temperatures and where A9 9 (z), B9 11> (z), ell> 9 (z) 
1 2 l 2 l 2 

and Dei> ci> (z) are the z transformations of the time domain response factors in equation (1). 
1 2 

In the time domain the observed thermal heat flux in terms of the temperature field with linear 

directed graph network expressions to describe the relationships between the heat fluxes and 

temperature fields with the vector convolution 

Qt(t) KQ1Q2(cr) KQ1T2(cr)Q2(t-cr) 

Tt (t) = KTtQ2 (cr) KT1T2 (cr) T2 (t- cr) 
(2) 

where K(cr)' s are the response factors of the process, where cr is the time delay with respect to 

the present time t, and where the time delays are assumed to extend to the finite memory ~ for 

the conduction process. 

Local constitutive relationship 

A thermodynamic system which is embedded in an open environment experiences a set of 

thermodynamic potentials, whose gradients, called the thermodynamic forces, { Fi ( t)}, cause 

the exchange of certain properties, called the thermodynamic fluxes, { Qk ( t)} between the 

system and the environment 
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Each local thermodynamic flux, { Qk ( t)}, is characterised in terms of the observed 

thermodynamic forces, { Fi ( t)}; for example conduction, convection and radiation, with 

(3) 

Onsager related the linear steady state irreversible thermodynamic fluxes to the local linear 

steady state thermodynamic forces which motivate the flux [7 ,8]. The linear constitutive 

equations relate the independent thermodynamic fluxes, { Qk ( t)}, in terms of their conjugate 

thermodynamic forces, { Fi ( t)}, and a set of linear steady state Onsager coefficients, Lik, with 

Qk (t) =I. LikFi (t) 
i 

and where the linear steady state transport coefficients are given by Lik =(a Qk) 
aFi o 

(4) 

The Onsager representation considered here are concerned with the constitutive equations 

whose constants of proportionality are the transport coefficients. 

The most simple case to study is the one dimensional heat conduction experiment Gurtin and 

Pipkin [9] developed a realistic field theory for heat conduction using constitutive equations 

with assumptions that lead to finite propagation speeds. The linearised constitutive equation for 

the heat flux in terms of the local temperature gradient being 

(5) 

where the linear thermodynamic force is equal to the temperature gradient, i.e. Fi (t) = VT(t). 

Chen and Nunziato [10] used the second law of thermodynamics to show that 

(6) 

where K is the steady state thermal conductivity of the solid. 
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Ratio of Means Method 

In addition to the two time series representations given above the thermal conductivity of the 

sample materials will estimated using the ratio of means method and also from the literature. In 

the ratio of means method steady state conditions are assumed to prevail and the relationship 

between the local heat flux and the local temperature gradient will be given by the 

approximation 

(7) 

where N is the sample length, where it has been assumed that the thickness Ax = 1. 0 and where 

the conductivity from the ratio of means method, K3, is 

N 
l: Qk (t) 
t= l (8) 

where it is implicit that the heat flux and temperature values are measured in steady state and 

that the temperature difference used is the actual driving force of the heat flux. 
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Response factor estimation for the directed graph network approach 

An ordered sequence of data in time is called a time series and the relationship between series 

sequences can be characterised in terms of response factor values. In the thermostatic 

representation it is assumed that the heat flux, { Q1 ( t)}, and temperature field, { T1 ( t)}, 

measured in one local thermodynamic region are a linear vector function of the heat flux, 

{ Q2 ( t)}, and temperature field, { T2 ( t)}, in another region. The network equation for the time 

domain form of the Mitalas and Stephenson directed graph representation is given by 

Q1(t) Ko10z (cr1) KQ1T2 (cr1) Qz(t-cr1) 

T1(t) = KT1Qz (cr1) KT1T2 (cr1) Tz(t-cr1) 

The equation for the heat flux is explicitly given by the convolution 

(9) 

(10) 

and the steady state thermal conductivity and heat flux gain, K 1 and 'I' 1, Jar the network 

representation will be given by 

(11) 

That is, the area under the response factor between the local heat flux and local temperature 

gradient is equal to the steady state thermal conductivity; where it has been assumed that 

Ax = 1. More generally, the area represents the steady state gain between physical observables 

[5]. 
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A set of 2(~+ 1) equations need to be generated and solved for the response factor values, 

KQ T (0'1) • If the temperature fields, {T1 (t)} and {T2(t) }, and heat fluxes, { Q1 (t)} and 
1 2 

{ Q2 ( t)} are drawn from stochastic processes, then the moment equations are 

and 

where the moments represent the average values of delayed products. 

N 
For example the cross moments MT Q ('t1) = I. T2 (t- 't1) Q1 (t) and 

2 1 t=O 

N 
MQ T ('t1,cr1) = I.Q2 (t-'t1)T2 (t-cr1), where N is the length of the data sample. Equation (12) 

2 2 t=O 

can be seen to be a linear algebra expression £ = ~h, where !. is the auto moment matrix, .£. is 

the cross moment vector and h. is the vector of response factor values [5]. 

Response factor estimation for the local constitutive approach 

The local constitutive representation is a field theoretical one in which the one dimensional heat 

conduction in an isotropic solid which contains no sources of heat. It is assumed that the heat 

flux observed can be expressed as a convolution between the observed heat flux, Qk ( t), and the 

local temperature gradient, VT(t), and the linear temporal response factor, LQk VT(cr1 ). For a 

discrete process which possesses a finite memory of duration ~. the convolution can be 

expressed as 

(14) 

where cr 1 denotes lag and where ~ is the finite memory of the conductive process. 
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The response factor, LQk VT ( cr 1), is related to the steady state thermal conductivity, 1C2 , [1 0] 

with 

(15) 

A tractable moment hierarchy comprising of a set of (~l+ 1) equations with well behaved 

coefficients is obtained which can be solved for the response factor values, LQk VT ( cr 1), with 

(16) 

Experimental facility for the thermal conductivity experiment 

The experimental arrangement shown in figure 1 was designed to measure the thermal 

conductivity of a wide range of medium to low thermal conductivity engineering materials 

under stochastic boundary conditions. Different sized samples were required to measure the 

thermal conductivity, the dimensions for each material type were determined using . a two 

dimensional finite element model was used. This allowed rapid optimisation of sample size and 

establishing the best positions of the sensors. 

Essentially the rig consists of a heat pipe to atmospheric conditions and another heat pipe to a 

cold temperature bath which is controlled. The cold bath is an enclosed copper heat exchanger 

that has cold water pumped through it. The cooling of the water is achieved by using a 

commercial water chiller. The water is re-circulated through the chiller. The water temperature 

is fixed at 10.0+/- 0.02oc. 
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The temperature and heat flux are measured at positions above and below the as shown in 

figure 1. The test section is surrounded by loose vermiculite insulation. The insulation is 

contained within a 500 mm square box. 

The readings are taken every ten seconds over an eleven hour period, the time interval for data 

collection being determined by the response time of the sensors used. During the test period 

4,000 sets of measurements are taken. Of these 4000 points, some 2000 are used to estimate 

the response factor values of the process and the remaining 2000 points are used to compare 

with the values of the heat flux predicted using the estimated response factor values. 

Analysis of the data 

The thermal conductivity of each sample was determined using the two representations and the 

ratio of means method. These estimated values are then used to predict the future behaviour of 

the heat flux at the surface of the sample. These predicted heat flux values are then compared 

with the actual observed values. 
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The conductivity values estimated using the local constitutive and the Mitalas and Stephenson 

directed graph network representations are compared with the values obtained using the ratio of 

means method and where appropriate from the literature. 

The estimated response factor values obtained using the time series techniques can then be used 

to provide a prediction of the local heat flux , { QP ( t)}, field which may be compared with the 

measured heat flux, { Q1 ( t)}. This provides a quantitative measure of the quality of the 

response factor characterisation of the thermal transport process, both for the region of data 

which were used to estimate the response factor values and for regions of the data that were not 

used in the response factor estimation process. The accuracy of the modelling ability was 

determined by comparing the root mean square and also the Students t-test between the actual, 

{ Q1 ( t)} , and predicted, { Q P ( t)}, time series sequences. These estimated response function 

values are used to predict the future behaviour of the material, with the accuracy of the 

predictive ability being determined by comparing the root mean square and also the Students t­

test between the actual, { Q1 ( t)} which were not used to estimate the transport coefficients, and 

predicted, { QP ( t)}, time series sequences. This provides a sensitive measure of the quality of 

the response factor characterisation of the thermal transport process, both for the region of data 

which were used to estimate the response factor values and for other data sets which were not 

used in the estimation process. 

In all cases the values of the test statistics for the differences between the measured, { Q1.(t)}, 

and predicted, { QP ( t)}, output heat flux for both modelled and predicted data lay well within 

the acceptance region; thus each representation can accurately characterise the observed 

behaviour of the heat flux. 
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At this stage the representations are only black-box characterisations, and none of them can be 

rejected on the basis of the findings of the analysis. 

The important thing is to determine if the coefficient values have any physical meaning. In this 

case, if the coefficient values are related to the thermal conductivity of the material. In addition, 

the robust and consistent nature of the coefficients needs to be established. 

The values of the estimated thermal transport conductivities are presented in table 1. The 

experimental uncertainties given are dominated by the calibration accuracy of the heat flux mats. 

T bl 1 E f t d th I d f 't' f f t ' I a e . s 1ma e erma con uc 1v1 1es o a ram e o ma ena s . 
directed graph network local ratio of Literature 

constitutive means value 

Kl 'l't flux 1C2 1C3 

W/m°K gam W/m°K W/m°K 

marble 2.78 -0.68 1.64 1.636 2.00 

±0.40 ±0.22 ±0.18 ±0.18 ±0.01 

clay tile 0.616 -0.204 1.08 1.08 1.00 

±0.35 ±0.22 ±0.05 ±0.05 ±0.05 

plaster 0.295 0.586 0.200 0.199 0.17 

board ±0.03 ±0.04 ±0.01 ±0.01 ±0.01 

cork 0.030 0.989 0.050 0.050 0.050 

±0.006 ±0.10 ±0.005 ±0.005 ±0.003 
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As can be seen the local constitutive representation gives correct, accurate and consistent values 

for the conductivities over the whole range of materials considered. In contrast the Mitalas and 

Stephenson representation fails to provide accurate or consistent values for the building 

materials considered here. 

The reason that the Mitalas and Stephenson directed graph network representation is not 

consistent and fail to give the correct answers for the thermal transport coefficients can be seen 

from the basic formulation of the problem, in that it is assumed the functional relationship is of 

the form 

As the heat flow is approximately one dimensional through the slab of material then 

Q 2 (t)"" Q1 (t) and the equation is ill posed, as it can be written as 
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In table 2 the estimated conductivity for different samples are given. 

T bl 2 E f d th d f . . fd'f~ t a e . s 1mate erma con uc IVIties o 1 eren sampl es . 
directed graph network local ratio of Literature 

constitutive means value 

1Cl 'l't flux 1C2 1C3 
W/m°K gain W/m°K W/m°K 

clay tile 0.616 -0.204 1.08 1.08 1.00 

1 ±0.35 ±0.22 ±0.05 ±0.05 ±0.05 

0.355 0.296 1.08 1.08 1.00 

2 ±0.06 ±0.06 ±0.05 ±0.05 ±0.05 

0.188 0.611 1.08 1.06 1.00 

3 ±0.05 ±0.10 ±0.05 ±0.05 ±0.05 

0.128 0.723 1.08 1.07 1.00 

4 ±0.030 ±0.050 ±0.05 ±0.05 ±0.05 

cork 0.030 0.989 0.050 0.050 0.050 

1 ±0.006 ±0.10 ±0.005 ±0.005 ±0.003 

0.029 0.235 0.050 0.050 0.050 

2 ±0.006 ±0.05 ±0.005 ±0.005 ±0.003 

-0.019 1.56 0.050 0.050 0.050 

3 ±0.006 ±0.20 ±0.005 ±0.005 ±0.003 

0.021 0.488 0.050 0.050 0.050 

4 ±0.006 ±0.10 ±0.005 ±0.005 ±0.003 
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Again the local constitutive representation gives results that are consistent and which agree 

within the error bars, but which are slightly low because of contact resistance effects. ,However, 

the Mitalas and Stephenson directed graph representation fails to provide consistent values for 

the building materials considered here because the representation is ill posed. 

Current many of the thermal transport calculation procedures for buildings are based on the 

Mitalas and Stephenson directed graph representation. 

This being the case, is it very likely that building designs based on them will not accurately 

represent of the true performance of the actual building, see for example [ 4] which shows large 

discrepancies between the measured and the modelled thermal performance of a wide range of 

building construction types. 

Response factor estimation for a conductor with convective and radiative forces 

The above has demonstrated that the local constitutive response factor representation provides 

a accurate characterisation of the thermal conduction process and physically meaningful 

transport coefficients. In general, more than one thermodynamic potential will be acting to 

cause thermodynamic flow and in those cases the local constitutive equations are of a vector 

form. 

In the present section the vector form of the local constitutive equations are used to 

simultaneously determine the convective and radiative heat transfer coefficients of a building 

surface under forced convective conditions. 

1 The material in this section was originally presented at a cm W60 working party meeting in 
4\thens 1991 [13]. The working party recommended that the material be published in the open 
literature. 
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The heat flux may be expressed as a convolution between the observed thermodynamic forces and 

the thermal response factor. A useful starting point is to consider the local energy balance at a 

typical building surface in terms of a superposition of the contributions from each thermodynamics 

force 

Q(t) = Qconduction(t) + Qradiation(t) + Qconvection(t) (17) 

As for the one dimensional conduction equation given by (5), this can be written in terms of the 

linear convolution of the local thermodynamic forces and the response factors for each process 

with 

(18) 

where ~ is the finite memory of the transport process. 

In this case the thermodynamic forces are: 

1) the conductive thermodynamic force is the temperature gradient ,VT8 (cr1) °Km-l,within 

the wall and the response factor values for the conductive process are LQVT ( 0'1) W °K m-1 
s 

2) the radiative thermodynamic force, L\Tr4 (cr1) W m-2, is the Stefan-Boltzmann's constant 

multiplied by the difference between the fourth powers of the surface temperatures of the ceiling 

and the average of the remaining surfaces and the response factor values of the radiative process 

3) the convective thermodynamic force ,L\Tf(cr1) °K, is the temperature difference across the 

fluid-surface boundary layer , the response factor values of the convective process are 

LQ.nf (0'1) W oKm-2. 

J.l. 
The area under the estimated response factor A= L LQF ( cr1) for a given thermodynamic force 

0'=0 

F(t) for each process is the transport coefficient of that process. 
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The time series moment equations between the heat flux and the three thermodynamic forces are 

a) the conductive moments 

(19) 

b) the radiative moments 

(20) 

and c) the convective moments 

(21) 

This representation can be readily extended to the non-linear case. 

Facility for the test cell experiment 

The experiment consisted of a highly instrumented environmental chamber. The experimental 

data set used in the present work was collected, from the British Gas plc test cell at Cranfield, 

by the Energy Monitoring Company (EMC), over the 1989/90 heating season [12]. 
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The test cell has internal dimensions of 2.03m by 2.03m by 2.33m tall. The four walls of the 

test cell, which are of an externally insulated brick construction, are built off an insulated timber 

floor panel which has been raised on blocks above ground level, allowing the floor panel to be at 

the ambient external temperature. The flat roof of the test cell is of a timber-frame Styrofoam 

construction, with waterproofed plywood as the external surface and plasterboard as the internal 

surface. The internal surfaces of the test cell are finished with a coat of mat white paint 

The test cell is exposed to natural external meteorological conditions. It is highly sealed, as the 

natural infiltration rate was less than 0.05 ac/hr, as determined from a pressure test on the test 

cell [12]. The test cell was continuously mechanically ventilated by the outside air, ducted via a 

pulse output gas meter, to record the ventilation rate, which was set at approximately 2 ac/hr 

using dampers on the inlet and outlet ducts. This air entered the test cell via a diffuser pipe, 

running from the floor to the ceiling, in the North-West corner. The air, within the test cell, 

was heated by a 1 kW convective heater, placed parallel to the North wall, facing into the test 

cell and controlled by a pseudo random sequence of on/off pulses with a 30 minute time step. 

Time series data were collected at 5 minute intervals for a period of 20 days for the experiment 

Measurements were obtained for the air and surface temperatures, and for the heat flux flowing 

into each surface within the test cell. The radiation exchange was determined directly from the 

net flux measurements and also from the surface temperatures. The convective exchange was 

determined from the heat flux measurements and from a series of temperature differences 

measured using a Meyer ladder. A Meyer ladder measures the air temperature through the 

boundary layer, from the surface to which it is attached to the bulk air, was mounted on the 

ceiling of the test cell close to the heat flux mat on this surface. 
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Analysis of environmental chamber data 

The use of thick Styrofoam in the construction of the test cell caused the time constant for 

thermal conduction through the envelope is very long, of the order of days. Hence this path will 

be assumed to be negligible within the time scale of minutes for either the convective or 

radiative flow paths considered in this section. The convective and radiative heat transfer 

coefficients will be determined as the area under the estimated response factor curve for each 

process. The Meyer ladder also enabled an investigation into the properties of the boundary 

layer at the ceiling to be performed. 

Figures 2, 3 and 4 show typical 24 hour samples for the following variables. In Figure 2, the 

temperature difference between the tenth sensor on the Meyer ladder and the surface of the 

ceiling. Figure 3 shows the difference between the surface temperature of the ceiling and the 

average temperature of the other surfaces within the test cell, both raised to the fourth power. 

allowing for the Stefan-Boltzmann's constant (The cubic geometry of the test cell and the fact 

that all the surfaces within the test cell were finished with a coat of mat white paint mean that 

the correction due to the relative view factors and the emissivity of each surface will be 

negligible). Figure 4 shows the heat flux at the ceiling surface, measured as positive into the 

surface. 

The convective and radiative response factors, from which the convective and radiative heat 

transfer coefficients are determined, were estimated from 5 days (1440 points) of time series 

data from the data set. The maximum length of time delay or the length of the memory of the 

processes was set to 3 hours. 
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Figure 5 shows the convective and radiative heat transfer coefficients or gains. The convective 

heat transfer coefficient between the ceiling and the bulk air within the test cell is the asymptotic 

value of the convective HTC curve and is 5.5±0.6 W/m2 °K. The thickness of the boundary 

layer at the ceiling in this experiment can be estimated from this curve and is approximately 

lOOmm thick. The radiative heat transfer coefficient is approximately constant, as would be 

expected, and has a value of approximately 0.5±0.1 W/m2 °K. This value is a function of the 

emissivity and absorptivity of the ceiling. 

The convective and radiative driving functions for a second data set were used to predict the 

heat flux at the surface and these predicted valued were then compared with the observed 

values. Good agreement between the predicted and measured heat flux are clearly seen. Figure 

7 shows the predicted convective and radiative components of the heat flux together with the 

observed heat flux values so that the contribution from each process can be seen. 

The above example demonstrates the accuracy and utility of the response factor approach can 

be appropriately applied to many areas in building performance assessment. 
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Conclusions 

In this work the thermal transport coefficients for a range of different building materials have 

been determined using the local constitutive and graph network representations. Each of the 

two representations characterised the measured heat flux well. However, only the local 

constitutive representation gave consistent and accurate values for the thermal conductivity of 

the materials examined. The Mitalas and Stephenson directed graph network representation 

failed to produce consistent or accurate values for the transport coefficients. Thus the Mitalas 

and Stephenson graph network representation is not likely to provide reliable thermal 

predictions of buildings performance. 

As many of the current calculation procedures are based on this graph network representation it 

is recommended the further studies be undertaken to develop alternative procedures and extend 

the experimental studies to cover a wider range of materials, composites and building structures 

operating in real meteorological conditions. 

The moment hierarchy of the local constitutive representation was used to estimate the response 

factors of the convective and radiative processes, that act at the surface of the ceiling within an tes 

cell. The response factors provided a good a characterisation of the physical relationship between 

the physical variables. The area under the estimated response factor is the transport coefficient f01 

that process. The bulk convective and radiative heat transfer coefficients, in this experiment, are 

5.5±0.6 W/m2 °K and 0.5±o.l W/m2 °K, respectively. The convective and radiative components 

of the surface heat flux have also been indicated. 

The analyses presented in this work demonstrate the accuracy and utility of the moment 

hierarchy approach to response factor estimation, and that the local constitutive representation 

can be appropriately applied to many areas in building performance assessment. 
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Figure captions 
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Figure 1. A schematic diagram of the experimental arrangement 
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Figure 2 : A typical 24 hour sample of the temperature difference between the 
eighth Meyer ladder sensor and the surface_of the ceiling 
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Figure 3 : A typical 24 hour sample of the differnce between the fourth powers 
of the temperatures of the ceiling surface and average of the remaining surfaces 
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Figure 4 : A typical24 hour sample of the heat flux at the ceiling surface 
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Figure 5 : Estimated convective and radiative heat transfer coefficients for 
each Meyer ladder sensor, ?n a natural log scale 
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Figure 6 : A sample of the measured and predicted (using the estimated 
convective and radiative response functions) heat flux at the ceiling surface 
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Figure 7 : A sample of the predicted heat flux at the ceiling surface, split 
into it's radiati\'e and convective components 








