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Abstract 

Real building's and their components experience dynamic thermal transmission. It is possible 

to represent thermal transmission as either a supposition of local constitutive convolution 

equations in a local region of the solid or as a directed graph network between connected 

thermodynamic regions within the solid. Both the loacl constitutive convolution and directed 

graph network representations are based on response factors which can, in principle, be used 

to estimate dynamic thermal transmission of the building components. The response factors 

can also be used to predict the performance of the materials under a range of design loadings. 

These response factors for each representation can be estimated directly from time series data 

of the physical observables under general stochastic boundary conditions. Indeed, it can be 

demonstrated that each of the representations can accurately characterise the thermal 

performance of building components. 

The purpose of this paper is to show that only the load constitutive equations yield, for all 

cases considered, the correct values for the physical properties of the materials under test, 

whereas the directed graph network representations are unreliable. This is because directed 

graph network representations are ill posed for the one dimensional flow case and are likely to 

lead to erroneous predictions for the design performance of buildings. The load constitutive 

equations allow the measurement of thermal conductivity and transmission of building 

components in the field. Thus providing a unique insight into the actual thermal performance 

of constructions in use. 



Introduction 

Buildings do not exist in a steady state world; they respond to the continuously changing 

weather and the needs of the occupants. To measure the thermal characteristics of these 

buildings the appropriate analysis techniques need to be employed. This work uses novel time 

series analysis techniques to determine the thermal characteristics for a closely defmed thermal 

transport problem. It is possible to represent thermal transmission as either a supposition of 

local constitutive convolution equations in a local region of the solid or as a directed graph 

network between connected thermodynamic regions within the solid. Both the local 

constitutive convolution and network representations are based on response factors which can, 

in principle, be used to estimate dynamic thermal transmission of the building components. Of 

these, only the local constitutive convolution equation representation based on the response 

factors was consistently able to determine accurate values for the thermal conductivity of a 

wide range of building materials. 

A specially constructed test facility was used to measure the thermal conductivity of a wide 

range of common building materials. The experiments were performed for each material under 

dynamical meteorological boundary conditions. The time series data for both sets of boundary 

conditions were analysed by two representations and compared to the ratio of mean's method 

and published data. This enabled the direct comparisons to be made between these 

representations. 
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Representations of the thermal process 

The two representations used in the present work are: 

1. the local constitutive representation where the local one dimensional heat flux in the 

solid material is assumed to be related to the historical local temperature gradient. 

2. the directed graph network representation, where the heat flux and temperature in one 

region of the solid is related to the historical heat flux and temperature in another region. 

The moment hierarchy method [1] is used to calculated the response factor values and thermal 

transport coefficients for each of the representations. A thermostatic network representation 

relating the thermodynamic fluxes to the thermodynamic forces has recently been developed 

by Peusner [2-5] and that representation is considered in detail elsewhere [6]. 

After Onsager 

The Onsager representation considered is concerned with the constitutive equations which 

relate the local thermodynamic fluxes to the local thermodynamic forces. A thermodynamic 

flux is characterised in terms of the thermodynamic forces acting and the constants of 

proportionality are the transport coefficients, for example, in this case the thermal 

conductivity. In the Onsager representation , a given thermodynamic flux, { Qk (t)}, can be 

written as a linear function of the local thermodynamic forces, { Fi ( t)}, with 

(1) 

The linear steady state transport properties can be described by the irreversible thermodynamic 

equations of Onsager [7 ,8]. 
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The linear form of the local constitutive equations relate the independent thermodynamic 

fluxes, { Qk ( t)}, in terms of their conjugate thermodynamic forces, { Fi ( t)}, and a set of linear 

steady state Onsager coefficients, Lik, with 

Qk (t) =I LikFi (t) 
i 

(2) 

The most simple case to study is the one dimensional heat conduction experiment. Gurtin and 

Pipkin [ 4] developed a realistic field theory for heat conduction using local onstitutive 

equations with assumptions that lead to finite propagation speeds. The linearised constitutive 

equation for the heat flux in terms of the local temperature gradient of their field theory 

(3) 

Chen and Nunziato [10] used the second law of thermodynamics to show that 

t 

K = I L Q nCa) > 0 
a=O k 

(4) 

where 1C is the steady state thermal conductivity of the solid and the response factors, 

L Qk nCt), are the dynamic thermal conductivity values. 

After Carsaw and Jaeger 

Carslaw and Jaeger [11] considered the relationship between the heat flux and the temperature 

values on each surface of a parallel sided homogeneous isotropic slab. They gave linear 

directed graph network expressions to describe the one dimensional steady relationships 

between the heat fluxes and temperature fields with the vector convolution as 

Ql(t)- KQlQz(a) KQITz(a)Qz(t-a) 

TI (t) - KQlTz (a) KTIT2 (a) Tz (t- a) 
(5) 

where a is the time delay with respect to the present time t, and where the time delays are 

assumed to extend to the finite memory ll of the conduction process. 
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Mitalas and Stephenson [12-14] have also extensively applied the response factor form of the 

directed graph network approach to the dynamic characterisation of one dimensional 

conductive thermal flow in the z domain being given by 

(6) 

where e1 (z) and e2 (z) are the z transformations of the heat fluxes, where ci>1 (z) and ci>2 (z) 

are the z transformations of the temperatures and where A8 8 (z), B8 <I> (z), 
1 2 1 2 

C<I> 8 (z) and D<I> <I> (z) are the z transformations of the time domain response factors in 
1 2 1 2 

equation (5). 

Response factor estimation for the local constitutive representation 

The heat flux, temperature and temperature gradients of sample materials were measured in a 

calibrated hot box arrangement. From these measurements the dynamic response factors and 

the thermal conductivity's are estimated using each of the above representations for the 

thermal process. 

The flrst representation considered is the linear term of a field theoretic description [9] of the 

one dimensional heat conduction in an isotropic solid which contains no sources of heat. It is 

assumed that the heat flux observed can be expressed as a convolution between the observed 

heat flux, {Qk(t)}, the local temperature gradient, {VT(t)}, and the linear response factor, 

LQkVT(cr1). 
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For a discrete process, which possesses a finite memory for the thermal conduction process 

of duration Jl, the convolution can be expressed as 

(7) 

where a 1 denotes lag. The response factor, L 0 k VT (a 1), is related to the steady state thermal 

conductivity, K1 with 

(8) 

That is, the area under the response factor between the local heat flux and local temperature 

gradient is equal to the steady state thermal conductivity. More generally, the area represents 

the steady state gain between physical observables [1]. 

A tractable moment hierarchy with well behaved coefficients can be solved for the response 

factor values [ 1] with 

(9) 

N 
where the cross moment MvTQ (t1) = IVT(t-'t) Qk(t) and the auto moment 

k l=f.l 

N 
MvTVT (t1, 0"1) = LVT(t- t)VT(t- a), and where N denotes the sample length. 

t=f.l 

Equation (9) is a linear algebra expression £ = ~~, where ~ is the auto moment matrix, .£ is 

the cross moment vector and L is the vector of response factor values [1]. 

6 



Response factor estimation for the directed graph network representation 

In the Carslaw and Jaeger directed graph network representation, a conducting slab of 

material both surfaces can simultaneously experience unsteady heat flux and temperature 

conditions. The two surfaces are assumed to be connected components in the thermostatic 

network and the heat flux, { QI ( t)}, and the temperature, { TI ( t)}, at one surface can be 

related, by a superposition of convolution equations, to the heat flux, { Q2 ( t)}, and 

temperature, {T2 (t)}, at the opposite surface by the matrix convolution equation 

QI(t) KQIQz (cri) KQtTz (cri) Qz(t-cri) 

TI(t) = KTIQz (cri) KTITz (cri) Tz(t-cri) 

The equation for the heat flux is explicitly 

(10) 

(11) 

and the steady state thermal conductivity and heat flux gain, K: 2 and \jlz, for the Carslaw and 

Jaeger directed graph network representation are given by 

(12) 

The moment equations to be solved for the response factor values, K T (cr1) and 
Ql 2 

KQIQz (cr1), in the Carslaw and Jaeger directed graph network representation case are 

and 
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Ratio of Means Method 

In addition to the two time series representations given above the thermal conductivity of the 

sample materials will estimated using the ratio of means method and also from the literature. 

In the ratio of means method steady state conditions are assumed to prevail and the 

relationship between the local heat flux and the local temperature gradient will be given by the 

approximation 

(15) 

where N is the sample length, where it has been assumed that the thickness .&c = 1. 0 and 

where the conductivity from the ratio of means method, K:3 , is 

(16) 

where it is implicit that the heat flux and temperature values are measured in steady state and 

that the temperature difference used is the actual driving force of the heat flux, and where U is 

the thermal transmittance. 
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Experimental facility 

The experimental arrangement shown in figure 1 was designed to measure the thermal 

conductivity of a wide range of medium to low thermal conductivity engineering materials 

under stochastic boundary conditions. Different sized samples were required to measure the 

thermal conductivity, the dimensions for each material type were determined using a two 

dimensional fmite element model was used. This allowed rapid optirnisation of sample size and 

establishing the best positions of the sensors. 

Essentially the rig consists of a copper heat pipe to atmospheric conditions and another copper 

heat pipe to a controlled cold temperature bath. The cold bath is an enclosed copper heat 

exchanger that has cold water pumped through it. The cooling of the water is achieved by 

using a commercial water chiller. The water is re-circulated through the chiller. The water 

temperature is fixed at 10.0+/- 0.02oc. The absolute temperatures are measured by carefully 

calibrated Platinum resistance thermometers and the heat fluxes are measured with heatflow 

mats. The temperature and heat flux are measured at positions above and below the as shown 

in figure 1. The test section is surrounded by loose vermiculite insulation. The insulation is 

contained within a 500 mm square box. The absolute temperatures at the surface of the 

samples are measured with carefully calibrated thermo-couples and the heat fluxes are 

measured with heatflow mats. 

The readings are taken every ten seconds over an eleven hour period, the time interval for data 

collection being determined by the response time of the sensors used. During the test period 

4,000 sets of measurements are taken. Of these 4000 points, some 2000 are used to estimate 

the response factor values of the process and the remaining 2000 points are used to compare 

with the values of the heat flux predicted using the estimated response factor values. 
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Analysis of the data 

The thermal conductivity of each sample was determined using the two formalisms and the 

ratio of means method. These estimated values are then used to predict the future behaviour of 

the heat flux at the surface of the sample. These predicted heat flux values are then compared 

with the actual observed values. 

The conductivity values estimated using the local constitutive and the directed graph network 

representations are compared with the values obtained using the ratio of means method and 

also from the literature [15]. 

These estimated response function values are used to predict the future behaviour of the 

material. The response factor values obtained using the time series techniques can then be used 

to provide a prediction of the local heat flux , { QP ( t)}, field which may be compared with the 

measured heat flux, { Q1 (t)}, which were not used to estimate the transport coefficients. This 

provides a sensitive measure of the quality of the response factor characterisation of the 

thermal transport process, both for the region of data which were used to estimate the 

response factor values and for those regions of data that were not used to estimate the 

response factor values. The accuracy of the modelling ability was determined by dividing the 

mean difference between actual, { Q1 ( t)}, and predicted, { QP ( t)}, time series sequences by 

the variance between them, that is, the students t-test is used for the test statistic. 

In all cases the values of the test statistics for the differences between the measured, { Q1 ( t)}, 

and predicted, { QP ( t)}, output heat flux for both modelled and predicted data lay well within 

the acceptance region. This means that each of the representations can accurately describe the 

observed behaviour of the heat flux. 

10 



The important thing is to determine if the coefficient values have any physical meaning. In this 

case, if the coefficient values are related to the thermal conductivity and U-value of the 

material. In addition, the robust and consistent nature of the coeficients needs to be 

established. 

The values of the estimated thermal transport conductivities are presented in table 1. The 

experimental uncertainties given are dominated by the calibration accuracy of the heat flux 

mats. 

T bl 1 E f t d th I d r ·r r f t . I a e . s 1ma e erma con uc 1v1 1es o a ram eo maenas . 
1(1 Kz 'l'z 1(3 

Literature 

W/m°K W/m°K flux gain W/m°K 
value 

stainless 12.20 1.88 0.039 12.19 15.00 

steel ± 0.5 ±0.05 ±0.020 ± 0.5 ± 0.6 

marble 1.68 2.78 -0.68 1.68 2.00 

±0.18 ±0.40 ±0.22 ±0.18 ±0.20 

glass 0.827 0.005 1.007 0.826 1.0 

±0.04 ±0.002 ±0.05 ±0.04 ± 0.05 

plaster 0.200 0.295 0.586 0.199 0.17 

board ±0.01 ±0.03 ±0.04 ±0.01 ±0.01 

Insulating 0.0277 0.164 0.085 0.0277 0.028 

foam ±0.002 ±0.01 ±0.009 ±0.003 ±0.002 
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As can be seen the local constitutive representation gives correct, accurate and consistent 

values for the conductivities over the whole range of materials considered. In contrast the 

Carslaw and Jaeger directed graph network representation fails to provide accurate or 

consistent values for the building materials considered here. The reason that the directed graph 

network representation is not consistent and fail to give the correct answers for the thermal 

transport coefficients can be seen from the basic formulation of the problem, in that it is 

assumed the functional relationship is of the form 

As the heat flow is approximately one dimensional through the slab of material then 

Q2 ( t) = Q1 ( t) and the equation is ill posed, as it can be written as 

In table two the estimated conductivity for four different plasterboard samples are given. 

T bl 2 E f t d th d f 't f fi I t b d I a e . s •ma e erma con uc JVHY o our PI as er oar sa m pes . 
Plasterboard 1(1 Kz 'Vz 1(3 

Literature 

W/m°K W/m°K flux gain W/m°K 
value 

sample No. 

1 0.215 0.126 0.605 0.214 0.17 

±0.01 ±0.710 ±1.37 ±0.01 ±0.01 

2 0.217 -0.52 1.97 0.217 0.17 

±0.01 ±0.16 ±0.30 ±0.01 ±0.01 

3 0.219 0.005 1.06 0.215 0.17 

±0.01 ±0.003 ±0.04 ±0.01 ±0.01 

4 0.200 0.295 0.586 0.199 0.17 

±0.01 ±0.03 ±0.04 ±0.01 ±0.01 
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As can be seen the local constitutive representation gives correct, accurate and consistent 

values for the conductivities over the whole range of materials considered. In contrast the 

Carslaw and Jaeger directed graph network representation fails to provide consistent values 

for the building materials considered here. 

Current many of the thermal transport calculation procedures for buildings are based on the 

Carslaw and Jaeger directed graph network representation. This being the case, is it very likely 

that building designs based on them will not accurately represent of the true performance of 

the actual building, see for example [ 16] which shows large discrepancies between the 

measured and the modelled thermal performance of a wide range of building construction 

types. 
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Conclusions 

In this work the thermal transport coefficients for a range of different building materials have 

been determined using the local constitutive and the Carslaw and Jaeger directed graph 

network representations. Each of the representations were able to accurately characterise the 

measured heat flux. However, only the local constitutive representation gave consistent and 

accurate values for the materials examined. Although the Carlsaw and Jaeger directed graph 

network and the representation could produce reasonable thermal transport coefficient values 

for some cases, it was shown not to be accurate or consistent in general. For this reason, 

designs based on the Carlsaw and Jaeger directed graph network representation and not likely 

to accurately represent the actual performance of the building. As many of the current 

calculation procedures are based on the Carslaw and Jaeger directed graph network 

representation it is recommended the further studies be undertaken to develop alternative 

procedures and extend the experimental studies to cover a wider range of materials, 

composites and building structures operating in real meteorological conditions. 
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Figure 1. A schematic diagram of the experimental arrangement 
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