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Abstract 

Most nonabelian gauge theories admit the existence of conserved and 

quantized topological charges as generalizations of the Dirac monopole. 

Their interactions are dictated by topology. In this paper, previous work in 

deriving classical equations of motion for these charges is extended to quan­

tized particles described by Dirac wave functions. The resulting equations 

show intriguing similarities to the Yang-Mills theory. Further, although the 

system is not dual symmetric, its gauge symmetry is nevertheless doubled 

as in the abelian case from G to G X G, where the second G has opposite 

parity to the first but is mediated instead by an antisymmetric second-rank 

tensor potential. 





1 Introduction 

It is well-known that Yang-Mills theories, by virtue only of their intrinsic gauge 

structure, admit the existence of a class of topological charges which are automat­

ically quantized and conserved. In the special case of an abelian theory, they are 

the Dirac monopoles [1, 2, 3, 4]. Although in the abelian case the interactions of 

monopoles are just the dual to those of ordinary charges, their generalizations to 

nonabelian theories, for lack of a dual symmetry there, are still largely unknown. 

The object of this paper is to investigate in nonabelian gauge theories the dynam­

ical properties of particles carrying these charges with the view of ascertaining 

eventually whether such particles might exist in nature. 

These charges appear as topological obstructions associated with nontrivial 

G-bundles (for a theory with gauge or structure group G) over S2 • One way to 

realize this specifically is as follows [5]. Consider the phase factor: 

(1) 

where A~( x) is the Lie algebra-valued gauge potential, the integral is taken over 

some closed loop C in 4-dimensional space-time, and the symbol P denotes path­

ordering, from right to left in our convention. This q,( C) maps each loop in 

space-time to an element of the gauge group G. Take now a 1-parameter family of 

closed loops Ct labelled by a parameter t such that for t = 0 and 27r Ct shrinks to 

a point and as t varies from 0 to 27r Ct envelops a closed 2-dimensional surface }J 

in space-time as depicted in Figure 1. Then, for every value oft we have a group 

element q,( Ct) so that as t varies from 0 to 27r, q,( Ct) traces out a closed curve, say 

r, in the gauge group G, starting and ending at the group identity. Suppose now 

we continuously deform the surface }J to a point, what will happen to the curve 

r in G? The answer will depend on the topology of G. If G is simply connected, 

then the curve r will also shrink to a point. However, if the gauge group G is not 

simply connected, then some curves r cannot shrink to a point, in which case we 

say that there is a topological obstruction inside }J, Such an obstruction cannot be 

destroyed by any continuous variations of the field variables A~-'( x ), and can thus 

be pictured as a conserved charge. The values this charge can take are labelled by 

the (homotopy) classes of curves r in G which cannot be continuously deformed 

into one another, and these are by definition discrete or 'quantized' as claimed. In 

mathematical language, they are the elements of the fundamental group 1r1 (G), 
while gauge field configurations labelled by nonzero elements of 1r1 ( G) correspond 

to non trivial G-bundles over the 2-dimensional surface }J. 
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Figure 1: Loops enveloping a close surface 

In the particular case of an abelian theory, the gauge group U(l) has an infinite 

number of homotopy classes of closed curves labelled by their winding numbers n 

in U(l), i.e. 1r1(G) = Z. It is then readily seen that the topological obstructions 

described above represent magnetic monopoles, with magnetic charges e = n/2e. 

For this reason, it has been suggested that the analogous charges for nonabelian 

Yang-Mills fields be called "nonabelian monopoles", since they are the direct gen­

eralizations of the same topological concepts. However, this name has also been 

applied to the 't Hooft-Polyakov solitons in Yang-Mills-Higgs theories, which are 

actually abelian monopoles embedded in nonabelian theories (6, 7]. (In other 

words, these latter are nontrivial U(l)-subbundles of (usually) trivial nonabelian 

bundles, while those we are considering are non trivial nonabelian bundles.) To 

avoid confusion, therefore, we shall refer instead to the topological charges defined 

above as (-charges. This nomenclature serves also to distinguish them from the 

ordinary 'nontopological' charges such as 'colour' in QCD occuring as nonvan­

ishing divergence D"' F,.,v to the gauge field which will be referred to as 'source 

charges' in what follows. 

The values that (-charges can take depend on the gauge group. For pure Yang­

Mills theories with gauge algebra su(N), (whose gauge groups are SU(N)/ ZN ), 
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(has the following range of values [5]: 

(r = exp(i27rr/N), r = 0, 1, ... , N- 1. (2) 

In particular, for the simple case of su(2) pure Yang-Mills theory (with gauge 

group SU(2)/ Z2 = S0(3)) to which we shall often refer, the (-charge can take 

only two values which may be denoted by a sign ±, where + corresponds to the 

vacuum value. 

As stated above, our aim here is to formulate and study the dynamics of (­

charges with the view of eventually ascertaining whether such charges may exist 

in Nature. We think that such a question is meaningful since, electrodynamics 

being 'dual symmetric', an electric charge may be considered either as a source 

charge in the Maxwell field F~-'v( x) as is usually done, or else as a monopole or 

(-charge in the dual field *F~-'v(x), which is also a gauge field. Hence, (-charges 

of nonabelian fields are in a sense an equally valid generalization of the electric 

charge as the 'colour' source charges in usual Yang-Mills theory, and may thus 

also lead to interesting physics. 

The beauty of the problem is that the topological definition of (-charges al­

ready implies their interactions [8, 9]. That this is the case can be seen intuitively 

as follows. The presence of a (-charge at some point in space means that the 

gauge field in the spatial region surrounding that point has a certain topologi­

cal configuration. Thus, if the position of the (-charge changes, while its value, 

being conserved, remains unchanged, it follows that the gauge field will have to 

rearrange itself so as to maintain a similar topological configuration about the 

new point. In physical language therefore, there is already an induced coupling 

between the (-charge's position and the field variables. 

To discover the explicit form of this intrinsic interaction, one can proceed as 

follows. One begins by writing down the free action of the gauge field and that of 

a particle carrying the (-charge, thus : 

where A~ for the free field is usually taken to be: 

A~ = --1-jd4xTr[F~-'v(x)F~-'v(x)], 
l67r 

in which F~-'v( x) is the field tensor: 
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If one is dealing with a classical point particle with mass m, then one would write 

for A~: 

A~= -m j dr 
dY~(r) dY~(r) 

dr dr 
(6) 

where Y~( T) represents the world-line of the particle. Extremizing the action A0 

with respect to the dynamical variables A~( x) and Y~( T) leads to the equations of 

motion of the free field and the free particle. Suppose however we now stipulate 

that the particle at Y~( T) should carry a (-charge. In that case the gauge potential 

A~( x) is required to be in a particular topological configuration, the specification 

of which depends on the position Y~( T) of the (-charge. If we now extremize A0 

in (3) with respect to A~(x) and Y~(r) under this constraint, the equations of 

motion will contain 'interactions', coupling the particle co-ordinates Y~( T) to the 

field variables A~( x ). 

The above criterion for deriving the intrinsic interaction between a gauge field 

and a (-charge was first applied by Wu and Yang in 1976 [8] to the abelian theory 

and a classical point particle. The result was the standard Maxwell and Lorentz 

equations for a Dirac monopole interacting with the electromagnetic field, exactly 

as expected from dual symmetry. The same criterion can in principle be applied to 

any Yang-Mills theory and to any physical entity carrying the (-charge to derive 

their interactions [9]. However, for nonabelian theories, the result will be new, 

since for lack of a dual symmetry, the interactions of (-charges there can no longer 

be surmised from those of source charges. 

Using the above criterion, we derive in this paper the equations of motion 

for both classical and quantum point particles carrying (-charges in Yang-Mills 

fields. The actual objective is the quantum equations for the nonabelian case since 

the abelian equations are known by dual symmetry while the classical nonabelian 

problem has already been solved in an earlier paper [9]. However, in order to 

derive the quantum equations for the nonabelian case, we found it necessary both 

first to examine how the quantum equations can be derived in the abelian case 

using the present criterion, and then to reformulate and re-solve the classical 

nonabelian problem by a new approach which could be adapted to the quantum 

theory. To avoid technical difficuties due to patching of gauge potentials, we use 

a loop space formalism developed earlier for the purpose, the result of which we 

shall briefly summarize. With the view of making the intriguing comparison with 

the standard Yang-Mills theory for source charges, the quantum equations for 

(-charges are worked out here explicitly for a Dirac particle, although it is in 

principle possible to do the same for other quantum particles. 
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The equations so obtained display some interesting novel features which are 

all generalizations, but in a quite nontrivial fashion, of familiar features in the 

abelian case. 

(a) The abelian theory is dual symmetric, so that both source (electric) and 

monopole (magnetic) charges take values which are integral multiples of some 

unit charge; in other words, both sources and monopoles form representations 

of the gauge group U(l ). In the nonabelian theory, there is no similar dual 

symmetry, and source and (-charges are defined very differently, with sources 

forming representations of the gauge group G (e.g. quarks are colour triplets in 

QCD), while (-charges are labelled just by elements (homotopy classes) of the 

fundamental group 1r1 ( G). However, it turns out that when the above procedure 

is implemented to derive equations of motion, the (-charge has to be assigned 

an orientation in internal symmetry space, partly restoring the similarity with 

source charges. Thus, a classical point particle carrying a (-charge would acquire 

a 'dynamical charge' labelled by an element ofthe gauge algebra, just like a source 

charge in Wong's classical limit of the Yang-Mills theory [10], while a quantum 

particle carrying a (-charge would be described by a wave function belonging to 

some representation of the gauge group G, again analogous to a source charge in 

the standard Yang-Mills case. 

(b) In the dual symmetric abelian theory, the dynamics is invariant under 

arbitrary local rotations of both the phases of source (electric) and monopole 

(magnetic) charge, so that the actual symmetry is enlarged to U(l) x U(l). In 

the nonabelian theory, no similar dual symmetry applies. Nevertheless, it is found 

that the dynamics has still this enlarged SU(N) x SU(N) gauge symmetry, with 

the new SU(N) symmetry having, as in the abelian theory, the opposite parity to 

the original SU(N). This new symmetry is traced to the fact that the (-charge 

was originally defined independently of orientation in internal space. Hence, the 

dynamics ought in the end also to be invariant under arbitrary local redefinitions 

of this orientation or 'phase'. 

(c) In the abelian theory, the dual field *F1JII(x) = -(l/2)EJ.L"'P~FP~ is also a 

gauge field derivable from a potential, thus: *FJ.L.,( X) = o.,AJ.L( X)- 81-"A.,( X), where 

AJ.L( x) acts as parallel transport for the phase of the monopole. For a nonabelian 

theory, *FJ.L.,( x) is usually not a gauge field derivable from a potential. Nevertheless, 

it turns out that there is another quantity emerging as the Lagrange multiplier for 

the defining constraint of the (-charge which acts as the parallel 'phase' transport 

for the (-charge. In contrast to usual gauge potentials such as A~-"( x), however, this 

new parallel transport carries two space-time indices, and transforms as the tensor 
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potential first discovered in string and supersymmetry theory [11, 12, 13, 14], in 

particular that suggested by Freedman and Townsend in 1981 [15]. 

(d) The 'dual' potential AI!( x) in the abelian theory couples, of course, to a 

monopole in the same way as the usual potential AI!( x) couples to a source. In the 

nonabelian theory, it is found that there is still a quantity AI!( x) which couples 

to the (-charge in exactly the same way that the ordinary Yang-Mills potential 

AI!( x) couples to a source charge. However, this AI!( x) is not related to *Fi-!11 ( x) as 

AI!( x) is to Fi-!11 ( :c), but is obtained instead as a directional average of the tensor 

potential referred to in (c) above. 

One sees therefore that although there is no dual symmetry in nonabelian 

Yang-Mills theory, (-charges still seem to function as a sort of mirror image of 

ordinary source charges, though with somewhat different dynamics. It could thus 

be interesting to inquire how particles carrying such charges will behave if they 

exist and how different they will be compared to particles carrying ordinary source 

charges. The question can in principle be answered by studying the equations 

derived in this paper. We have begun to do so but have as yet little to report. 

2 The Abelian Theory 

To learn how equations of motion are to be derived for quantum particles carrying 

(-charges in general, we need first to examine the special case of the abelian theory 

where we know at least what equations to expect. 

Let us first recall the previous solution for a classical point particle. As outlined 

above, the equations of motion of a (-charge are to be determined by extremizing 

the free action (3), for A~ as given in {4) and A~ as given in (6), with respect to 

the variables AI!( :c) and Y~-!( T ), but under the topological constraint stipulating 

that the particle at Y~!( T) carries a specified (-charge. This problem was first 

posed and solved, though not in the following manner, by Wu and Yang in 1976 

(8]. 

As it stands, the problem is technically a little complicated, for two reasons. 

First, the topological constraint defining the (-charge is so far only abstractly 

given in terms of homotopy classes of closed curves in the gauge group and is thus 

a little awkward to implement. Second, in the presence of a (-charge, which is 

in this case the familiar monopole, we know that the gauge potential AI-'( :c) must 

have singularities (the 'Dirac string') [1], or else in the language of Wu and Yang 

[3], it has to be patched, with patches dependent on the position of the charge; 
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this makes, in either language, the variational problem directly in terms of AA x) 
rather complicated. 

To surmount these difficulties, a tactic was suggested [9] which we shall extend 

to other cases. In general terms, this tactic consists of two steps: first to reduce the 

topological constraint on (3) defining the (-charge into an explicit local form, and 

second, to replace the gauge potential A~( x) as field variable by patch-independent 

quantities. For the simple example of a classical (-charge in an abelian theory, 

these steps were implemented as follows. 

First, we note that for the abelian theory, the path-ordering denoted by P 

m (1) can be ignored so that q,( C) is indeed an exponential of a line integral 

which, by means of the Stokes' theorem can be written as the magnetic flux 

passing through any surface bounded by C. Hence, the winding number denoting 

the homotopy class which represents the (-charge enveloped by the surface in 

Figure 1 is just 47r times the total magnetic flux emerging from that surface, or in 

other words the magnetic charge as anticipated. Since this is true for any surface 

surrounding our point (-charge or monopole, it follows from Gauss' theorem that 

the topological constraint we wish to impose on the action (3) can be written as 

the local condition: 

8,/Fil"'(x) = - 47re I dr dY::r) 84(x- Y(r)), (7) 

which is to be satisfied for all x and fL· 

Second, we note that we can in this case replace as field variables the gauge 

potential All( x) by the field tensor Fllv( x). Normally, this is not possible, since an 

arbitrary choice of an antisymmetric tensor Fll"'( x) will not be derivable from a 

potential as it should. However, if we require Fll"'( x) to satisfy the constraint ( 7) 

as we wish to here, then except on the monopole world-line, the Bianchi identity 

is satisfied, so that by the Poincare lemma, Fll"'( x) is guaranteed to be derivable 

from a potential. And Fll"'( x), being gauge invariant, is independent of patching 

as desired. 

With these two observations, the solution of the variational problem posed 

above becomes very simple. Incorporating the constraint (7) by means of Lagrange 

multipliers All( x ), we construct the auxiliary action: 

A= A0 +I d4 xAil(x){8v*Fil"'(x) + 47re I dr dY::r) 84(x- Y(r))}. (8) 

Extremizing then with respect to the variables Fll"'( x) and Yll( r) we obtain re­

spectively: 

(9) 
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and: 
d2 Y/.1 ( T) _ d yv ( T) 

m dr 2 = -47re{avA"'(Y(r))- allAv(Y(r))} dr . (10) 

The first equation (9) says that *Filv(x) is also a gauge field derivable from a gauge 

potential: 

All(x) = 47rA(x), (11) 

and allows the Lagrange multiplier All ( x) to be eliminated from the equations, 

giving for (10): 

(12) 

In other words, we obtain exactly the dual of the standard equations for a classical 

point source (i.e. electric) charge, as asserted above. 

Let us see now how the same considerations can be extended to the quantum 

case (5]. Consider then a quantum point particle described by a wave function 

1/l( x) and carrying a (-charge in an abelian gauge field. In anticipation of future 

applications and for comparison with standard Yang-Mills theory, let us work with 

a Dirac particle described by a Dirac wave function, although the same method 

can in principle be applied to, for example, a Schrodinger particle. Then, instead 

of the action A~ of (6), we write: 

o I 4 -AM= d x,P(x)(iall'Yil- m),P(x), (13) 

and instead of the constraint (7) defining the (-charge of the classical particle, we 

propose to write: 

(14) 

where we have just replaced the previous classical current by its quantum ana­

logue. As in the classical case, we shall still use Fllv( x) as variables instead of the 

gauge potential so as to avoid complications with patching. 

Again the constraint ( 14) can be incorporated by means of Lagrange multipliers 

into an auxiliary action: 

(15) 

Extremizing with respect to Fllv( x ), we obtain (9) as before, and then with respect 

to ,P( x ), the equation: 

(16) 

with All(x) defined in (11), as before. However, in contrast to the classical case, 

the Lagrange multiplier can no longer be eliminated from the equations of motion 
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but remains behind obligingly to serve as a 'dual potential' coupling to the wave 

function as a gauge potential should. 

One sees thus that the method works also for the quantum particle giving 

equations which are exactly the duals of the corresponding standard equations for 

a point source as one expects. We note a couple of points which will be relevant 

for the future. First, the constraint (14) may look a little disturbing when viewed 

as a generalization of the topological definition of the (-charge, which ought to be 

quantized. This means if we take the JL = 0 component of (14), then an integral 

of the right-hand side over any volume should always give the value 47re times an 

integer, which it clearly does not for a general ,P(x). For this reason, we believe 

that for a truly consistent interpretation of (14), ,P( x) ought to be considered as a 

second quantized field, so that for JL = 0, the right-hand side of (14) will be just a 

numerical constant times the number operator counting the (integral) number of 

(-charges occuring at x, whose integral over any volume will then be quantized. 

Attempts at second quantizing the theory are underway; here, however, we shall 

take (14) only at face value. Second, we notice that the equations of motion 

we deduced for the quantum (-charge in an abelian field has the further gauge 

symmetry: 

,P(x)-----+ exp{ieA(x)} ,P(x), 

All(x)-----+ All(x) + 81lA(x), 

(17) 

(18) 

m addition to the original gauge symmetry associated with All( x ). This arose 

as a degeneracy in the solution of the Euler-Lagrange problem via the Lagrange 

multiplier .All( x ), in spite of the fact that we were solving the variational prob­

lem entirely in terms of quantities ,P( x) and Fllv( x) which ( '1/J being 'electrically' 

neutral) were both invariant under the original symmetry. As a result, we have a 

doubling of the symmetry from the original U(1) to U(1) x U(1) where the second 

U(1) has parity opposite to that of the first U(1) because of the *-operation in the 

relation between Fllv( x) and its dual. 

3 Loop Space 

In generalizing the above considerations to nonabelian Yang-Mills theories, the 

same two technical difficulties mentioned at the beginning of the last section still 

stand. However, the tactics used successfully for solving the abelian problem are 

no longer valid without modification. First, because of the path ordering P in 

(1 ), the quantity {ll( C), in spite of the notation, is not really the exponential of a 

line integral for which one can apply Stokes' theorem. Indeed, even the concept of 
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'flux' has no direct generalization in the nonabelian theory. We cannot therefore 

reduce as we did for the abelian theory the defining topological condition of the 

(-charge into the local form (7) or (14). Secondly, the field tensor FJJ.v(x) being 

now covariant, rather than invariant as in the abelian case, is no longer patch­

independent; it is not useful therefore as replacement for the gauge potential AJJ.( x) 
as field variables. 

A modification which suggests itself is to work in loop space [16, 17, 5]. First, 

the definition of the (-charge was originally given in terms of the loop quan­

tity (_[)(G) of (1) in any case. Secondly, loop quantities are by definition patch­

independent, having thus the virtue we sought as replacement variables to AJJ.( x ). 
However, the problem with loop space treatment is the high degree of redundancy 

in the field variables, which makes manipulations in it rather unwieldy in general. 

But in the particular problem which interests us here, it turns out that several 

happy 'coincidences' combine to make loop variables particularly suitable. The 

necessary techniques have already been developed in an earlier work [17]. Here, 

we shall just summarize the results we need. 

We shall work with parametrized loops, i.e. maps of the circle to ( 4-dimensional) 

space-time, represented by functions: 

(19) 

It is sufficient to work only with loops all passing through a fixed reference point 

P0 , so that e is restricted to e(o) = e(27r) = P0 The phase factor (_[)(G) of ( 1) is 

then a functional of e: 
(20) 

where a dot denotes differentiation with respect to the loop parameter s. 

Following Polyakov [16], we define next the quantity: 

(21) 

which may be expressed in terms of local field quantities as: 

(22) 

where (_[)e(s_, 0) is the parallel transport from the reference point P0 at s = 0 to 

the point e( s_) along the loop e: 
q,e(s2,st) = Pexpig/.

62 

ds'AJJ.(e(s'))iJJ.(s'), 
•1 

(23) 
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and the subscript in s_ means that in case of ambiguity the value of e( s) has to 

be taken as the limit from below, namely e(s_) = e(s- t:), t:-+ 0+. Whence it is 

readily seen that F~[eis] depends on e(s') only fors'~ s, or equivalently: 

I s > s, (24) 

which is a consequence of our ordering convention, and that it has only components 

transverse to the loop, namely: 

(25) 

which follows from the antisymmetry of F~v(x ), or equivalently from the invariance 

of ~[e) under reparametrization. In what follows, both these properties (24) and 

(25) of F~[eis], which basically just restrict the range of its arguments and the 

number of its components, will be regarded as understood and absorbed into the 

notation. 

It was proposed to adopt these quantities F~[els] as replacements for the gauge 

potentials A~( x) as field variables in analogy with the field tensor Fl-'v( x) for the 

abelian case. As such, F~[eis] has the following attractive fe,atures. ;First, it is 

closely related to Fl-'v(x) by (22). Second, similar to F~v(x) in the abelian theory, 
it is gauge invariant (apart from an x-independent rotation at the reference point 

P0 which is easily handled and for convenience of presentation will henceforth 

be ignored) and therefore patch-independent. Third, the (-charge, which was so 

far defined for nonabelian theories only abstractly as a homotopy class, can ·b~ 

expressed explicitly in terms of F~-'[eis], a:s follows. 

Geometrically, Fl-'[eis] may be interpreted from its definition in (21) as a con­

nection in loop space prescribing parallel transport of the phases <I>[e] from a loop 

to neighbouring loops. It can thus be used, in close analogy to (1) for AI-'( x ), to 

construct the holonomy for a loop in loop space, which when viewed in ordinary 

space-time is a 2-dimensional closed surface as that depicted in Figure 1 intro­

duced before to define the (-charge. Indeed, if we take a 1-parameter family of 

parametrized loops: 

satisfying the specified boundary conditions so that as t varies from 0 to 27r, 

the loops et envelop the 2-dimensional surface ~' then it can be shown that the 

(-charge enclosed inside ~ can be labelled by the loop space holonorny: 

(27) 
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where, analogously to (20): 

(28) 

Thus, for a pure su(N) theory with gauge group SU(N)/ZN, 81:: takes values in 

ZN, whose elements (2) also label the homotopy classes of closed curves in G. 

Like all loop variables, however, F~-'[els] forms a highly redundant set, which 

has to be severely constrained. And here occurs one of those 'coincidences' which 

makes loop space techniques particularly suitable for the present problem [17, 9]. 

Indeed, it so turns out that there is an extension of the (abelian) Poincare lemma 

to the general case which says that, given a set of these variables FJ.L[cls], then so 

long as they are required to satisfy the relation (27) above for isolated (-charges, 

they will be expressible in terms of some A~'( x) via (20) and (21 ), except of 

course at the locations of the (-charges. This means that if we were to impose 

the condition (27) as a dynamical constraint, then in close analogy to (7) in the 

abelian case, the redundancy inherent in F~-'[cls] as variables will also be removed. 

But this is exactly the sort of constraint we wish to impose to derive the equations 

of motion according to the criterion promulgated above. 

The assertion (27) can alternatively be stated in a loop space local form using 

the curvature constructed with F~-'[els] as connection [16], namely: 

6 6 . 
G,.w[els] = 6e"(s) F~-'[cls]- 6eJ.L(s) Fv[els] + tg[FJ.L[els], Fv[eis]]. (29) 

This represents the phase change over a little loop in loop space, or in 4-dimensional 

space-time over a little closed surface enveloping a 3-volume, as illustrated in Fig­

ure 2. In terms of ordinary space-time variables, G~-'"[els] takes the following form 

[17]: 
G~-'"[els] = ~(' 1 ( s_, O)€J.LIIpc7Da •FPQ(e( s ))~e( s_, o)eO' ( s ), (30) 

where DJ.L is the ordinary gauge covariant derivative and, as in (22), the subscript 

in s_ again means that in case of ambiguity the value of e( s) has to be taken as 

the limit from below, as indicated in Figure 2. From (30), one sees that GJ.Lv[eis] 
vanishes unless the surface in Figure 2 encloses a (-charge. Its value when it hits 

a (-charge is an element of the gauge algebra "'' which according to (27) above, 
satisfies the condition: 

exp(i1r"') = (. (31) 

It is this 'local' form of the expression for the (-charge that we shall use below. 

Having resolved the question of redundancy of loop variables, one can then in 

principle reformulate Yang-Mills theory entirely in terms of them. In particular, 
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Figure 2: Illustration for G~v[eJs] in ordinary space 

-...... 

it can be seen from (22) that the free field action ( 4) can be written as: 

with: 

4 Classical Mechanics of (-Charge 

(32) 

(33) 

Although the equations of motion for a classical particle carrying a (-charge have 

already been derived in an earlier work [9], we need to develop here a new approach 

for deriving the same equations which we can then extend to the quantum case. 

As suggested above, the dynamics is given by a constrained variational prin­

ciple in which the free action is extremized under the constraint provided by the 

defining condition of the (-charge. For a classical point particle, the action is 

given as in (3), ( 4) and (6). But, in view of the observations at the beginning of 

the last section we shall work rather with the field action in its loop space form, 

namely ( 32) instead of ( 4). 
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The defining condition of the (-charge can be written in loop space in either the 

global form (27) or in a differential form in terms of the curvature GJ..I~.~[eis], both 

of which can be used to drive the equations of motion. Previously, the equations 

were derived using the global form; here we shall rederive the result by imposing 

instead the differential form, which we then extend to the quantum case. For a 

(-charge moving along the world-path YJ..1(T) then, we write the constraint as: 

(34) 

If one substitutes (30) into (34), one obtains in parallel to (7) for the abelian case: 

(35) 

with: 

(36) 

which is in appearance similar to the Wong equation [10] for a classical Yang­

Mills point source, although its content is different. We note in particular that 

in analogy to a source the particle at Y( T) has now acquired an orientation in 

internal symmetry space through the algebra element K(T) which a (-charge did 

not originally possess. 

Incorporating the constraint (34) into the a;ction by means of Lagrange multi­

pli~rs LJ..I~.~[eis], we have: 

where JJ..I"[eis] is -1/47r times the right-hand side of (34). Equations of motion are 

now to be obtained by extremizi~g, (3n with respect to free variations of FJ..I[eis] 
and YJ..I(T). Varying with respect to FIL[eis], one has: , 

(38) 

where 

(39) 

denotes the covariant derivative in loop space with FJ..I[ei.s] as connection, and with 

respect to YJ..I(T): 
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Together with the original constraint equation (34), (38) and ( 40) represent the 

equations of motion in parametric form depending on the Lagrange multiplier 

L~v[e!s]. 

These equations can be rearranged to take more familiar forms. First, differ­

entiating (38) with respect to e~( s) we have: 

Hence, using on the right-hand side the familiar relation between the covariant 

derivative and the curvature, we deduce that: 

Except at the position of the (-charge, this implies by (34) the Polyakov equation 

[16]: 
6 

6e~(s)F~[e!sl = o, (43) 

which by (22) is equivalent to the Yang-Mills equation: 

(44) 

Secondly, we note that in ( 40), we may write: 

h 
he(s) Tr{L~P(elsJ~[els]} = Tr{('D~( s )L~P(els])~[els]}+ Tr{L~P[e!s]('D~( s )~[els])}. 

(45) 
However, the Bianchi identity for G~v[e!s]: 

(46) 

implies by (34) that the loop covariant derivative of ~[e!s] in (45) vanishes: 

(47) 

Hence, we can use (38) to eliminate the Lagrange multiplier L~v[e!s] from ( 40) 
obtaining: 

m d
2

~~r) = ~I 6edse~VfXT Tr{~[els]Fv[els]}eP(s) dY;;r) e(s)-264 (e(s)- Y(r)), 
(48) 

which is reminiscent of the Lorentz equation. Indeed, if we substitute for F~[e!s] 

the expression in (22), we obtain: 

(49) 
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which is exactly the dual of the Wong equation [10] for the classical limit of a 

Yang-Mills source. 

The equations (34), (43), and (49) are the same as those derived previously 

[9] with the global version (27) ofthe topological constraint defining the (-charge, 

affording thus a good internal consistency check for our method. 

5 Quantum Mechanics of (-Charge 

Having developed the necessary techniques and understanding by working through 

the quantum abelian theory as well as the classical nonabelian case, we now turn to 

our target problem of a Dirac particle carrying a nonabelian (-charge. The action 

remains (3) with A~, in view of patching, written in terms ofloop variables as (32), 

and A~ given as in (13). Equations of motion are to be derived by extremizing 

this action with respect to the variables F~-'[~is] and 1/;(x) subject to the topological 

constraint that the particle carries a (-charge. 

For the explicit form of the constraint, we seek to replace the classical (­

current in (34) by the quantum equivalent as we did for the abelian theory in 

(14). What, however, is the classical (-current? In view of the similarity in 

appearance of (35) to the Wong equation [10] for the classical Yang-Mills source, 

one might be tempted to interpret its right-hand side as the (-current, but this 

would be incorrect. Like the 'source' current in the Wong equation, the right­

hand side of (35) can readily be seen to be covariantly conserved, namely having 

vanishing covariant divergence. Now the ('colour') 'source' current in the ordinary 

Yang-Mills theory is covariantly conserved because the gauge field itself carries 

a ('colour') source charge and it is the total ('colour') source charge which is 

to be conserved. However, in the present case, the field has no (-charge which 

is carried only by the particle at Y( r ). Hence, the (-current carried by Y( r) 

should by itself be already a conserved quantity, or in other words it should have 

a vanishing ordinary (as opposed to covariant) divergence. For this reason, we see 

that the right-hand side of (35) could not be taken as the (-current carried by the 

(-charge at Y(r). 

Nevertheless, from the right-hand side of (35), we can construct a properly 

conserved (-current simply by replacing K(r) there by another quantity K(r), 
thus: - j dYJ"'(r) 

jJ.L(x) = -g drK(r) dr 54(x- Y(r)) (50) 
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where: 

with: 
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Figure 3: Loop derivative of ne(s, 0) and ~[eJ 

(51) 

(52) 

To explain what is meant, we recall first that in the definition (36) of K( T ), the 

factor ~ e ( s_ , 0) is a parallel transport from the loop space reference point P0 to 

the point e( s_) so that the 'phase' or orientation of K( T) in internal symmetry 

space is measured in the local frame at e( s_ ). Similarly, the factor ne( s, 0) in 

(51) and (52) is also a parallel transport, but now from the reference P0 to the 

point e( s+ ), where s+ means that the value of e( s) has now to be taken as the 

limit from above, namely e(s+) = e(s +E), c -t 0+. The symbol w(x) introduced 

in (52) represents just a local, i.e. x-dependent, rotation matrix to allow for the 

possibility that the 'phase' of the (-current may be measured in a local frame 

different from that in which the field is measured; it will be of relevance later 

when considering 'phase' rotations of (-charges but does not enter in the present 

question of current conservation. What makes the difference in this question is 

the replacement of the argument s_ in 4?e(s_, 0) of (36) by s+ in 4?e(s+, 0) of 

(52). Pictorially, this is as indicated in Figure 3, where it is clear that whereas 

the factor ~e(s_, 0) in (36) depends on e(s') only fors' up to s_ and is therefore 

unaffected by the loop derivative 81 8e'-'( s) at s, this is no longer true for ne( s, o) 
or 4?e( s+, 0). Indeed, the logarithmic derivative with respect to e( s) of ne( s, 0) 

on the left-hand side of (53) below may be represented pictorially by the solid 

curve in Figure 3, which is in fact the same as -igFJ.J.[els] in (21), the logarithmic 

derivative of ~[e), since the latter is represented by the whole curve in Figure 3 
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including the dotted segments, but these by our ordering convention will cancel 

m any case. Hence, we have: 

(53) 

That being the case, it follows then from ( 4 7) that the (-current defined in (50) 
has indeed a vanishing ordinary divergence as we wanted. 

In going over then from the classical theory into the quantum theory, one 

follows the example worked out in the abelian case and replaces the classical 

(-current (50) by its quantum analogue, thus: 

(54) 

where for ,P( x) belonging to a representation of the gauge group and Ti being 

a matrix representing the generators Ti in this representation, the current is an 

element of the gauge algebra as it should. As a result, we have the constraint: 

which is to be imposed for deriving the quantum equations of motion. 

Incorporating the constraint into the action, one has again (37) as before, but 

with Jll~.~[~Js] now given by -1/47r times the right-hand side of (55). Extremizing 

then (37) with respect to Fll[~JsJ, we obtain (38) as before, but with respect to 

,P(x): 
(56) 

where: 

Together then with (55) and (38), (56) completes the set of equations governing 

the motion of a Dirac particle with (-charge moving in the Yang-Mills field. 

One sees that the equation (56) is formally the same as the ordinary Yang-Mills 

equation for a 'colour' source moving in a gauge field. As in the abelian theory, 

a new local quantity All(x) has emerged coupling to the (-charge's wave function 

in just the same manner as the usual potential All( x) to the wave function of a 

source charge. As in the abelian theory also, this All( x) appears via the Lagrange 

multiplier to the topological constraint defining the (-charge, although it is no 

longer just proportional to the Lagrange multiplier but related to it in a more 

complicated fashion through (57). We shall still call All(x) the dual potential 
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although it should be stressed that it is not the potential in the usual sense of the 

dual tensor *F~v( x ); namely it need not satisfy: 

(58) 

which, as we know, does not usually have solutions. Indeed, as we shall see, A~(x) 

has a much more intricate relationship with the field but still performs, though in 

a rather unusual fashion, as a parallel 'phase' transport for the (-charge. 

6 Chiral Doubling of Symmetry 

In the abelian theory, we have seen that we have a 'chiral' doubling of the gauge 

symmetry from the original U(1) to U(1) x U(1), where the second U(1) (hence­

forth referred to as U) carries a parity opposite to that of the first. This is in a 

sense expected since the abelian theory is dual symmetric, and what applies to 

sources must also apply to monopoles, and since there is a U-invariance associated 

with the phase of sources, so there must also be a U-invariance associated with 

the phase of monopoles. 

For the nonabelian theory, one has no dual symmetry between source charges 

and (-charges. Hence, the fact that one has a U-invariance (i.e. the original 

Yang-Mills gauge invariance) associated with the 'phase' of source charges does 

not necessarily imply the existence of a corresponding U-invariance associated 

with the 'phase' of (-charges. Nevertheless, given the similarity in formulation 

above between the abelian and nonabelian theories, it might be conjectured that 

even the nonabelian theory has a U-invariance. This turns out to be indeed the 

case although the U -invariance, as we shall see, is realized here in a rather novel 

and more intricate fashion. 

By a U transformation we mean a local rotation in 'phase' of the wave function 

,P( x) of particles carrying (-charges, thus: 

,P(x)-+ (1 + igA(x)),P(x) (59) 

for an arbitrary (infinitesimal) algebra-valued function A( x ). This is different 

from the ordinary Yang-Mills U-transformation, parametrized say by A( x ), under 

which the wave function 1/J( x) of the (-charge, being 'colour' neutral, is invariant. 

By construction, the field variables F~[eis) are invariant under a simultaneous U­
and U-transformation (apart from a harmless x-independent U-rotation at the 

reference point P0 which we have agreed above in Section 3 to ignore), while the 
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rotation matrices w(x) and ne(s, 0) introduced in the section above will transform 

as: 

w(x) ~ (1 + igA(x))w(x)(1- igA(x)), (60) 

and: 

(61) 

There remains then, of the quantities that we have introduced, only the Lagrange 

multiplier L1.w[els], and associated with it the 'dual potential' AIL(x ), for which 

the transformation properties have yet to be specified. 

Under pure U-transformations, LJ.Lv[els] may be taken to be invariant and so 

also, by (61), may AIL(x). Under U-transformations, on the other hand, we have 

the freedom to choose such transformation laws for LJ.Lv[els] so as to leave the 

action (37) invariant. From the actual structure of (37), we see that if AIL(x) 
transforms under U analogously to an ordinary potential under U, namely as: 

(62) 

then, the increment due to ~AIL( x) in the last term of ( 37): 

will exactly cancel in a fa:p1iliar .fashion with the corresponding change in the 

particle free action A~ of (13) due to the transformation (59) of '1/J(x). Hence, 

if we choose to have LJ.Lv[els] transforming in such a way as to give AIL(x) in 

(57) the transformation (62) and at the same time leave the term proportional 

to Tr{L~"11 [els]GJ.Lv[els]} in (37) invariant, then the whole theory will be invariant 

under z:i. 

The following transformation for LJ.Lv[els] satisfies the above requirements: 

(64) 

as can be seen as follows. On substitution into (37), one finds after integration by 

parts that: 

which vanishes by the Bianchi identity (46) of GJ.Lv[els]. Further, on substituting 

(64) into (57) and using (61), we have: 

(66) 
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with: 

Then using the relation (53), we have: 

- -1 8 - -1 11e(s, O){V~(s)Av[els]}ne (s, 0) = 8e1L(s) {11e(s, O)Av[elsl11e (s, 0)}, (68) 

which on substitution into (66) gives (62) as desired, so long as one defines : 

We have thus shown that the action (37) has indeed also a U-invariance, or 

that the symmetry is doubled in the nonabelian theory as in the abelian case, in 

spite of the fact that the former has no dual symmetry. The physical origin of 

this U-invariance can be traced back to the fact that the (-charge was initially 

defined only as a homotopy class of closed curves in the gauge group G and as 

such has no orientation or 'phase' in internal symmetry space. Thus, for example, 

for the su(2) theory, the (-charge is labelled only by a sign. In formulating the 

dynamics, however, as was done in Sections 4 and 5, the (-charge was assigned a 

'phase', either in the classical case by the quantity K( T) or in the quantum case by 

the representation of G to which the wave function '1/J( x) belongs, which 'phase', 

however, the (-charge did not originally possess. It follows therefore that this 

'phase' ought to be unphysical, and can be redefined arbitrarily at any space-time 

point without altering the physics. In other words, we expect the theory to be 

invariant under local 'phase' rotations of the (-charge, which is just the statement 

of the above U -invariance. 

One notices, however, that the U transformations above are parametrized by a 

vector-function AIL[els] carrying an index J.L, not by a scalar function as usual gauge 

transformations are. The reason for this is that the 'phase' was assigned to the 

(-charge through (34) or (55) which depends on 3 space-time indices, namely the 

indices J.L, v of the loop curvature GILv[els] and the index p for the tangent to the 

loop eP( S ), which together were needed to specify the orientation in space-time of 

the elemental 3-volume enclosed by the little surface in Figure 2. In 4-dimensions, 

this is equivalent to saying that the 'phase' assigned to the (-charge depends on 

a space-time direction which may be taken to be the normal to the elemental 

3-volume in Figure 2 and represented by the index u in (34) and (55). Given that 

the physics should be independent of this 'phase', one should have therefore the 

freedom to redefine the 'phase' arbitrarily for each direction also; hence the extra 

index on the gauge parameter A~[els]. 
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This U mvanance being also a 'local' symmetry, there ought to be 'gauge 

potential' or 'connection' to specify parallel 'phase' transport. This is supplied by 

the Lagrange multiplier Lllv[els], in close analogy to the abelian case of Section 2 

where it was again the Lagrange multiplier AIL( x) which supplied the 'connection' 

for parallel phase transport of monopoles. However, since the 'phase' now depends 

on a direction, the 'connection' has to carry an extra index so as to specify what is 

meant by parallel 'phases' not only at neighbouring points but also in neighbouring 

directions. Such 2-indexed tensor potentials have already been considered before 

in a different context, originally in string and supersymmetry theories [11, 12, 

13, 14]. Indeed, the transformation law (64) is just the loop space version of the 

transformation law for nonabelian tensor potentials first suggested by Freedman 

and Townsend in 1981 [15, 18]. The space-time local 'dual potential' All(x) and its 

corresponding 'gauge parameter' A(x) defined above in (57) and (69) are obtained 

essentially by taking the directional average of the corresponding quantities with 

an extra index, namely Lllv[els] and AIL[~Is] respectively. 

7 Remarks 

As said in the introduction, the ultimate object of our program is hopefully to 

learn sufficiently about the dynamical properties of (-charges to eventually decide 

whether they might exist in Nature. Obviously, we are still quite far from reach­

ing that goal. However, the derivation of the the quantum equations of motion 

should be a significant step forward since almost all applications of non-abelian 

Yang-Mills theories have so far been in quantum physics. Knowing now the quan­

tum equations of what one might call the 'dual Yang-Mills theory', we may then 

hopefully begin to explore their consequences. 

In view of possible applications, it may be useful to find out what the present 

equations in unfamiliar loop space form may correspond to in usual space-time 

notation by substituting into them the expressions such as (22) in Section 3. In 

each case, whether classical or quantum, two equations are known already in space­

time local notation, namely ( 49) and (35) for the classical, but (56) and a similar 

equation to (35) with a quantum (-current for the quantum case. There remains 

then only the equation (38), which is common to both cases. On substituting (57) 

into (38) and using (53), we obtain: 

FILII( X) = €1liiP<Tw -l (X){ eu AP( X )}w( X). (70) 

This last equation is a little peculiar in that it does not seem to be, but actually 

is, covariant under a U-transformation as it ought to be, having been derived from 
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a loop equation which was known to be covariant. The reason for this apparent 

paradox is that a U-transformation, as explained in the last section, depends not 

only on a point in space-time but also on a direction. Hence, the derivative of 

A~-'(x), which was obtained as a directional average ofthe tensor potential L~-'v[els], 
does not transform as usual potentials do under an ordinary local transformation, 

but rather as follows: 

leaving then the equation (70) covariant under U as it should. Although when 

compared with the original loop space versions, these equations in space-time look 

simpler, we are unsure of their significance in that they involve via the covariant 

derivative D~-' the ordinary Yang-Mills potential A~'( x) which is undefined at the 

position of the (-charge. For this reason, we have still preferred up to the present 

to work with the equations in loop space. 

We note that although one has derived explicitly the equations of motion only 

for one single particle carrying a (-charge moving in the Yang-Mills field, the 

derivation can immediately be extended to any finite number of similar particles, 

whether in the classical or the quantum theory. The resulting equations may then 

be used to study the interaction between (-charges. Or else, in the quantum case, 

one may imagine the wave function 1/J( x) to be a quantized field 1/J( x ), and use 

the equations as launch-pads for exploring say the scattering of one (-charge from 

another. Preliminary investigations suggest that some properties of interacting 

(-charges remain superficially similar to ordinary source charges. One immediate 

difference, however, is that whereas the source charge couples to the gauge field 

with the same coupling as the gauge field self-coupling g, the (-charge couples 

to the gauge field via a coupling g which is related to g by the (extended) Dirac 

quantization condition, which for SU(N) theory reads as [5]: 

gg = n/2N. (72) 

This difference in coupling is probably a first signature to look for when trying to 

ascertain whether a particle can be a (-charge. 

On thing we cannot do as yet, however, is to consider interactions between 

source charges and (-charges. The difficulty for us is that in order to specify the 

coupling of source charges one requires, it seems, the gauge potential A~'( x) so 

that one cannot avoid then the complications of patching or of the Dirac string as 

one has done in the problem above by changing over into gauge-idependent loop 

variables. This is a serious limitation to our present program which may not be 

easy to overcome. 
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