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Abstract 

It is shown that an antisymmetric rank-two tensor gauge potential of 

the type first found in string and supersymmetry theories occurs also in or­

dinary Yang-Mills theory when formulated in loop space, where it appears 

as a Lagrange multiplier for a zero curvature constraint necessary and suf­

ficient for removing the inherent redundancy of loop variables. It is then 

further shown that the tensor potential acts there as the parallel 'phase' 

transport for monopoles. 





Recently there has been renewed interest in antisymmetric tensor gauge po­

tentials [1, 2, 3, 4, 5, 6, 7], especially in the 'nonabelian' version suggested by 

Freedman and Townsend in 1981 [8]. Although the present emphasis is on the 

quantization of the theory, the physical or geometrical significance of these po­

tentials remain somewhat obscure in that it is unclear whether they function as 

connections for parallel 'phase' transport as ordinary vector gauge potentials do, 

and if they do so, what the 'phase' is that they transport. In this paper, we 

wish to point out first that, though originally discovered in string and supersym­

metric theories, these tensor potentials occur also in ordinary Yang-Mills theory 

when formulated in loop space, where they appear as Lagrange multipliers for 

the constraint needed to remove the intrinsic redundancy of loop variables, and 

second, that in this context they function as the parallel transport of the 'phases' 

of monopoles. It is hoped that these observations will help with the general un­

derstanding of the physical significance of tensor gauge potentials. 

Yang-Mills theory can be fully described by means of the loop variables: 

(1) 

introduced by Polyakov [9], where <I>[eJ is the phase factor: 

(2) 

In (2), a dot denotes differentiation with respect to the loop parameter s, P, 

denotes ordering in s' from right to left for increasing s in our convention, and e 
represents a parametrized loop passing through a fixed reference point P0 , namely: 

(3) 

In terms of ordinary space-time variables, F~-'[eJs] can be expressed as: 

(4) 

where: 

<I>e(s2, s1) = P, expig~"~ A~-'(e(s))e~-'(s)ds 
"1 

(5) 

is the parallel transport from e(si) to e(s2) along the loop e. 
From ( 4), it follows that F~-'[els] can depend on the loop coordinate e( s') only 

for s1 ~ s, i.e.: 
I s > s, (6) 
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which is a consequence of our ordering convention P3 in (2), and that it has only 

components transverse to the loop, namely that: 

(7) 

which is equivalent to the fact that <I>[eJ is by definition independent of how the 

loop e is parametrized. These two properties (6) and (7) which in effect just 

reduce the range of the arguments and the number of components of FIL[els] will 

henceforth be regarded as understood and absorbed into the notation. 

The variables FIL[els], like the phase factors <I>[e], are gauge invariant except 

for an x-independent rotation at the reference point P0 which is easily handled. 

But, like <I>[eJ also, they form a highly redundant set and have to be severely 

constrained. By the latter assertion, we mean that in order effectively to employ 

FIL[els] as variables to describe Yang-Mills theory, which we know is already ade­

quately described by AIL( x), we have to ensure that the loop variables can indeed 

be expressed in terms of some vector potential AIL( x) in the manner of ( 1) and 

(2). However, this may not be true for just any given set of FIL[els]. 

The conditions that FIL[els] have to satisfy for (1) and (2) to hold is best stated 

in terms of the quantity [9]: 

8 8 
GIL..,[els] = 8e"'(s) FIL[els] - 8e1L(s) F..,[els] + ig[FIL[els], F..,[elsJ]. (8) 

From its definition (1), we note that FIL[els] can be interpreted as a connection in 

loop space for parallel transport of the phase <I>[eJ. In this sense then, GIL..,[els] is 

the corresponding curvature. Now it can readily be seen that so long as FIL[els] is 

expressible in terms of an AIL( x) through (2) and (1 ), then it satisfies the following 

condition: 

GIL..,[els] = o, (9) 

meaning that, as a connection, it is pure gauge, giving thus zero curvature. Con­

versely, it can also be shown, though less readily and perhaps for this reason less 

widely recognized, that provided FIL[els] satisfies (9), (6) and (7) being under­

stood, then there will exist an AIL(x) in terms of which FIL[els] can be expressed 

through (1) and (2) as required [10]. In other words, the constraint (9) removes 

exactly the redundancy of the loop variables FIL[els] and makes a description of 

the theory in terms of them equivalent to the original description in terms of the 

gauge potential AIL( x ). 

From (4), it follows that the Yang-Mills action: 

(10) 
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can be rewritten in terms of loop variables as: 

(11) 

where N is a normalization factor: 

(12) 

The variables F~'[eis], however, are not independent variables, but, as stated above, 

have to satisfy the constraint (9) for all e and s. Hence, introducing the Lagrange 

multipliers L~'~.~[els] antisymmetric in p, v, and incorporating the constraint into 

the action, we have: 

(13) 

For example, to find the field equations, we extremize (13) with respect to F~'[eis], 

obtaining: 

(14) 

where 

(15) 

is a kind of covariant derivative in loop space with FJ.t [e Is] as connection. From 

(14), one deduces that: 

where the right-hand side is just ig[GJ.t11 [cis], L~'~.~[cis]), and hence from the con­

straint (9) one obtains: 

(17) 

which, as pointed out by Polyakov [9), is the loop space statement of the Yang­

Mills equation. 

One sees that apart from some trivial changes in notation, (13) is exactly the 

loop space version of the first order Freedman-Townsend action (8] for a tensor 

gauge field with LJ.tv[cls] as the potential. Indeed, under the transformation: 

(18) 

and: 

(19) 
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the action (13) is invariant for arbitrary functions A~-'[els) by virtue of the Bianchi 

identity of G~-'v[eis]. We notice then that the dual of L~-'v[eis] defined by: 

(20) 

will transform as: 

(21) 

exactly as the tensor gauge potential in Freedman and Townsend. 

The question now is: what does this transformation represent? It is not the 

original Yang-Mills gauge transformation which has already been removed by go­

ing over into the gauge-invariant (apart from a trivial x-independent transfor­

mation at the reference point P0 ) loop variables F~-'[eis]. What we shall show in 

fact is that it represents a local change in 'phase' of 'colour' monopoles in the 

Yang-Mills fields, in much the same way that the original Yang-Mills gauge trans­

formation represents a local change in 'phase' of 'colour' sources. Further, it is 

for this 'phase' of 'colour' monopoles that the tensor potential L~-'v[els] is acting 

as parallel transport. 

We should first make clear that by 'colour' monopoles of Yang-Mills fields, we 

do not mean here the 't Hooft-Polyakov soliton solutions of 1974 [11, 12) which are 

abelian monopoles embedded in a nonabelian Yang-Mills-Higgs field. We mean 

rather the generalization of the Dirac point monopole [13] to nonabelian theories 

as first suggested by Lubkin [14), Wu-Yang [15) and Coleman [16). These latter 

are characterized by nontrivial nonabelian bundles over S 2
, whereas the former 

are characterized by nontrivial abelian subbundles of a trivial nonabelian bundle 

as in the original 't Hooft-Polyakov papers. In this language then, the charge of a 

'colour' monopole in a Yang-Mills theory with gauge group G takes values in the 

fundamental group 1r1(G). In particular, for the simplest pure Yang-Mills theory 

with gauge algebra su(2) and gauge group G = S0(3), the monopole charge ( 

can take only values in Z2 and can thus be labelled just by a sign ± [17). 

The monopole charge so defined which is enclosed inside any given surface ~ 

is given by the holonomy over this surface [10): 

(22) 

where the surface ~ passing through the loop-space reference point P0 = {e~} 
is considered as a closed loop in loop space. This holonomy 82: can be written 

explicitly as: 
r27r r27r een s) 

82: = Pt exp ig lo dt lo dsF~-'[etls] at (23) 
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for any parametrization {ens)} of ~: 

For example, in the pure su(2) Yang-Mills theory with gauge group 80(3), the 

quantity in (23) for any~ will be an element of the group 8U(2) taking the values 

±I in its centre Z2 = 8U(2)/ 80(3). The value -I for 81: will then signify that 

there is a 'colour' monopole enclosed inside the surface ~-

The existence of a monopole charge at some space-time point x means that 

the loop space curvature G !''-' [ e Is l of ( 8) will fail to vanish at e( s) = X 0 In other 

words, a monopole charge may be interpreted as a source of loop space curvature 

[10, 18]. This is not in contradiction with the statement above in (9) since the 

presence of a monopole necessitates patching of the gauge potential so that at the 

position of the monopole A11 ( x) is not defined, violating thus the conditions for 

(9) to hold. Indeed, since geometrically the curvature is just a differential version 

of the holonomy, it follows from (22) that at the monopole position, G11..,[els] must 

take some value 47rg"' in the gauge Lie algebra where "' satisfies: 

exp i1r"' = ( (25) 

for a monopole of charge(. Thus, in particular, for a monople of charge -in the 

80(3) theory, "' will take a value nu for n odd and 0' = aiTi, where a is a unit 

vector and Ti are the Pauli matrices. Notice that in ascribing the algebra element 

"' to the monopole, one has assigned to it a 'phase' or orientation in internal 

symmetry space which it did not originally possess. 

Suppose now that there is a monopole moving along a world-line Y(r), then 

(9) will be replaced by: 

(26) 

It can be shown that provided this is satisfied, the existence of the gauge potential 

A11 ( x) is still guaranteed at all points in space-time [10], except of course on the 

monopole world-line where we cannot expect the potential to be defined in any 

case. Hence, the condition (26) will again remove the redundancy from the loop 

variables as (9) did before, meaning now that for all loops not passing through 

Y( r ), it is assured that we may still write (2) and (1) as before. 

Replacing (9) by (26) as constraint in (13), however, means that there is cou­

pling now between the :field as represented by F11 [els] and the monopole coordinate 

Y( r) or that there is an induced interaction between the :field and the monopole. 
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Indeed, this seems a natural way to define the interaction and it has been shown 

that in this way equations of motion for the field-monopole system can be derived 

which for the abelian theory reduce exactly to the Maxwell and Lorentz equations 

for the magnetic charge [18, 19]. 

Our primary interest here, however, is not monopole dynamics but the meaning 

of the antisymmetric tensor potential L~-'11 [eJs] as connection. To see this, we 

shall need to extend the discussion to a quantum monopole described by a wave 

function so that we may follow the variation of the wave function's 'phase' under 

parallel transport as we did for the electron wave function in the Bohm-Aharonov 

experiment [20]. 

We notice that the right-hand side of (26) is basically just the monopole cur­

rent. Indeed, in the special case of an abelian theory, the equation reduces by 

virtue of ( 4) simply to: 

(27) 

in which, with e being the magnetic charge, it is exactly the magnetic current 

which appears on the right-hand side. In replacing a classical monopole by a 

quantum monopole described by a (say Dirac) wave function, the classical current 

on the right-hand side of (27) is replaced by the quantum current, so that instead 

of (27) we have: 

(28) 

Equivalently, in loop space notation, we have: 

(29) 

For the general Yang-Mills case, the corresponding constraint reads as [19): 

where the 'current' inside the curly brackets is again an element of the gauge Lie 

algebra with a 'phase' or orientation in internal symmetry space. This 'phase', 

however, is measured in the local monopole frame at e(s), hence the rotation 

matrices Oe(s, 0) to transform back to the reference frame at eo in which G~-tv[els] 

on the left-hand side is measured. 

Suppose now we write an action for the field-monopole system. We shall then 

write the free action as usual as: 

(31) 
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where we may again express A~ in terms of the loop variables F1_Jels] as in (11). 

The loop variables have again to be constrained, but now by (30) instead of (9). 

Incorporating then the constraint into the action by means of Lagrange multipliers 

L#l~.~[eis] as before, we have: 

where J#l~.~[eis] denotes -1/47r times the right-hand side of (30). 

We ask now what happens if we perform the transformations (18) and (19) 

on A. We have seen already that the field part of the action remains invariant. 

Next, let us examine the last term on the right of (32), namely: 

where, from the definition of J#l~.~[eis] as the right-hand side of (30): 

The transformation (19) will give an increment to A#l(x) of the form: 

where we have used the fact that loop quantities have no derivatives longitudinal 

to the loop because of reparametrization invariance. Next, using the Bianchi 

identity satisfied by G#l~.~[els], we can deduce from (26) and the conservation of the 

monopole current that [19]: 

(36) 

so that: 

Substituting this into (35), one obtains after some manipulation: 

(38) 

where: 
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Such an increment in A"'( x) will induce a corresponding change in the action 

A of (32), which will however be cancelled if we perform at the same time the 

following transformation on the monopole wave function 1/;( x ): 

1/;(x)----> (1 + igA(x))1/;(x), (40) 

meaning a rotation of the local 'phase' of the monopole, since this will induce a 

similar rotation in the frame- transformation factors ne ( s' 0)' thus: 

( 41) 

which gives the total transformation of A"'( x) the standard transformation for a 

nonabelian potential: 

(42) 

The increment from the term (33) in the action (32) will therefore cancel in a 

familiar manner with the variation in the free action term (31) from the transfor­

mation (40) of the wave function 1/;(x). 

One sees thus that the transformation (19) ofthe tensor potential L"'11 [eis] does 

indeed correspond to a 'phase' rotation of the monopole wave function, and that 

the action for the field-monopole system is invariant under this transformation. 

We stress again that this is not the original Yang-Mills gauge invariance which 

has already been absorbed into the formulation by adopting the 'gauge-invariant' 

loop quantities F"'[els) as variables. The total gauge symmetry is now therefore 

SU(N) X SU(N) where the second SU(N) carries (because of the € symbol occur­

ing in, for example, (30)) a parity opposite to that ofthe first, original Yang-Mills 

SU(N). 

What is the origin of this new additional gauge symmetry? We recall that 

the monopole charge was originally defined as an element in the centre of the 

group SU(N); in particular for SU(2), it is labelled only by a sign -. It does not 

therefore have at first a 'phase'. But when its dynamics was formulated through 

the imposition of the constraint (26) or (30) as was done above, it was obliged 

to make a choice of 'phase', since the constraints imposed are equations in the 

algebra. This choice of 'phase' is 'local', depending not only on the loop e, but 

also on the 'end-point' labelled by the parameter s. However, the actual physics 

cannot depend on this choice of 'phase' since the monopole charge itself has none. 

Hence the dynamics must be invariant under an arbitrary rotation in 'phase' at 

every e and s, which is indeed the freedom enjoyed by the gauge parameter A"'[eis] 
in the symmetry transformation (19) found above. 
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Since one is allowed to rotate the monopole 'phase' arbitrarily for each ~ and 

s, one needs a parallel transport or 'connection' to specify what is meant by 

the same 'phase' at different values of ~ and s, namely to play the role here of 

the gauge potential A~'(x) in the original Yang-Mills symmetry. This is provided 

by the tensor potential L~'"[~ls], which depends on ~ and s as expected. The 

reason why it should carry two indices Jl, 1/ instead of just one index 1-L as in the 

ordinary gauge potential A~'( x) is that the monopole charge as defined above is 

specified by a closed 2-dimensional surface enclosing a 3-volume, and a 3-volume 

element in 4-dimensional space has a direction. For this reason, the measured 

monopole charge depends not only on the position but also on a direction in 

space-time. The parallel transport has therefore to specify 'phase' variations not 

only for neighbouring positions but also for 'neighbouring' directions, hence the 

extra index. 

Although our observations here on the tensor potential are made specifically 

only within the framework of the loop space formulation of Yang-Mills fields, it is 

hoped that they will be useful also for understanding the geometrical meaning of 

tensor potentials in general. 
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