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Abstract 

We briefly describe a method for finding complex metastable states for frus­
trated classical systems, using a dissipative dynamical map. We show by 
example that this technique can give states which are very competitive in 
energy with the ground state, and with other, simpler states which are found 
by exhaustive search. 
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1 Introduction: frustration 

We wish to consider "frustrated" problems in classical equilibrium statistical 
mechanics. Suppose we have an energy function 

F = L fli-il(fh, Oj) (1) 
pairs ij 

where the set { Oi} represents the degrees offreedom of the problem. We call 
this function (and the system it represents) frustrated if it is impossible to 
choose a set of coordinates { Oi} such that every term in F is simultaneously 
minimized. 

Since the equilibrium problem is precisely to minimize F, then clearly 
when F is frustrated the equilibrium problem is in general nontrivial. Let 
us now further restrict our consideration to problems in which the frustration 
arises without any disorder in F. Even in this restricted class of problems, 
it is in general very difficult to deduce the absolute minimum of F. Further­
more, as F becomes increasingly frustrated, the importance of the absolute 
minimum ("ground state") diminishes relative to that of other local min­
ima (metastable states), due to the tendency for large activation barriers to 
appear between minima ( F becomes "crumpled"). Hence we broaden the 
problem, in the case of frustration, to one of finding a representative set of 
low-energy ("competitive") minima-a set which includes but is not limited 
to the ground state. 

One interesting technique which has been applied to such problems in­
volves writing the minimization problem as a mapping [2]. To pursue this 
idea we restrict ourselves further to one-dimensional problems. Then the 
minimization problem for (1) may be written as an infinite set of coupled 
equations 

(2) 

Here the coordinates are listed in 1D order. Assuming the interaction in F 
extends to the rth neighbor, there are 2r + 1 coordinates in each of ( 2). The 
ith equation may then be rewritten as an equation for Oi+r in terms of the 
2r previous O's. In this light, knowledge of those previous 2r values for 0 
will determine Oi+r, from (2). Thus we obtain the 2r-dimensional map 

(3) 

Trajectories of (3) then correspond to extrema ofF, for whatever 2r bound­
ary conditions are used to start the iteration. Such maps have two impor­
tant features [2]: (i) they are volume-preserving; (ii) stable trajectories of 
the mapping correspond to unstable extrema of F, and vice versa. This 
latter feature makes it difficult to study complex minima of F [say, those 
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represented by long-period or chaotic trajectories of (3)], although simpler 
structures given by fixed points of (3) can be located accurately. 

2 Dissipative maps 

We could solve problem (ii) above if we could replace the volume-preserving 
mapping (3) with a dissipative map-one whose orbits converge to attractors 
in the phase space-and if we could arrange that these attractors be low­
energy minima (if not all the minima) of F. Such a mapping could then 
act as a 'magic bullet' which would efficiently locate those minima we want 
to study. This would include minima of arbitrary complexity. For example, 
with such a 'magic bullet' we could find disordered minima ofF from chaotic 
attractors of the dissipative map, evaluate their energetics accurately, and 
otherwise characterize them in terms of correlations, etc. 

We have discovered an approximate magic bullet, and applied it to a 
frustrated 1D problem of some physical interest [1]. In this problem F is of 
the form 

oo n+r 

F = L L fln-n'I(IOn- Onrl) (4) 
n=l n'=n+l 

where r is in principle infinite, but effectively finite (see Section 3). For this 
case our method may be described as follows. We believe [1] that there are 
regular solutions to (2) [with F as in (4)] of the form Oj = jl/J. We then 

consider a somewhat weaker condition: let F( ljJ) Fle;=itJ, and assume 
that 

8F(l/J) = O 
84J ) (5) 

that is, that there are uniform configurations which are stable against vari­
ation of the lattice constant. This is equivalent to 

r 

L tti(tl/J) = o (6) 
l=l 

where /~(z) = 8fn(z)/8z. 

Now we want a dissipative map which agrees with (6). We imagine (as 
with the volume-preserving map) "growing" the lattice from the left, but let­
ting the choice fJj of each new Oj be a one-dimensional minimization problem: 

n=j-r 

G(OJ) = minG(Oj) with G(Oj) = L 9ii-ni(IOj- Onl) · (7) 
8 · 

J n=j-1 

Since Oj is determined by the r previous values, this gives an r-dimensional 
map similar to (3). However, we choose a fictitious two-body potential g 
to replace the true potential f. It is then easily shown [1] that fixed points 
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of the resulting map will correspond exactly to solutions to (6) (i.e., to a 
uniform configuration stable with respect to variation in the uniform spacing 
r/>) if we set 

(8) 

In other words, we U:se knowledge about simple minima ofF ( eg, that uni­
form minima exist) to determine the fictitious potential G. The latter then 
gives rise to a dissipative map (7). Some of the attractors of this map will 
be (exactly) the 'simple' minima of F. However, we suppose that the map­
ping built from G will have other attractors of more complex structure, and 
that these other attractors will be close to low-energy minima of F. (The 
nearby exact minima may then be found by standard, purely local relaxation 
schemes.) This supposition has already been well supported by [1); below 
we offer a further test of the idea. 

3 Results: complex structures at low energy 

In this section we wish to compare metastable states, found using the dis­
sipative map (DM) described above, with other (small-period) metastable 
states found by an "exhaustive search" (ES) procedure. We will see (Fig. 1) 
that the DM can guide us to states of high complexity (including disordered 
states) which (a) could never be found by any exhaustive search procedure, 
and yet (b) are highly competitive in energy with those states which we can 
find by exhaustive search. 

The problem we consider is that of Ref. [1]. Our two-body interaction 
I (representing repulsion between uniform layers of flux lines in a layered 
superconductor) is then ln(a) = (const) log(1 + e-4

n:l! - 2e- 2
n:J! cos 21ra). 

Here a= IB1- B;l, n = li- jj, and 0 :S 81 < 1. The parameter z is derived 
from the average flux line density. Small z makes I more long-ranged, and 
so (since I is uniformly repulsive) makes F more frustrated. For simplicity 
we may think of our 1D chain of layers as a classical XY spin chain, with the 
spin couplings long-ranged (range ex 1 I z) and uniformly antiferromagnetic. 

Our ES procedure is similar to one described in Peyrard and Aubry [3]. 
To consider metastable states ofperiodp, we study chains oflength K > 1lz 
(with K a multiple of p) and periodic boundary conditions. The configura­
tion space for K spins can then be divided into sectors defined by the relative 
ordering of the spins in the unit interval. It is plausible that, for K larger 
than the range of interaction, each such sector contains (at most) a single 
minimum of F. We then seek that minimum by choosing a starting point in 
each sector (each spin getting one of the values l I K, l = 0, ... , K - 1) and 
relaxing (using standard routines) to the nearest local minimum. 

A comparison of the ES energies with those found using the DM is given in 
Fig. 1. We see that, at small z, the DM allows us to find disordered (chaotic) 
minima of the energy (as well as large-period structures) [1] which are highly 
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Figuxe 1: Energies for metastable states of a frustrated "spin chain", as 
a function of :c (~ the inverse range of the antiferromagnetic interaction). 
Small dots: periodic minima found by "exhaustive search" (see text), for 
periods ~ 8. Large dots: typical period-1 minima. Solid line: minima found 
using a dissipative map (followed by local relaxation). Structuxes of these 
minima are labelled in the figuxe. Note that, using the DM, we have found 
structuxes of great complexity (period -+ oo) which are nevertheless very 
low in energy. 

5 



competitive with the simpler structures found by exhaustive search. Our 
method of finding these structures, using the DM, is unique (as far as we 
know) in this regard: that is, we know of no other method for finding these 
structures which is efficient enough to be practicable. 

We are confident that this approach may be usefully applied to other 
frustrated 1D problems [4]. An extension to 2D (or higher) is of great inter­
est. This may be possible in a restricted sense by using periodic boundary 
conditions in the other dimension( s); however this kills the possibility of 
observing structures which have an arbitrary period in either dimension. A 
more interesting problem (which we do not yet know how to solve) is to 
write an iterated mapping to represent the energetics forD > 1, if open BC 
are used in all dimensions. 
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